
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

244 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023

Dynamic Collaborative Task Offloading for Delay
Minimization in the Heterogeneous Fog Computing

Systems
Hoa Tran-Dang and Dong-Seong Kim

Abstract—Fog computing systems have been widely integrated
in IoT-based applications to improve quality of services (QoS)
such as low response service delays. This improvement is enabled
by task offloading schemes, which perform task computation near
the task generation sources (i.e., IoT devices) on behalf of remote
cloud servers. However, reducing delay remains challenging for
offloading strategies owing to the resource limitations of fog
devices. In addition, a high rate of task requests combined with
heavy tasks (i.e., large task size) may cause a high imbalance of
the workload distribution among the heterogeneous fog devices,
which severely impacts the offloading performance in terms of
delay. To address these issues, this paper proposes a dynamic
collaborative task offloading (DCTO) approach, which is based
on the resource states of fog devices, to dynamically derive the
task offloading policy. Accordingly, a task can be executed by
either a single fog or multiple fog devices through the parallel
computation of subtasks to reduce the task execution delay.
Through extensive simulation analysis, the proposed offloading
solution showed potential advantages in reducing the average
delay significantly in systems with a high rate of service requests
and heterogeneous fog environment compared with the existing
solutions. In addition, the proposed scheme can be implemented
online owing to its low computational complexity compared with
the algorithms proposed in related works.

Index Terms—Data task fragmentation, fog computing systems,
parallel communication and computation, task offloading.

I. INTRODUCTION

THE Internet of things (IoT) has become an integral
element for realizing smart systems, including smart

cities [1], smart grids [2], smart factories [3], smart logistics
and supply chains [4], [5]. The fundamental aspect of IoT
is to connect all devices through the Internet protocol to
exchange high volume data and process them to create smart
services, and applications [6], [7]. Owing to limited computa-
tion resources, network, storage, and energy, IoT devices are

Manuscript received October 28, 2022 revised February 2, 2023; approved
for publication by Hyoil Kim, Division 3 Editor, February 15, 2023.

This research was supported by the MSIT (Ministry of Science and ICT),
Korea, under the Grand Information Technology Research Center support
program (IITP-2023-2020-0-01612) supervised by the IITP (Institute for
Information & communications Technology Planning & Evaluation)”, Priority
Research Centers Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science and Technology
(2018R1A6A1A03024003) and Korea Research Fellowship Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Science and ICT (NRF-2020R1I1A1A01073019).

The authors are with department of IT Convergence Engineering, Ku-
moh National Institute of Technology, Korea, emails: {hoa.tran-dang,
dskim}@kumoh.ac.kr.

D.-S. Kim is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2023.000008

inadequate for executing the computational tasks, especially
tasks with huge volumes and complex data structures. Cloud
computing is an essential solution to this problem because it
provides powerful resources to fulfill tasks efficiently [8], [9].
However, cloud computing-based solutions do not always
meet the expected quality of service (QoS) for delay-sensitive
applications because of the long physical distance between
the IoT devices and the remote cloud servers, scarce spectrum
resources, and intermittent network connectivity.

This has led to the emergence of fog computing, which
extends the cloud computing resources (i.e., computing, stor-
age, and networking) closer to the data generation sources
(i.e., IoT devices), thereby allowing for the prescribed QoS
requirements of services and applications to be met by en-
abling the fog computing devices (e.g., switches, gateways,
and hubs) to process and offload most tasks on behalf of the
cloud servers in a distributed manner [10], [11]. Consequently,
fog computing systems (FCSs) consisting of connected fog
computing devices have become essential in IoT-based systems
to support uninterrupted services and applications with low
response delay along the things-to-cloud continuum [12].

To realize this benefit of fog computing, FCSs require
efficient resource allocation strategies to perform task offload-
ing [13]. However, there are many factors that challenge the
delay-reduction objective of offloading algorithms. First, an
FCS consists of heterogeneous computing devices with differ-
ent storage capacity, computation, and networking character-
istics. In addition, some fog devices support the processing of
only one data type such as image, text, video, or audio [14].
In addition, applications such as artificial intelligence (AI) and
machine learning (ML) algorithms require the computation
of complex tasks, which typically include multiple types of
input data. Second, task size also has a significant impact
on offloading performance in the FCS. For example, some
fog devices are unable to process the entire data of heavy
tasks owing to a lack of storage and/or computational capacity.
Consequently, more tasks are likely to be queued in more
powerful resource fogs, causing long waiting times in the
queues. Third, the request rate directly impacts the queuing
state of the fogs. Therefore, without an efficient resource
allocation policy, a high rate of task requests may lead to a
high workload imbalance among the fog devices, as the fog
nodes with powerful computing resources may receive more
task requests. As a result, the requirements of latency-sensitive
applications can be violated because of the excessive waiting
time of long task queues.

1229-2370/23/$10.00 © 2023 KICS

TRAN-DONG AND KIM: DYNAMIC COLLABORATIVE TASK OFFLOADING ... 245

These typical issues necessitate the development of a dy-
namic approach based on the fog resource states to make the
best context-aware offloading decisions. One possible solution
to overcome these issues is to divide the tasks into subtasks,
which can then be executed in parallel by the different limited-
resource fog nodes to reduce the overall processing delay.
In addition, as parallel computation is enabled for the task
execution, the task division may also have the potentials to bal-
ance the workload in heterogeneous fog devices because fog
devices with limited available resource can process subtasks
instead of entire task. Practically, this advantageous feature of
the divide and conquer concept has been widely adopted and
adopted in parallel computing [15], grid computing [16], and
service providing systems [17]. However, a few existing works
used the technique in the context of fog computing, to explore
and exploit the potential advantages of parallel computation,
thereby improving the performance of the FCS in terms of
task execution delay.

