
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023 253

Probability Weighting Effect in Vertex Cover of
Networks Via Prospect-Theoretic Learning

Ke Xu, Ke Wu, and Rongpei Zhou

Abstract—Game-theoretic learning methods for the vertex
cover problem have been investigated in this paper. In the
traditional game theory, the establishment of the game model
is based on the complete objectivity of the players, and the
existing game models describe the vertex cover problem mainly
along this path. In contrast, this paper considers the impact
of players’ subjectivity on decision-making results. First, we
present a covering game model, where the utility function of
the player is established under the prospect theory. Then, by
presenting a rounding function, the states of all vertices under
Nash equilibrium satisfies vertex cover state of a general network.
After then, we present a fictitious play distributed algorithm,
which can guarantee that the states of all vertices converge a
Nash equilibrium. Finally, the simulation results are presented
to assess the impact of players’ subjectivity on the overall cover
results of networks.

Index Terms—Nash equilibrium, prospect theory, simulation
results, subjectivity of players, vertex cover.

I. INTRODUCTION

OVER the past decades, vertex cover (VC) of networks
has attracted significant attention due to the wide appli-

cations in various fields, such as the wireless sensor networks
[1], autonomous intelligent systems [2], target tracking [3],
and security surveillance in social networks [4], etc.

To seek the minimum vertex cover of a network, vari-
ous distributed optimization algorithms have been proposed,
mainly from the perspective of the game-based distributed
algorithms, where each vertex is regarded as a player. For
example, Yang et al. first used a snowdrift game to describe
the vertex cover problem, and presented a memory-based
best response distributed algorithm, which can guarantee to
obtain a strict Nash equilibrium (SNE) [5]. After then, Tang
et al. studied a variant of the vertex cover problem, that
is, the weighted vertex cover (WVC) problem, and modeled
the problem as an asymmetric game model, and proposed a
feedback-based best response algorithm, and obtained a SNE
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[6]. Recently, Sun et al. formulated the problem as a potential
game, and proposed a relaxed greedy and memory-based
algorithm, which can also guarantee to obtain a SNE [7]. Other
game-based distribute algorithm for solving the (weighted)
vertex cover problem include game-based memetic distribute
algorithm [8], and time-variant binary log-linear learning al-
gorithm [9], etc.

To sum up, the works in [5]–[8] studied the (weighted) ver-
tex cover problem from game theoretic perspective. A common
assumption is that all players in the game are completely ratio-
nal and make appropriate strategies as long as their objective
expected functions can be optimized, this assumption is based
on expected utility theory. However, numerous experimental
studies shown that this assumption deviates from real-life
decision-making, and the classical game theory fails to explain
the deviations due to player’s subjectivity [10], [11], such
as the well-famous Allais’s paradox [12]. For instance, there
are two options with A: to win 2500 dollars with probability
0.33 or 2400 dollars with probability 0.66 or nothing with
probability 0.01; and B: to win 2400 dollars with probability
1. The experimental results have shown that most players
would choose A. But, according to expected utility theory,
a preference of B over A implies the B leads to a higher
expected utility.

In sum, the subjectivity of players cannot be neglected in
the process of decision-making about a particular issue. The
vertex cover of social networks is an example of the players
involved issues. Thus, for the vertex cover problem, it is very
meaningful to consider the players’ subjectivity on the game
results. In order to explain the subjectivity of the players in
decision results, the prospect theory has been proposed by
Kahneman and Tversky [12], which won the 2002 Nobel prize
in economic sciences. In recent years, the prospect theory has
been widely applied in many fields. For instance, smart grid
[13]–[15], requirements management [16], real-life decisions
[17], hardware trojan detection [18], vaccination [19], privacy-
preserving mechanism [20], quality of experience [21], and
data envelopment analysis [22], etc.

In this paper, we considers the impact of players’ subjectiv-
ity on decision-making results. For this, we formulated play-
ers’ utility (cost) functions based on the prospect theory. By
presenting a rounding function, and the vertices’ state under
Nash equilibrium satisfies the vertex cover state of network.
Moreover, we present a game-based distributed algorithm, i.e.,
the fictitious play algorithm, and a Nash equilibrium can be
obtained.

