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Abstract 

In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of 

model views and its sparse representation. The algorithm starts with the normalization of 3D models and the 

extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over 

each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes 

after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training 

stage, we store some 3D local features to build the prototype dictionary of local features. To extract an inter-

mediate feature vector, we measure the similarity between the local descriptors of a shape model and the local 

features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse 

domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to 

recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the 

average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art 

approaches and the results showed the effectiveness of the proposed algorithm. 
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1. Introduction 

Recently the rapid development of three-dimensional (3D) scanners and sensors as well as graphic 

accelerated hardware have attracted an enormous amount of interest for 3D image processing and analysis 

[1]. Nowadays, 3D shape models are used in various fields such as archaeology, cultural heritage, 

computer-aided design (CAD), medical applications, 3D object classification, and biometrics. For in-

stance, in industrial applications, 3D CAD models are variously used in a new form of prototyping called 

digital prototyping. Digital prototyping allows for the easy evaluation of industrial components before 

fabrication. One of the most important applications in the field of medical diagnostic is the automatic 

analysis and recognition of abnormalities in the anatomic structures. The recognition of abnormalities in 

3D images requires automatic representation and the classification of 3D models, which is a challenging 

issue. 

The recognition and classification of 3D models are of great importance in several applications. 
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However, existing approaches for the classification and recognition of 2D images cannot be applied to 

3D images directly because of its different nature and characteristic. The recognition and classification 

of a 3D model require the extraction of global or local characteristics of a 3D shape and its representation 

in an appropriate approach that is called a 3D shape descriptor or signature. The performance of a 3D 

shape recognition algorithm highly depends on the appropriateness of a 3D shape descriptor. 

Existing algorithms for 3D shape representation can be roughly categorized into feature-based, view-

based and graph-based approaches [2,3]. In feature-based approaches, global or local features of a 3D 

shape model are used as the descriptors for shape classification. Most early approaches for 3D shape 

classification employ global features for shape recognition. Global features are easy and fast methods for 

3D shape representation; however, they cannot describe the local deformation of a 3D shape. Therefore, 

the local features have been recently considered as a solution to handle the shortcomings of global 

features and increase the discriminating power of shape descriptors. 

In comparison with feature-based approaches that consider only the geometric characteristic of a 3D 

shape, graph-based approaches employ the relations and linkages between the various components of a 

model for the shape representation. In other words, graph-based approaches construct a graph repre-

senting the topological information of a 3D object as a descriptor. In general, graph-based approaches 

are computationally inefficient and their applications are mostly restricted to CAD/CAM models. Two 

similar 3D models are looked similar from various views, therefore view-based approaches extract the 

2D images of a 3D model from various views to describe it. The number of views and the method to 

combine views have a major impact on the effectiveness of a view-based algorithm. 

This study proposes a new approach for 3D shape classification and recognition using 3D local features 

of model views. The proposed approach can be considered as a combination of view-based and feature-

based approaches. The algorithm commences with the normalization of 3D models. This stage makes the 

extracted views invariant into rotation and scale changes. Then, 2D images of 3D models are captured 

from various views. In contrast to existing view-based approaches that mostly extract the silhouette of 

3D models, we consider the distance of points from the center of mass of 3D models as the intensity of 

the extracted views. Consequently, the 2D views of the 3D models are stacked over each other to form 

the view cubes. The algorithm employs the descriptors of 3D local features in the view cube after applying 

Gabor filters in various directions. To combine the descriptors of local features, various descriptors from 

different classes of 3D models are saved during the training stage. These descriptors are called the 

prototype dictionary of local descriptors. To extract an intermediate feature vector, we measure the 

similarity between the local descriptors of an input model and the local features of the prototype dic-

tionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the 

final descriptors of models. Finally, support vector machine (SVM) classifiers are used for the recognition 

of 3D models. In brief, the main contributions of this paper are as follows: 

- A new approach is proposed to represent a 3D model as a cube of model views. In contrast to most 

view-based algorithms that use the silhouette of a shape model as the view image, our algorithm 

utilizes grey-level images. The pixel intensities of the grey-level images are obtained by the 

calculation of distances of points from the center of mass of the shape model. 

- The proposed approach leverages a new descriptor that is extracted from 3D local descriptors of 

the view cube. Therefore, the proposed algorithm can be considered as a combination of view-

based and feature-based approaches. 