In theses regards, this paper proposes a dynamic collab-
orative task offloading (DCTO) scheme that can make the
offloading decision dynamically and efficiently based on the
available resources of fog computing devices. Summarily, this
paper provides five key contribution as follows:

• We investigate the model of fog computing that can
be applied to in some practical IoT systems to provide
specific services and applications.

• Based on the properties of service requests (i.e., compu-
tation tasks) and the resource states of fog nodes, the full
and partial offloading models are dynamically applied to
utilize the available resources of fog computing devices
efficiently.

• An optimal scheduling to schedule the data communica-
tion and data execution of subtasks is derived for each
single fog node that significantly contributed to achieve
the objective of delay reduction.

• A DCTO scheme is achieved as an optimal solution of an
optimization problem that incorporates the dynamic task
offloading and optimal scheduling of data communication
and data execution of subtasks.

• Extensive simulations and comparative analysis are con-
ducted to demonstrate and evaluate the performance of
DCTO.

The remainder of this paper is structured as follows. Section
II highlights the related works. Section III presents the pro-
posed system model. Section IV establishes a mathematical
optimization problem to minimize the task execution delay.
Section V presents the simulation results and a comparative
analysis with the performance of related works. Finally, Sec-
tion VI concludes the paper and introduces future work.

II. RELATED WORKS

A number of offloading algorithms for minimizing task
execution delay have been proposed in literature. However,
only a few of them analyze the impact of multiple factors
simultaneously on the performance of offloading policies such
as the task request rate, dynamic task division, and queuing
states of fog devices.

In most task offloading solutions, offloading multiple tasks
of fog nodes (FNs) to multiple neighbor FNs (i.e., helper
nodes (HNs)) is modeled as a multitask multihelper (MTMH)
problem, which aims to allocate the fog computing resources
for processing tasks to minimize the average delay of task
execution. This problem can be formulated in the form of
multi-objective optimization to examine the trade-off of perfor-
mance in terms of energy consumption, delay, and execution
cost [18]–[20]. Likewise, in [21], a paired offloading strategy
of multiple tasks (POMT) in heterogeneous fog networks was
modeled as a strategic game between the FNs and HNs to
decide which tasks are offloaded by which HNs to minimize
the average task execution delay. Game theory has been ap-
plied and developed to obtain the Nash equilibrium (NE) point
for the POMT, at which the FCS can achieve near-optimal
performance in terms of average delay. The work [22] assessed
the role of the fog layer in reducing the service response
delay in IoT-fog-cloud systems. An intensive analytical model
was derived to examine the impact of communication delays
between fog devices, queuing delay, and task sizes on the ser-
vice response delay. In particular, fog-to-fog communication
channels with good conditions were exploited in the proposed
task offloading mechanisms to contribute to the overall delay
reduction. According to the analytic model, all tasks should be
processed by both the fog and cloud to reduce the delay and
adaptively balance the workload at the computing fog nodes.
However, fog resources were not fully used in these works
because the majority of heavy tasks need to be processed by
the cloud servers. In addition, none of the aforementioned
task offloading approaches consider the division of heavy
tasks, which can further reduce the delay through the parallel
processing of subtasks while increasing the utilization ratio of
fog nodes and reducing the cost of cloud usage.

Regarding task division, most existing works only con-
sidered dividing each task into two subtasks. For example,
according to the FEMTO model in [23], each task is divided
into two subtasks with different data sizes, which are then
processed by the IoT node and offloaded to the fog entity.
An optimization problem is associated with minimizing the
energy consumption of task offloading while achieving a fair
workload among the fog nodes and satisfying the deadline
constraints of tasks. Similarly, in the task offloading methods
introduced in [24], [25], each fog divides the tasks into only
two parts, which are processed locally by itself and one
HN in parallel. Dividing a task into multiple subtasks was
first applied in [26] to exploit the parallel computation of
subtasks, thereby reducing the task execution delay. Based on
the MTMH problem, a game theory-based algorithm called
POST was developed to find the optimal matching pair of
subtasks and fog nodes to achieve the delay minimization
objective. Accordingly, the number of subtasks for each task
was dynamically optimized depending on the number of idle
HNs in each time slot and the resource contention update of
fogs having tasks in queues. In particular, POST can reach
the generalized NE (GNE) fixed-point, thus achieving near-
optimal performance in terms of average task execution delay.
However, there is a lack of investigation regarding the impact
of the queuing status of fog nodes, scheduling of subtasks,

246 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023

and task arrival rate on system performance.
To efficiently deal with the dynamic nature of fog computing

environment, distributed algorithms using matching theory are
developed in the literature [27]. In this class of algorithms, the
task offloading problem is translated into the matching game
between the task set and HN set. The objective is to achieve
the stable matching outcome which matches tasks with HNs
appropriately. To deal with dynamic task division, a recent
DISCO algorithm introduced in [28] proposes a matching
based distributed computation scheme for the fog computing
network in which the theory of matching with group firstly is
applied. Accordingly, a task divided into multiple subtasks is
preferred to be processed by a group of HNs to minimize its
execution delay [29].

The work [30] introduced an online algorithm for task
offloading in the IoT-fog cloud systems, which applies parallel
communication and computation at multiple computing nodes
(i.e., fog and cloud servers) to minimize latency. Considering
the scenarios with varying task arrival rates, the queuing
delays of fog nodes are analyzed to optimize the number
of tasks offloaded to other computing nodes to achieve the
objective. However, the task transmission and computation
at the computing nodes are performed according to the first
come and first serve (FCFS) scheduling policy rather than the
optimal task scheduling policy. In addition, task division is
not considered to balance the workload of heterogeneous fog
computing nodes. Recently, a recursive computation offloading
algorithm (RCO) was developed in [31] to jointly perform
task offloading and task scheduling for fog-radio access
networks (Fog-RANs). Considering the execution of tasks
residing in a mobile device (MD), the tasks can be offloaded
by edge or cloud tiers. The optimization of task scheduling
is associated with the RCO to contribute to achieving the
delay reduction objective. However, queuing delay and task
division have not yet been investigated thoroughly. In [32],
the authors proposed an optimization framework to offload
the splittable tasks to multiple HNs. The tasks can be divided
into subtasks dynamically based on the fog resource states
and task properties. The optimization incorporates the optimal
scheduling to allocate the subtasks to HNs appropriately such
as the overall delay of task execution is minimized.