The main contributions of this paper are summarized as
follows.
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TABLE I
NOTATIONS.

Notations Definitions
V The set of all players (vertices)
X The finite strategy space
Xi The strategy set of player i
µ The penalty coefficient of uncovered edge

ω(·) The probability weight function
α The rational coefficient
Γi The neighbor set of player i
T The superscript for transpose

EUT The expected utility theory
PT The prospect theory
pi,1 The probability of choosing strategy 1 for i
pi,0 The probability of choosing strategy 0 for i
ki The degree of player i

< k > The average degree of network

i) We present the player’ utility (cost) function based on
prospect theory, and describe the vertex cover problem as a
covering game model. Then, we further present a game-based
distributed algorithm, i.e, the fictitious play algorithm, which
can guarantee to obtain a Nash equilibrium, and it satisfies the
vertex cover state of a network.

ii) The simulation results illustrate that deviation from
objectivity can strongly impact the overall cover level of
networks. Specifically, the more serious the deviation from
objectivity, the worse the cover level, and the slower the
convergence rate of the fictitious play algorithm.

The paper is organized as follows. In Section II, we
introduce prospect theory and formulate a covering game
model. In Section III, we explore the relationship between the
vertex cover and Nash equilibrium of the formulated game
model. In Section IV, we present a fictitious play distributed
algorithm, and prove that the states of all vertices converge
to a Nash equilibrium. In Section V, numerical simulation
results are presented to demonstrate the effectiveness of the
presented algorithm, and show the impact of subjectivity on
cover results. Finally, conclusions of this paper are drawn in
Section VI. Note that the notations used in this paper are listed
in Table I.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Prospect Theory

Expected utility theory (EUT) allows each player to evaluate
an objective expected utility, and then makes corresponding
decision. However, in the real-life scenarios, players’ behavior
will deviate from the rational behavior predicted by the EUT.
This phenomenon is attributed to the risk and uncertainty that
players often face when making decisions.

Fortunately, the prospect theory (PT) can be used to model
how players behave irrationally under the risk and uncertainty
circumstances [12]. An important concept of the PT is proba-
bility weight effect, which converts objective probability into
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Fig. 1. An illustration on the impact of α.

subjective probability, so as to establish a prospect game model
of players. For probability weight effect, it reveals that each
player i adopts his subjective probability wi(pi) rather than
objective probability pi, where subjective probability wi(pi)
is a nonlinear transformation from pi to wi(pi) [23]–[25].
Without loss of generality, we can assume that wi(pi) is the
same for all players, i.e., wi(pi) = w(pi). At present, the
Prelec function is widely used as a classical weight function
[26], which is described as

ωi(σ) = ω(σ) = exp(−(−lnσ)α), (1)

where σ and ω(σ) are the objective and subjective probability,
respectively; α ∈ (0, 1] is a rational coefficient, which re-
veals how a player subjective evaluation distorts the objective
probability. The greater the rational coefficient α, the higher
the rational degree. It is worth noting that when α = 1, the
probability weight effect will coincide with the probability of
the EUT. An illustration on the impact of α is shown in Fig. 1.

From Fig. 1, we can observe that the probability weight
function ω(σ) has some properties, include: i) It is asymmetric
with fixed point and inflection point at (1/e, 1/e); ii) When
0 < σ < 1/e, ω(σ) > σ, moreover, 1/e < σ < 1, ω(σ) < σ;
iii) ω(0) = 0, ω(1) = 1; iv) It is concave if 0 < σ ≤ 1/e and
convex if 1/e < σ ≤ 1; v) A small α results in a more curved
probability weight function.