- A new approach is proposed to represent the descriptor in the sparse domain. 
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The remainder of this paper is organized as follows. In Section 2, a survey of related work is presented. 

Section 3 introduces the proposed algorithm for 3D shape recognition. Section 4 presents the experi-

mental results and their analysis and we conclude the paper in Section 5. 

 

 

2. Related Work 

Various applications of 3D shape recognition and classification have attracted a large amount of 

attention from researches during the past decade. Therefore, several approaches have proposed for 3D 

shape classification during the past decade. Also, several survey papers have discussed various algorithms 

for 3D shape recognition, classification, and retrieval [3-6]. As mentioned before, early approaches for 

3D object representation mostly focused on global features like area, volume and moments of 3D shapes 

[7-10]. For Instance, Elad et al. [7] calculated moments of 3D shape and represented them as a descriptor 

for 3D shape retrieval. Osada et al. [8] used shape a distribution sampled from a shape function measuring 

the global geometric properties of an object as the shape descriptor. An enhanced version of these features 

was also used in [9]. 

Some existing approaches for 3D shape recognition employ descriptors based on a spatial map that 

uses the spatial relations between different sections of a 3D model [11-13]. For instance, Saupe and 

Vranic [11] used spherical harmonic coefficients as a shape descriptor. The descriptor measures the 

maximal extent of shape across all rays from the origin. Spatial maps are generally sensitive to the 

geometric transformations like the scale and rotation of a 3D object; therefore, a pose normalization stage 

is inevitable. Kazhdan et al. [12] used a spherical harmonic representation that transforms a rotation-

dependent shape descriptor into the rotation-independent one. However, spherical harmonics that are 

based on the latitude-longitude parameterization of a sphere result in singularities in the poles. To handle 

the problem, Laga et al. [13] uniformly sampled points on the sphere and used the wavelet transform to 

extract the spherical wavelet descriptors that are the extended version of Zernike moments and spherical 

harmonics. 

Recent feature-based approaches for 3D shape representation mostly focus on local features [14-19]. 

Descriptors based on local features generally give rise to better discrimination for inter-class shape 

recognition. The main stage of constructing a descriptor based on local features is the detection of salient 

points in a 3D shape model. Shilane and Funkhouser [14] defined the distinctive regions of a 3D shape 

as the areas that their shapes are consistent with the objects of the same type and differ from the objects 

of other types. Inspired by the characteristics of human visual perception, Zhao et al. [15] used two 

features called retinex-based importance feature (RIF) and relative normal distance (RND) for salient 

point extraction. Atmosukarto et al. [16] used the histogram of low-level features like Besl–Jain and 

Gaussian curvatures for salient point extraction by using a trained SVM. Salient points are then 

transformed into a 2D longitude-latitude spatial map as a descriptor to classify 3D models. In [17], an 

extension of Harris method is used to extract the salient points of a 3D shape. The method uses an adaptive 

technique to determine the neighborhood of a vertex to apply Harris operator. Bu et al. [18] employed 

deep belief networks (DBN) to learn high-level features that are obtained from local descriptors. They 

adopted a scale-invariant heat kernel signature and average geodesic distance as the local descriptors that 

are robust against non-rigid and complex shape deformations. 

Graph-based approaches are another group of algorithms for 3D shape recognition [20-24]. In contrast 



Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors 

 

346 | J Inf Process Syst, Vol.16, No.2, pp.343~359, April 2020 

to feature-based methods that describe 3D objects using 3D geometrical properties, graph-based 

algorithms use the topological information and the relation between various parts of the object for 3D 

shape recognition. A graph shows how various parts of an object are linked together. Various graph 

representations have been proposed in the literature, such as skeletal graph [20], Reeb graph [21],  and 

spectral Reeb graph [23,24], to name a few. Graph-based algorithms are computationally expensive and 

sensitive to small topological changes. 

Another category of 3D shape recognition algorithms, which are called view-based algorithms, capture 

several 2D images from various directions of a 3D model [25-27]. In [25], a set of 2D images is 

automatically generated from a 3D object, by taking the views from uniformly distributed viewpoints. 