The advanced techniques such as reinforcement learn-
ing (RL) are deployed in many studies to achieve the efficient
computational offloading operations in the fog computing
environment [33], [34]. By using the online learning methods,
the proposed RL-based task offloading solutions are able to
cope with the dynamics and complex nature of fog computing,
thus offering the efficient offloading policies.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

This study considered an FCS, as illustrated in Fig. 1, which
comprises N + 1 fog devices denoted as F0, F1, · · ·, and
FN . F0 serves as a fog controller (e.g., gateway) that can
process and distribute tasks to its neighbors, while the other
fogs are HNs, which can connect to F0 directly and have
available computation resources to process the tasks assigned

F4

F3

F2

F1

F0

t1t2t3t4

t1

t21

t22

t3

t21t22

Task Offloading

Task queueλ (tasks/second)

Waiting time in queue

Fig. 1. The proposed DCTO model for the FCS, in which some tasks (e.g.,
task t2) can be divided into multiple subtasks (e.g., t21, and t22) to reduce
the overall task execution delay through parallel computing.

TABLE I
RESOURCE TABLE OF NEIGHBORS OF FOG NODE F0 .

Fog node Fog specification & resource status
M (MB) f (GHz) γ (cycles/bit) W (s)

F1 128 5 500 1.2
F2 256 10 600 2.15
F3 128 15 750 0.55
F4 256 10 1000 2.39

and scheduled by F0. In addition, the FCS can be connected
to a cloud for further purposes such as computation, storage,
and caching. However, this study aimed to investigate the
performance of the FCS when all the tasks are processed
only by fog devices without the need of cloud servers. In this
context, F0 involves two main tasks: data transmission (i.e.,
transmitting the input data of tasks to the intended offloadees)
and data processing. The main role of HNs is to process the
tasks in queues according to the FCFS policy.

This FCS model can be deployed in many practical IoT
systems such as smart cities, smart factory, and smart ware-
house management systems. Generally, these systems include
multiple domains for providing IoT services and applications
and each FCS is designed to serve a specific set of services in a
single domain such as smart parking services, smart inventory
monitoring in the warehouses.

To make an efficient offloading policy, F0 is based on a table
of neighbor resources that contains updated information about
the available resources of HNs. We assumed that fog devices
of the FCS use a common protocol to communicate and
update their resource status periodically [35]. We also assumed
that during the offloading decision, the resource states of the
HNs are unchanged. Table I shows an example of neighbor
resource table stored by F0, which records the resource states
of neighbors with respect to the memory capacity of queue
buffer (M), CPU frequency (f), CPU processing density (γ),
and expected waiting time in the queue (W).

TRAN-DONG AND KIM: DYNAMIC COLLABORATIVE TASK OFFLOADING ... 247

TABLE II
SUMAMRY OF KEY NOTATIONS.

Notation Description
ti Task i
ai Size of Ti (bits)
tik Subtask divided from ti
aik Size of tik (bits)
Ta
i Arrival time of ti at F0

T t
i Start time to transmit ti to an offloadee by F0

T p
i Start time to process ti by offloadee

T f
i Finish time of processing ti by offloadee

Di, Dik Total delays for executing ti, and tik
Wi Expected waiting time in queue of Fi

Mi Memory capacity of queue buffer of Fi

λ Arrival rate of tasks at F0 queue (tasks/s)
Fi Fog node i
rik Data transmission rate from Fi to Fk

fi CPU frequency of Fi (cycles/s)
γi CPU processing density of Fi (cycles/bit)

B. Task Model

Computation tasks arriving at the queue of F0 follow
an exponential distribution with an average rate of λ tasks
per second (tasks/s). At a given time, there is a set
T = {t1, t2, · · ·, tK}, including K computational tasks, which
reside in the queue of F0. A single task ti can be processed
by either F0 or Fk (k = 1, · · ·, N). In addition, a task ti with
a size ai can be divided into m = N + 1 subtasks (i.e., tik,
k = 0, · · ·, N), which can be processed in parallel by different
fog nodes. As illustrated in Fig. 1, two subtasks, t21 and t22
divided from t2 can be computed simultaneously by F2 and
F3, respectively. When m = 1, the entire task is processed by
a single fog. We define aik as the data size of subtask tik;
thus we have

N∑
k=0

aik = ai,∀ti ∈ T. (1)

With this definition, anik > 0 if tik is computed by Fk, and
αn
ik = 0 if Fk is not involved in processing ti.

C. Problem Formulation

This paper aims to develop an online approach for F0

to offload each individual task whenever it arrives at the
queue of F0 so that the execution delay of the task is
minimized. Based on the resource table, the algorithm also
considers dividing the task dynamically, thereby exploiting the
parallel computation of subtasks to achieve the delay reduction
objective. In addition, we assume that the data transmission
and data processing are not performed simultaneously by F0,
thus the algorithm requires an efficient scheduling mechanism
for subtasks. The next section formulates an optimization
problem that combines task offloading and subtask scheduling
to minimize the execution delay of an individual task.

For the sake of clarity, the key notations used in this paper
are summarized Table II.