B. Game Model

An undirected graph is defined by Ξ = {V,E}, where
V = {1, · · ·, n} is the set of vertices and E = {eij} is the
set of edges. For an undirected graph Ξ, eij = 1 if an edge
exists between vertex i and vertex j; otherwise, eij = 0. A
subset VVC of V is called a vertex cover if, for each edge
eij (eij ∈ E) has at least one endpoint (vertex) belongs to
VVC. A minimum vertex cover VMVC is a vertex cover VVC

with the minimum cardinality.
The vertex cover problem can be formulated as a covering

game, denoted by G = {V, {Xi}i∈V , {ui}i∈V , E}, where
Xi = {0, 1} (0 and 1 are the uncovered and covered strategies,
respectively) is the strategy set of player (vertex) i, ∀i ∈ V .
A strategy profile of all players is x = (x1, · · ·, xn) ∈ X ,
xi ∈ Xi; and ui is the utility (cost) function of player i [5].
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Based on the above definition, the cost function for a player
i (i ∈ V ) is given by [27], [28]

ui(xi, x−i) = xi + µ(1− xi)
∑n

j=1
(1− xj)eij , (2)

where x−i = (x1, · · ·, xi−1, xi+1, · · ·, xn) is the strategy
profile of all players except player i; The first item on the
right of (2) represents the cost that player i pays if he
chooses the covered strategy. µ > 0 is penalty coefficient,
the corresponding second item represents the penalty of an
uncovered edge.

In the covering game G, we will model the player’s
cost function based on the continuous strategies, rather than
discrete and deterministic strategies. Intuitively, continuous
strategy pi,xi ∈ [0, 1] in this paper is a probabilistic choice,
which captures the frequency of players choosing the strategy
xi. In this case, let p = (p1,1, · · ·, pn,1) be the continuous
strategy profile of all players, which is a row vector.

In the EUT, each player can objectively evaluate each neigh-
bor’s probabilistic choice, and objectively select his continuous
strategy pi,xi ∈ [0, 1] to optimize his cost. Thus, the cost of
player i under the EUT is given by

UEUT
i (p) = UEUT

i (pi,1, p−i,1)

= pi,1 + µ(1− pi,1)
∑n

j=1
(1− pj,1)eij ,

(3)

where pi,1 is the probability of choosing covered strategy 1
for player i; p−i,1 = [p1,1, · · ·, pi−1,1, pi+1,1, · · ·, pn,1] is the
continuous strategy profile of all players other than player i.

In this paper, we consider applying the probability weight
effect of prospect theory for modeling, that is, each player will
subjectively evaluate the neighbor’s continuous strategy. Thus,
the cost of player i under the PT is given by

UPT
i (p) = UPT

i (pi,1, p−i,1)

= pi,1 + µ(1− pi,1)
∑n

j=1
(1− ωi(pj,1))eij ,

(4)

where ωi(·) is the Prelec function, which is shown in (1).
For each player i, he plays the covering game by solving

the following optimization problem as

min
pi,1∈[0,1]

Ui(pi,1, p−i,1), (5)

where Ui(·) can be either the EUT cost (3) or the PT cost (4).

III. RELATIONSHIP BETWEEN VC AND NE OF GAME
MODEL

Definition 1 : A Nash equilibrium p∗ = (p∗1,1, · · ·, p∗n,1)
is such the continuous strategy profile where no player can
decrease his cost by changing his continuous strategy [29],
i.e.,

Ui(p
∗
i,1, p−i,1) ≤ Ui(p

′
i,1, p−i,1), (6)

where ∀p′i,1 ̸= p∗i,1. Note that the Nash equilibrium (NE)
defined in (6) is applicable for both the EUT and the PT,
the difference would be in whether one is using (3) or (4),
respectively.

Note that for any continuous strategic game, there exists
at least one NE under both the EUT and the PT. Define

pEUT = (pEUT
1,1 , · · ·, pEUT

n,1 ) and pPT = (pPT
1,1 , · · ·, pPT

n,1) be a
NE of the EUT and the PT, respectively. Next, I give an
example to illustrate it.