Then, a set of 2D rotation-invariant shape descriptors are extracted for each image. Finally, a similarity 

measure is used for 3D model retrieval. In [26], convolutional neural networks (CNNs) are used for 3D 

shape recognition using multiple views of a 3D model. The method first trains a set of CNNs to combine 

several views as a single and more informative view. Finally, another trained CNN is used to generate 

the shape descriptor. Most view-based methods can be considered as an extension to global feature-based 

methods that extract a global descriptor from the view images. However, Ding and Liu [27] used a view-

based descriptor called sphere image for 3D shape retrieval that takes into account the relation between 

various views by constructing a star graph. In [28], a feature fusion method and multi-modal graph 

learning are used for view-based 3D object retrieval. After extracting different visual features, including 

2D Zernike moments, 2D Fourier descriptors, and 2D Krawtchouk moments, the Hausdorff distance is 

computed to measure the similarity between two 3D objects with multiple views. Finally, several graphs 

are employed for the feature fusion task. 

 

 

3. Proposed Method 

This study aims to classify 3D objects using the local features of model views and the sparse repre-

sentation of the extracted features. Fig. 1 shows the general block scheme of the proposed algorithm. The 

proposed method includes two parts comprising training and testing phases. The proposed algorithm is a 

combined feature and view-based approach that utilizes the 3D local features of model views to construct 

the required features for 3D shape classification. Both training and testing phases start with the 

normalization of 3D models. This stage makes the extracted views invariant into the rotation and scale 

changes. Then a set of 2D images is extracted from 3D shapes by taking views from uniformly distributed 

viewpoints. Consequently, the 2D views of the 3D models are stacked over each other to form view 

cubes. We use 2D Gabor filters in companion with a 3D max filter to extract proper characteristics of the 

view images and take into account the relation between various views. In the training phase of the system, 

we select some 3D local features from the training set of 3D models as the prototype dictionary of local 

features. Both in the training and testing phases, the intermediate features of 3D models are computed by 

calculating the similarity between 3D patches of a 3D model and the prototype dictionary of local 

features. We use sparse representation to calculate the final descriptors for the classification. The sparse 

representation of descriptors needs the selection of appropriate basic signals or atoms. This stage that is 

called dictionary learning is conducted during the training phase. This dictionary is then used to obtain 

the final descriptors for 3D shape classification via sparse representation. Then the trained SVM 

classifiers are used for 3D shape recognition. 
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Fig. 1. The general block scheme of the proposed algorithm. 

 

3.1 Pose Normalization 

The 3D shape models may contain and an arbitrary scale, orientation, and position. To make the 

extracted features robust against the scale, rotation, and position of a model, a pose normalization stage 

is used before the feature or view extraction. Pose normalization algorithms aim to transform a 3D shape 

into a new canonical coordinate frame where the representation of the shape is independent of its scale, 

orientation, and position. Various normalization algorithms such as weighted principal component 

analysis (PCA) [29], continuous PCA [30] and PCA on the normals of the model (NPCA) [31] have been 

proposed in the literature. We use the weighted PCA [29] approach for the pose normalization. 

In the weighted PCA, the mean vector and covariance matrix of vertex coordinates are calculated as 

follows: 
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where n is the number of vertices in a 3D shape model, are the coordinates of the shape vertices and 

 and are the mean vector and covariance matrix of the vertex coordinates, respectively. Here 

is the weight of vertex  that is defined as the proportion of the sum of surfaces of all triangles that 

have  as a vertex to the sum of surfaces of all triangles in the shape. Let A be a matrix consisting of 

the ordered eigenvectors of the covariance matrix , as the row vectors. The normalized coordinates 

of the vertices are then calculated as follows: 

 

                                                                  (3) 

 

Fig. 2 shows the result of the pose normalization stage on some 3D shape models. 

 

                     

(a)                                                                              (b) 

Fig. 2. Results of pose normalization on two typical 3D shapes: (a) before applying the pose normalization 

and (b) after applying the pose normalization. 

 

3.2 View Cube Construction 

After the normalization of 3D shape models, different views of the shape models are extracted to 

construct view cubes. To build a view cube, a set of 2D images is extracted from a 3D shape by taking 

views from uniformly distributed viewpoints. The view cube is constructed by stacking of various views 

of a shape model. The aim of constructing a view cube is to take into account the relation between various 

views of a shape model for the extraction of the shape descriptor. In the proposed approach, not only the 

3D information of a view cube is used in the filtering steps, but also the intermediate features are based 

on the 3D information of adjacent views. Fig. 3 shows the extracted views and the constructed view cube 

for a typical 3D shape model with nine views.  In contrast to the most view-based algorithms that use the 

silhouette of a shape model as a view image, we use the distances of points from the center of mass as 

the intensities of pixels of a view image. This feature provides us the capability of using intensity-based 

filters such as Gabor filter to extract the proper characteristics of a shape model from its view images. 
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Fig. 3. The extracted views and the constructed view cube for a typical 3D shape model. 