IV. OPTIMIZATION PROBLEM FOR MINIMIZATION OF
TASK EXECUTION DELAY

The overall delay for executing task ti (Di) is the interval
from the arrival time of task (T a

i) at the queue of F0 until the

0 time

Di

Tia Tit Tip Tif

Fig. 2. Timeline to calculate the task execution delay.

Tijt Tijp Tijf
F0

Tijt Tijp Tijf
F0

(a) Wn ≥ aij/r0n (b) Wn < aij/r0n

Ti0p Ti1p Ti1f
F0

F1
ai1γ1/f1

Ti1t Ti1p
F0

F1
ai1/r01

ai1γ1/f1

(1) ti0 is processed first by F0

ai0γ0/f0 ai1/r01

Ti1t
Ti0f

ai0γ0/f0

Ti0p
Ti1fTi0f

(2) ti1 is offloaded to F1 first

Fig. 3. T p
ij depends on the relationship between Wn and transmission delay

(aij/r0n).

end of the processing time (T f
i) at an offloadee. As illustrated

in Fig. 2, Di = T f
i − T a

i .
Suppose that there is no data dependency between the sub-

tasks of ti; therefore, the subtasks can be computed in parallel
by different HNs. We also assume that the results of processing
the subtasks do mot need to be aggregated because the sizes
of results are small and their aggregation time can be neg-
ligible. Therefore, Di = max{Dik}, k = 0, · · ·, N . Notably,
Dik = T f

ik - T a
i . In this sense, besides subtask offloading (i.e.,

which fog node processes which subtask), subtask scheduling
(i.e., which subtask is transmitted or processed first) has a
significant impact on the total task execution delay.

The priority of tasks is not considered during processing;
thus, they will be processed according to the FCFS policy in
the queue of F0. In addition, to minimize the execution delay
of individual tasks, scheduling is employed for the substasks
of a task. Because data transmission and data processing are
not performed simultaneously by F0, an optimal schedule is
required to minimize the delay.

Lemma 4.1 specifies an efficient schedule for exploiting the
parallel computation of subtasks to reduce the delay.

Lemma 4.1: When the subtasks of a task are processed by
both F0 and HNs, data transmission is performed before data
computation to obtain the benefit of parallel computation .

Proof For the illustrative simplicity, we suppose that task ti
is divided into two subtasks, ti0 and ti1, which are processed
by F0 and F1, respectively.

We consider the first scenario, as illustrated in Fig. 3,
in which the the queue of F1 is empty at the time of the
offloading decision (i.e., W1 = 0). We consider Case 1, in
which ti0 is processed first by F0. The total delay to execute
ti0 is:

Di0 =
ai0γ0
f0

. (2)

248 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023

Ti0p Ti1p Ti1f
F0

F1
ai1γ1/f1

Ti1t Ti1p
F0

F1
ai1/r01

ai1γ1/f1

(1) ti0 is processed first by F0 & W1 ≥ ai0γ0/f1 +ai1/r01

ai0γ0/f0 ai1/r01

Ti1t
Ti0f

ai0γ0/f0

Ti0p
(2) ti1 is offloaded to F1 first & W1 ≥ ai1/r01

W1

Ti0p Ti1p
F0

F1
ai1γ1/f1

ai0γ0/f0 ai1/r01

Ti0f

W1

Ti1fTi1t
(1) ti0 is processed first by F0 & W1 < ai0γ0/f1 +ai1/r01

W1

Ti1fTi0f

Ti1t Ti1p
F0

F1
ai1/r01

ai1γ1/f1

ai0γ0/f0

Ti0p
(2) ti1 is offloaded to F1 first & W1 < ai1/r01

W1

Ti0fTi1f

Fig. 4. T p
ij depends on the relationship between Wn and transmission delay

(aij/r0n).

Because data processing and data transmission are
not handled simultaneously by F0, the total delay
to execute ti1 including Di0, as the waiting time is
calculated by Di1 = Di0 + ai1/r01 + ai1γ1/f1. Because
Di = max{Di0, Di1}, Di = ai0γ0/f0 + ai1/r01 + ai1γ1/f1.
When t1i is processed first in Case 2, the total delay to
execute the subtasks is calculated as follows:

D∗
i1 =

ai1
r01

+
ai1γ1
f1

. (3)

D∗
i0 =

ai1
r01

+
ai0γ0
f0

. (4)

The total delay to finish t1 in Case 2 is D∗
i = max{D∗

i0, D
∗
i1}.

Obviously, D∗
i < Di; thus, the lemma is proved.

We now examine the second scenario where the queue of
F1 is not empty (i.e., W1 > 0), as shown in Fig. 4.

In Case 1, Di0 = ai0γ0/f0 because ti0 is executed first by
F0. Moreover, the delay to finish ti1 is achieved by:

Di1 =

{
W1 +

ai1γ1

f1
, if W1 ≥ Di0 +

ai1

r01
,

Di0 +
ai1

r01
+ ai1γ1

f1
, otherwise.

(5)

Obviously, Di is minimized when W1 < Di0 + ai1/r01;
thus, Di = ai0γ0/f0 + ai1/r01 + ai1γ1/f1.

In Case 2 of the second scenario (i.e., ti1 is transmitted first
to F1), the delay to finish ti0 is D∗

i0 = ai1/r01 + ai0γ0/f0.
The execution delay of ti1 is as follows:{

D∗
i1 = ai1

r01
+ ai1γ1

f1
, if W1 < ai1

r01
,

D
∗
i1 = W1 +

ai1γ1

f1
, if W1 ≥ ai1

r01
.

(6)

Recall that the delay to finish ti is obtained by
D∗

i = max{D∗
i0, D

∗
i1} or D∗

i = max{D∗
i0, D

∗
i1}. Therefore,

if D∗
i = D∗

i0 or D∗
i = D∗

i1, then D∗
i < Di. This means that

Case 2 is beneficial for delay reduction compared with Case 1.
If D∗

i = D
∗
i1, we also have D∗

i < Di because the condition
W1 < ai0γ0/f0 + ai1/r01 still holds (see (5)).