Example 1: Consider three players to perform covering
game, penalty coefficient µ is set to 1.6, adjacency matrix
is  0 1 1

1 0 1
1 1 0

 ,

it is easy to check that there exists seven NEs regardless
of the α. For instance, if rational coefficient α = 1, and
seven NEs are pEUT,1 = (0, 1, 1), pEUT,2 = (1, 0, 1),
pEUT,3 = (1, 1, 0), pEUT,4 = (1, 0.375, 0.375), pEUT,5 =
(0.375, 1, 0.375), pEUT,6 = (0.375, 0.375, 1), and pEUT,7 =
(0.6875, 0.6875, 0.6875).

Proposition 1: Consider a covering game G, if penalty
coefficient µ > e/(e − 1), any NE p∗ = (p∗i,1, · · ·, p∗n,1)
under both the EUT and the PT satisfies: if p∗i,1 ≤ 1/e, then
∀j ∈ Γi, p

∗
j,1 > 1/e. Note that the NE p∗ can be either the

EUT or the PT.
Proof : Suppose that ∃j′ ∈ Γi, such that p∗j′,1 ≤ 1/e. Let

p′i,1 > 1/e.
Under the EUT, according to Definition 1, the following

inequation

UEUT
i (p∗i,1, p

∗
−i,1)− UEUT

i (p′i,1, p
∗
−i,1)

= (p∗i,1 − p′i,1)
(
1− µ

∑n

j=1
(1− p∗j,1)eij

)
≤ 0,

(7)

holds.
Since p∗i,1 − p′i,1 < 0, and

1−µ
∑n

j=1
(1− p∗j,1)eij ≤ 1−µ(1− 1/e) < 1− 1 = 0,

then

UEUT
i (p∗i,1, p

∗
−i,1)− UEUT

i (p′i,1, p
∗
−i,1) > 0,

which is a contradiction to (7). Thus, the hypothesis is not
hold.

Under the PT, according to Definition 1, the following
inequation

UPT
i (p∗i,1, p

∗
−i,1)− UPT

i (p′i,1, p
∗
−i,1)

= (p∗i,1 − p′i,1)(1− µ
∑n

j=1

(
1− ωi(p

∗
j,1)

)
eij) ≤ 0,

(8)

holds.
Since

1−µ
∑n

j=1

(
1−ωi(p

∗
j,1)

)
eij ≤ 1−µ(1− 1/e)<1− 1=0,

then
UPT
i (p∗i,1, p

∗
−i,1)− UPT

i (p′i,1, p
∗
−i,1) > 0,

which is a contradiction to (8). Thus, the hypothesis is not
hold. Hence, the proof is completed. ■

Further, we define a rounding function

si(pi,1) =

{
0, pi,1 ≤ 1/e

1, pi,1 > 1/e,
(9)
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if si(pi,1) = 1, we consider that the state of player i is a
covered state; otherwise, it is an uncovered state. Besides,
define s = (s1, · · ·, sn) be the state profile for all players,
where si = si(pi,1).

According to (9), a theorem is given as follows
Theorem 1: Consider a covering game G, if penalty coeffi-

cient µ > e/(e− 1), any NE p∗ satisfies: if si(p∗i,1) = 0, then
∀j ∈ Γi, sj(p

∗
j,1) = 1, where Γi is the neighbor set of i.

Remark 1: The Theorem 1 shows that there no 0-0 edge
(uncover edge) under certain constraint of penalty coefficient
µ. In this case, the vertices’ state under any NE under Nash
equilibrium satisfies vertex cover state of a general network.
This relationship is only determined by the game model other
than any network topology or any algorithm.

IV. OPTIMIZATION APPROACH-FICTITIOUS PLAY AND
CONVERGENCE ANALYSIS

A. Fictitious Play Algorithm

In this subsection, we present a fictitious play distributed
algorithm, which requires the minimum memory length 1, that
is, each player only need his previous strategy (the probability
of choosing strategy 1. The algorithm is raised from the
fictitious play (FP) [30]. Although there exist many distributed
algorithms can find a NE [31]–[33], the FP distributed algo-
rithm is well-known as a popular algorithm for players, which
is a simple and practical algorithm that can keep an acceptable
running time [34]. We present the FP distributed algorithm as
follows and the pseudo-code in Table II.