 

3.3 Gabor and Max Filtering 

The use of distances of points from the mass center of shape models as the intensity of view images 

provides us the capability of utilizing filters such as Gabor filter for the texture-based feature extraction. 

Inspired by the biological characteristics of the human visual system, Gabor filters are found to be 

appropriate for texture representation and discrimination. The weights of 2D Gabor filter are defined as 

follows: 
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where θ denotes the direction of the Gabor filter, γ is the aspect ratio, σ is effective width and λ is 

wavelength. Our approach for texture representation using Gabor filter is based on the method of [32]. 

We apply 11×11 pixels 2D Gabor filters to all 2D images of view cube in 16 directions and select the 

maximum value in 16 directions as the output of Gabor filter. Taken all form [32], γ, σ, and λ are set to 

0.3, 4.5, and 5.6, respectively. 

After applying the 2D Gabor filter to the images of the view cube, 3D local max filter is employed to 

take into account the relations between various view images. To this intent, a 3D local max filter with the 

dimension of 5×5×5 pixels is experimentally used in this study. 

 

3.4 Extracting Intermediate Features 

After applying Gabor and max filtering, the intermediate features are calculated by comparing all 3D 

local patches in the view cube by some previously-stored local patches, i.e., the prototype dictionary of 

local features. To this end, in the training stage, we randomly select Ni 3D local patches with a size of 

16×16×3 pixels. By comparing all the 3D local patches in view cube with the prototype dictionary of 

local features, intermediate features are calculated using the following algorithm: 

ˆ cos( ) sin( )x x yθ θ= −

ˆ sin( ) cos( )y x yθ θ= +
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• Select a 3D patch from the prototype dictionary of local features, i.e., pj, j=1,2,…, Ni.. 

• Slide a 3D window with a size of 16×16×3 pixels in the view cube. 

• Compare the 3D local patches of the view cube with  pj  as follows:  

       

        where defines i-th 3D local patch in the view cube and   denotes 2-norm. 

• Calculate the max difference as follows: 

        

• Construct the intermediate feature vector, i.e., . 

 

3.5 Sparse Representation 

In this study, the sparse representations of intermediate features are used as the descriptors for 3D shape 

recognition. In the sparse representation, a feature vector , which denotes an intermediate feature 

vector, is represented as follows: 

 

                                                                  (7) 
 

where  is the sparse representation of the feature ,  is the dictionary or basic 

signals and  is the error vector. Here k is the number of atoms or basic signals in the dictionary. 

The sparse representation of an intermediate feature vector , can be obtained by solving an 

underdetermined system of linear equations as follows: 

 

             s.t.                                                    (8)  

 

where  denotes the number of nonzero elements in a vector. To make the solution of the Eq. (8) more 

feasible, the sparse representation problem may be expressed as: 
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where  refers to the L1 norm. Since both D and α in the Eq. (8) is unknown, the sparse representation 

of local descriptors consists of two different stages: 1- dictionary learning and 2- the calculation of sparse 

codes. The aim of dictionary learning is the selection of appropriate basic signals or atoms. We use the 

K-SVD algorithm [33] in the training stage of the proposed algorithm to learn a dictionary for sparse 

representation. To learn a dictionary for the sparse representation, we use the intermediate feature vectors 

of the training shape models. Let denote the intermediate feature vectors of the training shape models 

and represent the corresponding sparse coefficients of  as follows: 
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where nt is the total number of training 3D shape models. The calculation of matrix D, i.e., dictionary 

using the K-SVD algorithm comprises the following steps: 

Step 1. Initialize dictionary D with L2 normalized columns. 

Step 2. Calculate sparse coefficients using the following equation: 

 

     s.t.         i= 1, 2, …, nt                       (12) 

 

Step 3. Update the dictionary as: 

 

                                                       (13)
 

 

Step 4. Repeat steps 2 and 3 until the convergence. 

After the calculation of the dictionary, the feature-sign search algorithm [34] is used to calculate the 

sparse coefficients for intermediate features as the descriptors of 3D shape models. 