Consequently, DCTO has the potential to reduce the delay
only if all subtasks scheduled to be offloaded to HNs are
transmitted first from F0.

We now consider a more general scenario in which the task
ti is divided into three subtasks ti0, ti1, ti2. We suppose that
these subtasks are processed by F0 locally and offloaded by
F1 and F2, respectively. Based on the aforementioned proof,
for any two subtask ti0 and ti1 which are processed locally
by F0 and offloaded by F1, the benefit of delay reduction is
enabled when ti1 is transmitted to F1 before ti0 is processed.
Now we assume that for the three subtasks, this benefit can be
achieved when ti2 is transmitted lastly to F2 after processing
ti0 is completed. In this case, the total delay Di2 to finish
ti2 is data transmission delay of ti1, data processing delay of
ti0, data transmission delay of ti2, and data processing delay
of ti2 at F2. Obviously, Di2 ≥ max{Di0, Di1}. Therefore,
the assumption of processing ti2 lastly is infeasible to get the
benefit of delay reduction.

Based on the lemma, we define okij to represent the
scheduling order between subtask tik and tjk for wireless
transmission. In particular, if tik is scheduled on a wireless
link before tjk, we have okij = 1; otherwise, okij = 0. Because
tik is transmitted either before or after tjk, we have:

okij + okji = 1,∀i, j = 0, ..., N & i ̸= j. (7)

We define T t
ij as the start time for transmitting tij . There is

no overlap between the wireless transmission times of the two
subtasks tij and tik; therefore, their start transmission times
must satisfy the following:

T t
ij −

N∑
k=0

(T t
ik +

aik
r0k

) ≥ −Loijk, (8)

where L is a large possible constant, and r00 = ∞ indicates
that tik is processed by F0. Notably, the propagation delay
is neglected because it is much smaller than the transmission
delay (aik/r0n).

Additionally, the start processing time T p
in of tin must not

be smaller than the arrival time at an offloadee as well as the
finish time of the last task in the queue of the offloadee (see
Fig. 5). Therefore,

T p
in ≥ T t

in +

N∑
n=1

(θnWn + (1− θn)
ain
r0n

), (9)

where

θn =

{
1, if Wn ≥ ain

r0n
,

0, otherwise.
(10)

Because all the tasks in the queue of Fn (n = 1, · · ·, N) are
transmitted only from F0, the expected waiting time in the
queue of Fn can be achieved by:

Wn = γn
∑
i

ai/fn, (11)

where
∑

i ai is the total data size of tasks resided in the queue
of Fn.

In addition, the buffer sizes of queues of fog devices are
limited, thus

TRAN-DONG AND KIM: DYNAMIC COLLABORATIVE TASK OFFLOADING ... 249

0 time

Di

Tia Tit Tip Tif

Tijt Tijp Tijf
F0

Fn
Wn

aij/r0n

aijγn/fn

Tijt Tijp Tijf
F0

Fn
Wn

aij/r0n

aijγn/fn

(a) Wn ≥ aij/r0n (b) Wn < aij/r0n

Fig. 5. T p
ij depends on the relationship between Wn and transmission delay

(aij/r0n).

Wn
fn
γn

+

N∑
i=0

ain ≤ Mn. (12)

The end time T f
ij to finish tij is calculated as follow:

T f
in = T p

in +

N∑
n=0

ainγn
fn

. (13)

Recall that Dij = T f
ij −T a

i , therefore Di = maxj{Dij |j =
0, · · ·, N} = maxj{T f

ij}−T a
ij . The optimization problem P is

modeled as follow to minimize Di:

P: min
ai,αi,T t

i ,T
p
i ,oi

Di

s. t. (1), (7), (9), (12), (8),
(14)

where ai=[ai0, ai1, · · ·, aiN], T t
i = [T t

i0, · · ·, T t
iN], T p

i =
[T p

i0, · · ·, T
p
iN], and oi = [oi01, · · ·, oi0N , · · ·, oiN0, · · ·, oiNN−1].

All the constraints introduced in the problem are linear
except the equation 9. However, it can be relaxed to be
linear by using the Big-M method [36]. Then, the problem P
can be solved by mixed-integer linear programming (MILP),
thus requiring a low computation complexity as compared
to the algorithms in the related works. The solutions to the
problem P indicates dynamic approaches that specify which
tasks and how many subtasks should be divided, which subtask
is processed by which fog devices, and also the transmission
and processing order of subtasks. In the next section, many
simulation scenarios are conducted to examine the perfor-
mance of proposed offloading schemes under impact of many
factors.

V. SIMULATION AND PERFORMANCE EVALUATION

A. Simulation Environment Setup

The event-driven framework supported SimPy library in
Python is used to design process-based discrete-event simu-
lation scenarios for the studied FCS, which investigate the
performance of DCTO as well as the comparative study with
the related algorithms. In addition, we use CVX solver [37]
to solve the optimization problem. Table III summarizes the
important parameters and values for the simulation scenario,
where U(x,y) indicates the uniform distribution on interval
[x, y].

All the simulation results are averaged over 100 simulation
rounds and each round lasts 100 seconds according to the

TABLE III
PARAMETERS FOR SIMULATION.