At each time step t, the probability pti,1 of player i is updated
as

pti,1 =

(
1− 1

t

)
pt−1
i,1 +

1

t
vti,1, (10)

where pti,1 is the probability of player i choosing strategy 1
at time step t, and vti,1 is determined by

vti,1 =

1, if argmin
xi∈{0,1}

Ui(xi, p
t−1
−i,1) = 1

0, otherwise,
(11)

where the Ui(xi, p
t−1
−i,1) is the cost obtained by player i with re-

spect to the continuous strategy profile of the neighbors, when
player i chooses strategy xi at time step t. Besides, the cost
Ui(xi, p−i,1) can be either cost of the EUT UEUT

i (xi, p
t−1
−i,1)

or cost of the PT UPT
i (xi, p

t−1
−i,1).

The stopping criterion of the presented algorithm can be
defined as

max|P t
i − P t−1

i | ≤ 1

Q
, (12)

where Q is an arbitrary large number (typically goes to
infinity), P t

i = [pti,1, p
t
i,0]

T .

B. Convergence Analysis

The presented algorithm can guarantee that any continuous
strategy profile converges to an equilibrium state after a certain
time steps [35]. Given any continuous strategy profile, suppose

TABLE II
THE PROCEDURE OF THE FICTITIOUS PLAY DISTRIBUTED ALGORITHM.

Algorithm 1: Fictitious play algorithm

Input: Undirected network Ξ; penalty coefficient µ; rational
coefficient α; initial continuous strategy profile p0.
Output: NE p∗; state profile s∗.
repeat:
Each player i obtains neighbors’ continuous strategy profile
at time t:

pt−1
−i,1;

Calculate cost of each discrete strategy by (3), (4):
UEUT
i (xi, p

t−1
−i,1), U

PT
i (xi, p

t−1
−i,1),∀xi ∈ Xi;

Update the value vti,1,∀i ∈ V by (11);
Each player i updates the probability of playing strategy 1
by (10):

pti,1 =
(
1− 1

t

)
pt−1
i,1 + 1

t v
t
i,1;

Until: Convergence to a stopping criterion by (12):
max|P t

i − P t−1
i | ≤ 1

Q .

it converges to an equilibrium state p∗ = (p∗i,1, · · ·, p∗n,1) after
t∗ time steps. Then for t > t∗, the P t

i follows that

|P t
i − P ∗

i | <
ϵ

Q
, (13)

where ϵ < 1 is a positive constant.
The following Theorem proves that the equilibrium state is

a NE under both the EUT and the PT.
Theorem 2: Consider a covering game G, the presented

algorithm in (10) can guarantee that any continuous strategy
profile converges to a NE under both the EUT and the PT.

proof : According to (3) and (4), we have

Ui(pi,1, p−i,1)=pi,1Ui(1, p−i,1)+(1−pi,1)Ui(0, p−i,1), (14)

where Ui(·) can be either the EUT cost or the PT cost.
Define {pt} is the presented algorithm process. For the EUT,

we can suppose that {pt} will converge to an equilibrium state
p′ = (p′i,1, p

′
−i,1) after time step t′. So, vt

′

i,1 = vt
′+β
i,1 , ∀β > 0.

I assume that the p′ is not NE, according to Definition 1, there
must exist one player i can decrease his cost by changing his
continuous strategy.

i) If p′i,1 = 1, then there exist a pi,1 ̸= p′i,1 such that

UEUT
i (pi,1, p

′
−i,1) < UEUT

i (p′i,1, p
′
−i,1).