 

3.6 Classification 

In this study, SVM classifiers are used to classify 3D shape models using the extracted descriptors. An 

SVM is a binary classifier that categorizes an input feature vector by evaluating the classifier function 

as follows [35]: 

 

                                                          (14) 

 

where is the feature vector, b and  are the bias and vector of SVM coefficients respectively,  

defines a kernel function, and sgn denotes the sign function. Since an SVM is inherently a binary 

classifier, one against one approach is used in this study to create a multi-class SVM classifier for 3D 

shape classification. 

 

 

4. Experimental Results 

The proposed algorithm was implemented in MATLAB environment and evaluated with two different 

3D shape datasets comprising the McGill 3D shape benchmark (MSB) [36] and Princeton Shape 

Benchmark (PSB) databases [37]. Fig. 4 shows examples of 3D shape models for the MSB database. This 

database consists of 19 different kinds of 3D objects with the emphasis is on including models with 

articulating parts. Fig. 5 illustrates samples from the PSB database. This benchmark contains a database 

of 3D polygonal models collected from the World Wide Web. This dataset includes 1,814 models divided 

into three levels of classification. In our experiment, we used the 3rd level classification of the PSB 

database to assess the performance of the proposed algorithm and compare its results with those of other 

methods. 

To construct a view cube, we use a set of nine 2D images with a resolution of 150×200 pixels. These 

images are extracted from 3D shapes by taking views from uniformly distributed viewpoints. In this 

study, the prototype dictionary of local features comprises 5,000 local patches of size 16×16×3 pixels. 
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(a) 
 

 
(b) 

Fig. 4. Samples of 3D objects of the MSB database, (a) objects with articulating parts, (b) objects with 

moderate or no part articulation. 

 

 
Fig. 5. Samples of 3D objects of the PSB database. 

 

Fig. 6 shows the correct classification rate of the proposed algorithm on the MSB database. Our 

experimental results demonstrate that an SVM classifier with linear kernel function results in better 

classification accuracy. Therefore, one against one linear SVM classifiers are used in the experiments to 

create a multi-class SVM classifier. Fig. 6 illustrates the percentage of correct classification for the 

various dimensions of the sparse representation, i.e., k values. Since the MSB database does not specify 

test and train shape models for the classification, we use 190 random object models for the training and 

the remaining models for the test. The experiments are repeated ten times and the average classification 

rates are reported in the figure. The results of Fig. 6 demonstrate that the maximum allowable dimension 

of sparse representation, i.e., k=190, results in the maximum percentage of correct classification. Table 1 

shows the correct classification rate for various classes of the MSB database using k=190. The results of 

Table 1 show the average classification rate of 83.7% and 100% for seven and 19 classes of the MSB 

database, respectively. Table 2 illustrates the confusion matrix for the classification of 3D objects in the 

MSB database. As the results of Table 2 demonstrate, some sources of errors for the proposed algorithm 

are related to the misclassification of airplanes as birds, tables as chairs and dinosaurs as four-limbs, to 

name a few. We also tested the proposed algorithm for 3D shape classification with and without the 

sparse representation. Table 3 compares the percentage of correct classification for the proposed 

algorithm with and without the sparse representation. The results of Table 3 show that the sparse 

representation of intermediate features enhances the classification rate up to 6.4%. 
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Fig. 6. Correct classification rates of the proposed algorithm on the MSB database for the various 

dimensions of the sparse representation i.e. k values. 

 

Table 1. Correct classification rates (%) for various classes of the MSB database using k=190 

Class name Correct classification rate (%) 

Airplanes 70.0 

Ants 100 

Birds 62.5 

Crabs 80.0 

Chairs 100 

Cups 100 

Dinosaurs 87.5 

Dolphins 100 

Fishes 80.0 

Four-limbs 83.3 

Hands 50.0 

Humans 75.0 

Octopus 70.0 

Pliers 100 

Snakes 100 

Spectacles 84.6 

Spiders 76.1 

Tables 71.4 

Teddy-bears 100 

All classes 83.7 

 

Table 2. Confusion matrix for the classification of 3D objects in the MSB database 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1. Airplane 0.70 - 0.20 - - - 0.10 - - - - - - - - - - - - 