Parameters Values
N {4, 5, 6, 7}
ai U(5,10) (MB)
λ {0.5, 1.0, 1.5, 2.0, 2.5} (tasks/s)
M Randomly in {128, 256} (MB)
γ U(500,1000) (cycles/bit)
f U(5,15) (GHz)
r0i U(100,150) (Mb/s)

0 1 2 3
3.5

4

4.5

5

5.5
 (a) N=4

0 1 2 3
3.5

4

4.5

5

5.5
 (b) N=5

0 1 2 3
3.5

4

4.5

5

5.5
 (c) N=6

0 1 2 3
3.5

4

4.5

5

5.5
 (d) N=7

POST

RCO

DCTO

Task request rate ()

A
v
e

ra
g

e
 t

a
s
k
 e

x
e

c
u

ti
o

n
 d

e
la

y
 (

s
)

Fig. 6. The average execution delay offered by the comparative offloading
schemes as a function of λ and N .

clock of CPU. We compare the proposed DCTO approach
with RCO, and POST. Recall that RCO considers to schedule
and offload multiple tasks at each time of decision-making,
and task division is not employed. In addition, the queuing
states of fog devices and task request rate are not taken into
account in the RCO algorithm. Meanwhile, POST uses the
game theory to find the GNE point for mapping task/subtasks
to the fog devices [26]. The impact of task request rate, task
scheduling, and queuing states is not also considered in POST.

B. Evaluation and Analysis

We conduct the first simulation scenario, in which all the
queues of fog nodes are empty initially. Fig. 6 depicts the
average delay achieved by POST, RCO, and DCTO when λ
and N are varied.

DCTO always outperforms RCO and POST because it can
dynamically adjust the task offloading decision according to
the states of available fog resources. When the queues are
empty at the beginning of simulation, there would be no
beneficial to reduce the delay through task division at the low
task arrival rate (i.e., λ = {0.5, 1}). Therefore, DCTO and
RCO can obtain the similar performance and be better than
POST due to the optimal scheduling of tasks. When the task
rate increases, the delay is no longer impacted by the queuing
states of fog devices. The task division and the associated
parallel computation of subtasks are beneficial to cope with
the situation. In addition, the increase of number of HNs

250 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023

(a) N = 4

0.5 1.0 1.5 2.0 2.5
0

20

40

60

80

100
(b) N = 5

0.5 1.0 1.5 2.0 2.5
0

20

40

60

80

100
RCO

POST

DCTO

(c) N = 6

0.5 1.0 1.5 2.0 2.5
0

20

40

60

80

100
(d) N = 7

0.5 1.0 1.5 2.0 2.5
0

20

40

60

80

100

Task request rate ()

A
v
e

ra
g

e
 u

ti
liz

a
ti
o

n
 r

a
ti
o

 o
f

fo
g

s
,

U
(%

)

Fig. 7. Average utilization ratio of HNs under the impact of λ.

helps in slowing the increase of average delay because more
available resources are utilized to process the tasks/subtasks.
In particularly, DCTO which incorporates the fog resource
awareness and optimal tasks/subtasks scheduling is able to
minimize the average execution delay. Notably, as the number
of HNs increases (N = 6, 7), DCTO is able to exploit
efficiently the available resource of fogs to perform the parallel
computation, thus enabling a gradual delay increase even when
the task arrival rate increases.

Fig. 7 supports such the claim through the average utiliza-
tion ratio (U) of HNs. As shown in this figure, the task division
employed in the POST and DCTO schemes can increase the
utilization ratio of fog computing devices since the limited
resource fogs can process the subtasks. As the rate of request is
low the task division mechanism is not significantly beneficial.

Although the both DCTO and POST uses the task division
and parallel commutation of subtasks to improve the fog
resource utilization, the benefit of delay reduction is not the
same. This is because, DCTO includes the optimal subtask
scheduling based on the resource states of HN to minimize the
delay. In addition, POST takes more running time for iteration
to reach the near-optimal task-resource mapping.

In the simulation scenario 2, we analyze the impact of
queuing state (i.e., waiting time in queue) on the average delay.
Initially, all the queues of fog nodes have a number p of tasks
and p is randomly selected from a set {1, 2, 3, 4}. In addition,
the size of task is randomly selected from {3, 4, 5} (MB).
Notably, the expected waiting times (W) in the queues of HNs
can be derived as (11). Fig. 8 shows the average execution task
delay obtained by DCTO, RCO, and POST.

Besides the improved performance of DCTO as compared
to RCO and POST, the simulation result shows that paral-
lel computation and scheduling employed simultaneously in
DCTO can decrease the impact of queuing states of fogs
effectively. Although, the task division and parallel subtask
computation are used in POST, the performance efficiency is
not maximized. That is because POST only tries to obtain

0 1 2 3
4.5

5

5.5

6

6.5

7
 (a) N = 4

0 1 2 3
4.5

5

5.5

6

6.5

7
 (b) N = 5

0 1 2 3
4.5

5

5.5

6
 (c) N = 6

0 1 2 3
4.5

5

5.5

6
 (d) N = 7

POST

RCO

DCTO

Task request rate ()

A
v
e

ra
g

e
 t

a
s
k
 e

x
e

c
u

ti
o

n
 d

e
la

y
 (

s
)

Fig. 8. The average task execution delay under the impact of λ, N , and
waiting times in the queues of fog nodes.

the optimal mapping between tasks and subtasks with the
available fog resources through time slots. This mechanism
is negatively influenced by waiting times in the queues of fog
devices. In other words, POST without the usage of scheduling
and resource allocation is unable to exploit the fog resources
maximally since some fogs with queued tasks are not allocated
to perform the task offloading. Meanwhile, DCTO divides
the tasks adaptively aiming to schedule and allocate the fog
resources for offloading the subtasks effectively. RCO also is
unable to maximize the fog resources since the task division
is not employed. For example, some fogs with less available
computation and storage resources may not be allocated to
process single tasks in the RCO algorithms. Meanwhile, they
absolutely process subtasks as specified in DCTO if scheduled
efficiently.

To examine the impact of task size, we conduct the third
simulation scenario, in which all the tasks have the same sizes
(i.e., ai = a). Two types of tasks are considered including
medium tasks (a = 5 MB) and heavy tasks (a = 10 MB).