According to (14), we have

pi,1[U
EUT
i (1, p′−i,1)− UEUT

i (0, p′−i,1)]

< p′i,1[U
EUT
i (1, p′−i,1)− UEUT

i (0, p′−i,1)],

it implies

UEUT
i (1, p′−i,1) > UEUT

i (0, p′−i,1), (15)

thus, for β > 0, we have vt
′

i,1 ̸= vt
′+β
i,1 .

ii) If p′i,1 = 0, similarly, then there exist a pi,1 ̸= p′i,1 such
that

UEUT
i (1, p′−i,1) < UEUT

i (0, p′−i,1), (16)

then, for β > 0, we have vt
′

i,1 ̸= vt
′+β
i,1 .
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Fig. 2. The f̄(p) and f̄(s) of different value µ on the ER random network, where n = 1000, < k >= 4.

iii) If p′i,1 ∈ (0, 1), there exist xi, x
′
i ∈ Xi, xi ̸= x′

i, such that

UEUT
i (xi, p

′
−i,1) < UEUT

i (x′
i, p

′
−i,1), (17)

where pi,x′
i
> 0. Thus, we can choose a value ϵ that satisfies

0 < ϵ <
1

2
|UEUT

i (x′
i, p

′
−i,1)− UEUT

i (xi, p
′
−i,1)|, (18)

as pt converges to p′ at time step t′.
Since the presented algorithm process decreases as the

number of time steps, the cost distance of a discrete strategy
between two neighboring iterations must be less than ϵ after
a certain time steps t′. For t ≥ t′, we have

UEUT
i (xi, p

t
−i,1)− UEUT

i (xi, p
′
−i,1) ≤ ϵ, (19)

UEUT
i (x′

i, p
′
−i,1)− UEUT

i (x′
i, p

t
−i,1) ≤ ϵ. (20)

Thus, for t ≥ t′, the presented algorithm process can be written
as

UEUT
i (x′

i, p
t
−i,1) ≥ UEUT

i (x′
i, p

′
−i,1)−ϵ

> UEUT
i (xi, p

′
−i,1) + ϵ

≥ UEUT
i (xi, p

t
−i,1),

(21)

thus, player i would not choose the strategy x′
i but would

rather choose strategy xi after t′ time steps. Thus, we have
pi,x′

i
= 0. To sum up, the above three cases show that the

hypothesis is not hold. Thus the equilibrium state p′ is a NE.
For the PT, since the Prelec function ωi(·) is continuous and

monotonically increasing function over [0, 1]. Thus, it is easy
to check that an equilibrium state p′′ under the PT is also NE.
Hence, the proof is completed. ■

V. SIMULATION EXPERIMENT AND ANALYSIS

In this paper, the simulation on a variety of networks for
illustrating how players’ behaviors impact the overall cover
level of networks under both the EUT and the PT, where the
networks include the ER random networks [36], the WS small-
world networks [37], and the BA scale-free networks [38]. To

obtain a NE under both the EUT and the PT, we use the
presented algorithm. Moreover, the rational coefficient α is
set to 0.5, 0.8 and 1, respectively; the Q needs to be set to
a large value, i.e., 10000; and the initial continuous strategy
profile p0 is generated randomly to ensure that the simulation
results are not affected by the initial settings.

In this subsection, we consider the three categories of
networks with size n = 1000. For the WS networks, we
consider two cases: WS(I) and WS(II), where the probability
pw of rewiring each edge is 0.1 and 0.5, respectively. For the
BA network, the probability pb that a new node is connected
to an existing node i is ki/

∑
j kj . Moreover, the average

degree < k > of a network is set to 4. For the convenience
of comparison, two indicators are introduced as

f(p) =
∑n

i=1
pi,1. (22)

f(s) =
∑n

i=1

[
si + n(1− si)

∑n

j=1
(1− sj)eij

]
. (23)

In (22), f(p) represents the proportion of covered strategy 1
in the network. In (23), the formula’s first part calculates the
number of covered vertices of the network, and the second
part penalizes any uncovered edge eij (i.e., eij = 0) with the
value n. The smaller the value f(s), the fewer vertices are
covered in the network. In particular, if there exists at least
one uncovered edge of a network, then we have f(s) > n;
otherwise, f(s) ≤ n.