2. Ants - 1 - - - - - - - - - - - - - - - - - 

3. Birds - - 0.63 - - - - - - - 0.13 - 0.13 - 0.13 - - - - 

4. Crabs - - - 0.80 0.05 - - - - - 0.05 - - - 0.10 - - - - 

5. Chairs - - - - 1 - - - - - - - - - - - - - - 

6. Cups - - - - - 1 - - - - - - - - - - - - - 

7. Dinosaurs - - - - - - 0.88 - - 0.13 - - - - - - - - - 

8. Dolphins - - - - - - - 1 - - - - - - - - - - - 

9. Fishes - - - - - - 0.20 - 0.80 - - - - - - - - - - 

10. Four-limbs 0.08 - - - - - 0.08 - - 0.83 - - - - - - - - - 
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Table 2. (Continued) 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

11. Hands - - - - - - - - - - 0.50 0.20 0.10 0.10 0.10 - - - - 

12. Humans - - - 0.08 - - 0.08 - - - 0.08 0.75 - - - - - - - 

13. Octopus - 0.10 - - - - - - - - 0.20 - 0.70 - - - - - - 

14. Pliers - - - - - - - - - - - - - 1 - - - - - 

15. Snakes - - - - - - - - - - - - - - 1 - - - - 

16. Spectacles - - - - - 0.08 - - - - - - - 0.08 - 0.85 - - - 

17. Spiders - - - 0.05 - - - - - - - - 0.19 - - - 0.76 - - 

18. Tables 0.14 - - - 0.14 - - - - - - - - - - - - 0.71 - 

19. Teddy-bears - - - - - - - - - - - - - - - - - - 1 

 

Table 3. Percentage of correct classification for the proposed algorithm on the MSB database with and 

without the sparse representation stage 

 With the sparse representation Without the sparse representation 

Percentage orrect classification 83.7 77.3 

 

To show the effectiveness of the proposed algorithm, we also compared the results of the proposed 

algorithm on the MSB database with those of method of Atmosukarto et al. [16]. This method uses the 

histogram of low-level features like Besl–Jain and Gaussian curvatures for salient point extraction. 

Salient points are then transformed into a 2D longitude-latitude spatial map as a descriptor to classify 3D 

models. Fig. 7 illustrates the correct classification rate of method of Atmosukarto et al. [16] on the MSB 

database using K nearest neighbors (KNN) classifier with various K values. The results of Fig. 7 show 

the maximum correct classification ratio of 65.47% for K=1. Table 4 illustrates the confusion matrix for 

the classification of 3D objects in the MSB database using Atmosukarto et al. method. A comparison 

between the results of Tables 2 and 4 shows the effectiveness of the proposed algorithm. 

 

 
Fig. 7. Correct classification rates of method of Atmosukarto et al. [16] on the MSB database using KNN 

classifier for various K values. 

 

Table 4. Confusion matrix for the classification of 3D objects in the MSB database using method of 

Atmosukarto et al. [16] 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1. Airplane 0.80 - - - - - - - 0.10 - - - - - - - - 0.10 - 

2. Ants - 0.64 - 0.07 - - - - - - - 0.28 - - - - - - - 

3. Birds 0.22 - 0.44 - - - - - - 0.11 - - - - - 0.11 - 0.11 - 

4. Crabs - - - 0.84 - - 0.08 - - 0.08 - - - - - - - - - 

5. Chairs - - 0.10 - 0.40 - - - 0.10 - - - - - - 0.10 - 0.30 - 



Hussein Kanaan and Alireza Behrad 

 

J Inf Process Syst, Vol.16, No.2, pp.343~359, April 2020 | 355 

Table 4. (Continued) 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

6. Cups - - - - - 0.83 - - - 0.08 - - - - - - - - 0.08 

7. Dinosaurs - - - - - - 0.76 - 0.07 0.16 - - - - - - - - - 

8. Dolphins 0.20 - - - - - - 0.30 0.05 - - - - - - - - - - 

9. Fishes - - - - - - - - 1 - - - - - - - - - - 

10. Four-limbs - - - - - - - - - 1 - - - - - - - - - 

11. Hands - 0.20 - - - - - - - - 0.30 0.10 - - - - 0.40 - - 

12. Humans - - - - - - - - - - - 0.81 - 0.09 - - 0.09 - - 

13. Octopus - - - - - 0.08 - 0.08 - 0.16 - 0.08 0.33 0.16 - - 0.08 - - 

14. Pliers - - - - - - - - - - - - - 0.80 - 0.20 - - - 

15. Snakes 0.16 0.16 - - - - - - 0.16 - - - - - 0.33 - - 0.16 - 

16. Spectacles 0.08 - - - - - - - - - - - - - - 0.91 - - - 

17. Spiders - - - - - 0.07 0.07 0.07 - 0.35 - 0.07 - - - - 0.35 - - 

18. Tables - - - - - - - - 0.40 - - - - - - - - 0.60 - 

19. Teddy-bears - - - - - - - - - - - - - - - - - - 1 

 