Simulation results as shown in Fig. 9 indicate that when all
the tasks are medium (a = 5 MB), the performance of DCTO
is not significantly better than RCO since the division of
medium size tasks is not beneficial. In addition, DCTO is just
to minimize the execution delay of each single task while RCO
can schedule multiple tasks, just achieving a better average
task reduction when the task arrival rate is low. However,
as the task arrival rate is high, there exist longer queuing
delays in some powerful fog devices, thus the task division
employed in DCTO is essential to balance the workload as
well as reduce the delay through the parallel computation. As
a result, the performance of DCTO is slightly improved. As
expected, the heavy tasks (i.e., a = 10 MB) have significant
impacts on the fog computing environment since some fogs
with limited resources individually are unable to process the
whole data of single task. Therefore, the system performance
is affected negatively by workload imbalance of heterogeneous

TRAN-DONG AND KIM: DYNAMIC COLLABORATIVE TASK OFFLOADING ... 251

0 1 2 3
3

4

5

6

 (a) N=4, a=5 (MB)

0 1 2 3
3

4

5

6

 (b) N=4, a=10 (MB)

0 1 2 3

3

4

5

 (c) N=7, a=5 (MB)

0 1 2 3

3

4

5

 (d) N=7, a=10 (MB)

POST

RCO

DCTO

Task request rate ()

A
v
e

ra
g

e
 t

a
s
k
 e

x
e

c
u

ti
o

n
 d

e
la

y
 (

s
)

Fig. 9. The average task execution delay under the impact of task sizes and
number of HNs.

fog devices. Although optimal resource allocation is employed
in RCO, the delay is higher than DCTO, which exploits
task division and parallel computation to decrease the task
execution delay effectively.

VI. CONCLUSIONS

This paper proposes DCTO, a dynamic collaborative task
offloading approach for FCS to reduce the delay of task
execution. DCTO is used by the fog controller of FCS to
derive the offloading solution dynamically based on the state
of available resources of HNs. Accordingly, by applying task
division technique and the associated parallel computation,
DCTO allows a task to be processed by multiple fog com-
puting devices to further reduce the overall task execution
delay. The optimal scheduling of subtask transmission and
subtask processing is also integrated in the DCTO policy
to contribute to the delay reduction objective. The intensive
simulation results show that DCTO is an effective offloading
solution to achieve the reduced execution delay for fog com-
puting environment, in which the resources of fog computing
devices are heterogeneous and complicated. Especially, DCTO
outperforms the existing related offloading schemes in the
scenarios that the rate of task requests is high and task sizes
are large.

VII. FUTURE WORKS AND DISCUSSIONS

On the basis of the proposed dynamic offloading mech-
anism, there are many possible directions to develop and
expand DCTO algorithms as future research works. Firstly, the
stronger capabilities of fog computing nodes including F0 and
HNs should be considered that allow to offload multiple tasks
for each time of offloading decision making in. In this case,
the scheduling model is required to be redesigned to jointly
schedule the order of tasks and also subtasks of different
tasks. In addition, the fog nodes can perform data transmission
and data processing simultaneously, thus the tasks/subtasks

scheduling should be adjusted accordingly. Another direction
for future research is to investigate DCTO in the large-scale
systems. In the large-scale model, more domains can co-
exist, resulting in more fog computing systems needed to be
deployed. In such case, the collaboration between systems in
different domains can be considered to enhance the flexibility
of overall IoT systems as well as enhance the fog resource
utilization.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet Things J., vol. 1, no. 1,
pp. 22–32, 2014.

[2] Y. Saleem, N. Crespi, M. H. Rehmani, and R. Copeland, “Inter-
net of things-aided smart grid: Technologies, architectures, applica-
tions, prototypes, and future research directions,” IEEE Access, vol. 7,
pp. 62962–63003, 2019.

[3] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Industrial IoT
data scheduling based on hierarchical fog computing: A key for en-
abling smart factory,” IEEE Trans. Ind. Informat., vol. 14, no. 10,
pp. 4590–4602, 2018.

[4] H. Tran-Dang, N. Krommenacker, P. Charpentier, and D.-S. Kim, “The
Internet of things for logistics: Perspectives, application review, and
challenges,” IETE Tech. Review, pp. 1–29.

[5] H. Tran-Dang, N. Krommenacker, P. Charpentier, and D. Kim, “Toward
the Internet of things for physical Internet: Perspectives and challenges,”
IEEE Internet Things J., vol. 7, no. 6, pp. 4711–4736, 2020.

[6] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information
framework for creating a smart city through internet of things,” IEEE
Internet Things J., vol. 1, no. 2, pp. 112–121, 2014.

[7] H. Tran-Dang and D. Kim, “An information framework for Inter-
net of things services in physical internet,” IEEE Access, vol. 6,
pp. 43967–43977, 2018.

[8] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in Proc. NCM, 2009.

[9] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of
cloud computing and internet of things: A survey,” Future Generation
Comput. Syst., vol. 56, pp. 684–700, 2016.

[10] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. ACM MCC, 2012.

[11] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of
fog computing in the context of internet of things,” IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 46–59, 2018.

[12] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the Internet of
things realize its potential,” Comput., vol. 49, no. 8, pp. 112–116, 2016.

[13] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing
for IoT: Review, enabling technologies, and research opportunities,”
Future Generation Comput. Syst., vol. 87, pp. 278–289, 2018.

[14] H. Tran-Dang and D.-S. Kim, “Frato: Fog resource based adaptive task
offloading for delay-minimizing iot service provisioning,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 10, pp. 2491–2508, 2021.

[15] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel Pro-
gramming, 1st ed. Addison-Wesley Professional, 2004.