For each µ, we independently repeat 100 runs of the
simulations on each network for each datum, and obtained
the average value f̄(p) and the average value f̄(s). The f̄(p)
and the f̄(s) of different values µ on the several networks are
shown in Figs. 2–5. Note that the f̄(s) is used to reflect the
cover level of networks.

From Figs. 2–5, we can obtain that
i) Since we can always obtain a stable value by running the

proposed algorithm at each run, thus there exists at least one
NE under both the EUT and the PT on different networks via
the presented algorithm. Moreover, for different networks, the
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Fig. 3. The f̄(p) and f̄(s) of different value µ on the WS (I) small-world network, where n = 1000, < k >= 4, pw = 0.1.
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Fig. 4. The f̄(p) and f̄(s) of different value µ on the WS (II) small-world network, where n = 1000, < k >= 4, pw = 0.5.
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Fig. 5. The f̄(p) and f̄(s) of different value µ on the BA scale-free network, where n = 1000, < k >= 4, pb = ki/
∑

j kj .
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Fig. 6. Convergence properties with different parameter α on the ER random network and the WS small-world network, where n = 1000, < k >= 4, µ = 1.8.

NE are different even if n, < k >, and µ are the same.
ii) Since the value f̄(s) is less than n, thus the vertices’

state under the NE satisfy the vertex cover of network, where
the number of covered vertices of the BA network is the least,
while that of the WS (I) network is the most.

iii) As penalty coefficient µ increases, the value f̄(p) also
increases under both the EUT and the PT. For instance, for
the ER random network, when we fix α = 0.5 and µ varies
from 1.6 to 1.8, the value f̄(p) is calculated to grow by 1.65%
from 558.01 to 567.21.

iv) More importantly, The NE are different between the PT
and the EUT. Compared the EUT, the f̄(p) is larger under
the PT. More specifically, the smaller the rational coefficient
α, the larger the value f̄(p). In other words, compared with
the EUT, the overall cover probability of the network will
increase in which deviate from the rational behavior. Take the
WS(I) 1000 < 4 > network for example. Under the PT, when
we fixed µ = 1.8, the value f̄(p) increases from 652.89 to
659.74 as α varies from 1 to 0.8, and the value f̄(p) increases
from 659.74 to 675.89 as α varies from 0.8 to 0.5.

v) Moreover, the f̄(p) and the f̄(s) have the same trend of
change, that is, the f̄(s) increases as the f̄(p) increases.

Finally, we examine the convergence rate with different
rational coefficient α. Fig. 6 shows the process of the conver-
gence to the equilibrium state on the ER and WS(I) networks
under both EUT and PT, respectively, where µ is set to 1.8.
Thus, we can see that compared the EUT, the convergence
rate of the presented algorithm is slower under the PT. More
specifically, the smaller the rational coefficient α, the slower
the convergence rate. Here, note that even though the number
of time steps required for the players’ strategies to converge is
large, the computational requirement of each time step is low.
Thus, from our generated results, the convergence time with
each α is short. If need, in order to accelerate the convergence
rate, a small Q is suggested to adopted, but at the expense
of obtaining an approximate state rather than an exact NE.
In sum, the more serious the deviation from objectivity, the
worse the cover level, and the slower the convergence rate of

the fictitious play algorithm.

VI. CONCLUSION

In this paper, we have introduced a game-based approach for
studying the vertex cover problem, and explicitly considered
the subjectivity of players. In particular, we have developed
a covering game model based on prospect theory, where
each player subjectively observes his neighbors’ strategies,
and determines his strategy in order to minimize the cost
under the prospect theory. Then, we have presented a fictitious
play distributed algorithm and proved that any state reach a
NE under both the EUT and the PT. The simulation result
have shown that deviations from objective game-theoretic
approach can leads to unexpected results, which depends on
the subjective degree of the players. That is, players with
a high rational degree will help to obtain wonderful cover
results of a network. Future work will focus on vertex cover of
networks under the framing effect of the prospect theory [39],
[40].
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