Fig. 8 shows the correct classification rate of the proposed algorithm on the PSB database. SVM 

classifiers with linear kernel function are experimentally used in this experiment as well. Fig. 8 illustrates 

the percentage of correct classification for the various dimensions of the sparse representation, i.e., k 

values.  In this experiment, 907 objects are used to train the classifiers as well as obtaining the dictionary 

for sparse representation. The 907 remaining objects are also utilized to test the proposed algorithm. The 

results of Fig. 8 demonstrate that the maximum allowable dimension of sparse representation, i.e., k=907, 

results in the maximum percentage of correct classification. 

 

 
Fig. 8. Correct classification rates of the proposed algorithm on the PSB database for the various 

dimensions of the sparse representation, i.e., k values. 

 

Table 5 shows the correct classification rate of the proposed algorithm on the PSB database with and 

without applying the sparse representation stage on intermediate features. The results of Table 5 show 

that the sparse representation of intermediate features increases the correct classification rate of the 

proposed algorithm up to 16.99%. 

 

Table 5. Percentage of correct classification for the proposed algorithm on the PSB database with and 

without the sparse representation stage 

 With the sparse representation Without the sparse representation 

Percentage orrect classification 85.9 68.91 
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We also compared the results of applying the proposed algorithm on the PSB database with the methods 

of Bu et al. [18] and Hamid and Nakajima [38]. Bu et al. [18] leveraged the geodesics-aware bag-of-

features (GA-BoF) as the initial features. Then DBNs were used for dimensionality reduction and 3D 

shape classification. They also reported the results of shape classification using GA-BoF features and 

some of other dimensionality reduction algorithms such as PCA, multidimensional scaling (MDS), linear 

discriminant analysis (LDA), and locally linear embedding (LLE) algorithms. Table 6 compares the 

results of the proposed algorithm on the PSB database with GA-BoF features with DBNs and some other 

dimensionality reduction algorithms as well as the method of Hamid and Nakajima [38]. The results of 

this table demonstrate the higher performance of the proposed algorithm. 

 

Table 6. Comparison of  the results of the proposed algorithm with a method of Bu et al. [18] using DBNs 

and other dimensionality reduction algorithms as well as Hamid and Nakajima [38] approach 

Algorithm Percentage of correct recognition 

GA-BOF 71.4 

PCA 76.5 

MDS 77.1 

LDA 72.5 

LLE 73.7 

DBN 85.1 

Hamid and Nakajima [38] 70.05 

Proposed method with 9 views 85.9 

Proposed method with 20 views 89.7 

 

 

5. Conclusions 

This study reports a new approach for 3D shape recognition using 3D local features of model views. 

In comparison with the existing view-based approaches that mostly extract the silhouette of 3D models, 

we consider the distances of the points from the center of mass of a 3D model as the intensities of the 

pixels of extracted views. Then, we use Gabor-based filters to extract proper features for shape 

classification. To take into account the relationships between various views, we use a new approach for 

3D local feature extraction by the construction of view cubes. Additionally, we describe intermediate 

features in the sparse domain to enhance the accuracy of classification. 

Experimental results on both the PSB and MSB databases demonstrate the effectiveness and higher 

performance of the proposed method on the classification of 3D objects. Additionally, the comparisons 

of the results generated by the proposed method with those of other state-of-the-art approaches show that 

more reliable results could be obtained using the proposed method. 

The experimental results also show that the sparse representation of intermediate features increases the 

accuracy of the proposed algorithm. Our experiments using SVM classifiers with a radial basis function 

(RBF) as a kernel demonstrate that the correct classification rate decreases with an RBF kernel function. 

This effect shows that the sparse representation of intermediate features makes them linearly separable. 

According to the results obtained by the proposed approach, the increase in the number of coefficients 

for the sparse representation enhances the performance of the proposed approach. In the proposed 

approach, we experimentally used the maximum number of allowable coefficients in the training phase, 
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i.e., the number of intermediate features of shape models. This effect indicates the scalability for the 

proposed algorithm, because by increasing the number of classes and shape models it is possible to 

increase the number of coefficients for the sparse representation. 
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