[16] Y.-S. Jiang and W.-M. Chen, “Task scheduling in grid computing envi-
ronments,” in Advances in Intelligent Systems and Computing. Springer
International Publishing, 2014, pp. 23–32.

[17] A. Elgazar, K. Harras, M. Aazam, and A. Mtibaa, “Towards intelligent
edge storage management: Determining and predicting mobile file
popularity,” in Proc. IEEE MobileCloud, 2018.

[18] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjec-
tive optimization for computation offloading in fog computing,” IEEE
Internet Things J., vol. 5, no. 1, pp. 283–294, 2018.

[19] J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware
IoT networks,” IEEE Internet Things J., vol. 6, no. 5, pp. 8262–8269,
2019.

[20] A. Yousefpour et al., “Fogplan: A lightweight qos-aware dynamic fog
service provisioning framework,” IEEE Internet Things J., vol. 6, no. 3,
pp. 5080–5096, 2019.

[21] Y. Yang et al., “Pomt: Paired offloading of multiple tasks in het-
erogeneous fog networks,” IEEE Internet Things J., vol. 6, no. 5,
pp. 8658–8669, 2019.

252 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023

[22] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing IoT
service delay via fog offloading,” IEEE Internet Things J., vol. 5, no. 2,
pp. 998–1010, 2018.

[23] G. Zhang et al., “Femto: Fair and energy-minimized task offloading
for fog-enabled iot networks,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4388–4400, 2019.

[24] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, “Dats: Dispersive
stable task scheduling in heterogeneous fog networks,” IEEE Internet
Things J., vol. 6, no. 2, pp. 3423–3436, 2019.

[25] M. Mukherjee et al., “Latency-driven parallel task data offloading in
fog computing networks for industrial applications,” vol. 16, no. 9,
pp. 6050–6058, 2020.

[26] Z. Liu, Y. Yang, K. Wang, Z. Shao, and J. Zhang, “Post: Parallel
offloading of splittable tasks in heterogeneous fog networks,” IEEE
Internet Things J., vol. 7, no. 4, pp. 3170–3183, 2020.

[27] H. Tran-Dang and D.-S. Kim, “A survey on matching theory for
distributed computation offloading in iot-fog-cloud systems: Perspectives
and open issues,” IEEE Access, vol. 10, pp. 118353–118369.

[28] H. Tran-Dang and D.-S. Kim, “Disco: Distributed computation of-
floading framework for fog computing networks,” J. Commun. Netw.,
pp. 1–11, 2023.

[29] H. Tran-Dang and D.-S. Kim, “A many-to-one matching based task
offloading (mato) scheme for fog computing-enabled iot systems,” in
Proc. ATC, 2022.

[30] G. Lee, W. Saad, and M. Bennis, “An online optimization framework for
distributed fog network formation with minimal latency,” IEEE Trans.
Wireless Commun., vol. 18, no. 4, pp. 2244–2258, 2019.

[31] K. Guo, M. Sheng, T. Q. S. Quek, and Z. Qiu, “Task offloading and
scheduling in fog RAN: A parallel communication and computation
perspective,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 215–218,
2020.

[32] H. Tran-Dang and D.-S. Kim, “Dynamic task offloading approach for
task delay reduction in the IoT-enabled fog computing systems,” in Proc.
IEEE INDIN, 2022.

[33] H. Tran-Dang and D.-S. Kim, “Reinforcement learning for compu-
tational offloading in fog-based IoT systems: Applications, and open
research issues,” in Proc. RIVF, 2022.

[34] H. Tran-Dang, S. Bhardwaj, T. Rahim, A. Musaddiq, and D.-S. Kim,
“Reinforcement learning based resource management for fog computing
environment: Literature review, challenges, and open issues,” J. Com-
mun. Netw., vol. 24, no. 1, pp. 83–98.

[35] M. Al-khafajiy et al., “Improving fog computing performance via
fog-2-fog collaboration,” Future Generation Comput. Syst., vol. 100,
pp. 266–280, 2019.

[36] I. Griva, S. Nash, and A. Sofer, Linear and Nonlinear Optimization:
Second Edition, ser. Other Titles in Applied Mathematics. Society for

Industrial and Applied Mathematics. [Online]. Available: https://books.
google.co.kr/books?id=u63u\ iNcnRkC

[37] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx.

Hoa Tran-Dang (M’17) received the B.E. degree in
Electrical and Electronics Engineering from Hanoi
University of Science and Technology (HUST), Viet-
nam and the M.S. degree in Electronics Engineering
from Kumoh National Institute of Technology (KIT),
South of Korea in 2010 and 2012, respectively.
He pursued the Ph.D. degree with University of
Lorraine, France during 2013-2017. He currently
works in NSL laboratory, department of ICT Con-
vergence Engineering at Kumoh National Institute of
Technology, South of Korea as a Research Professor.

His research interests include Internet of things (IoT), edge/fog computing,
machine learning, artificial intelligence, distributed intelligence, physical
internet, and resource management.

Dong-Seong Kim (S’98-M’03-SM’14) received his
Ph.D. degree in Electrical and Computer Engi-
neering from the Seoul National University, Seoul,
Korea, in 2003. From 1994 to 2003, he worked
as a Full-Time Researcher in ERC-ACI at Seoul
National University, Seoul, Korea. From March 2003
to February 2005, he worked as a Postdoctoral Re-
searcher at the Wireless Network Laboratory in the
School of Electrical and Computer Engineering at
Cornell University, NY. From 2007 to 2009, he was
a Vistiting Professor with Department of Computer

Science, University of California, Davis, CA. He is currently a Director of kit
Convergence Research Institute and ICT Convergence Research Center (ITRC
program) supported by Korean government at Kumoh National Institute of
Technology. He is IEEE and ACM Senior Member. His current main research
interests are real-time IoT, industrial wireless control network, networked
embedded system and fieldbus.

