
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023 197

Task Offloading Based on Edge Collaboration in
MEC-Enabled IoV Networks

Taoyu Deng, Yueyun Chen, Guang Chen, Meijie Yang, and Liping Du

Abstract—Benefiting from its abundant computing resources
and low computing latency, mobile edge computing (MEC) is
a promising approach for enhancing the computing capacity of
the 5G Internet of vehicles (IoV). Because of the high mobility,
handover is frequent and inevitable in IoV networks. In this
paper, we investigate an edge collaborative task offloading and
splitting strategy in MEC-enabled IoV networks, in which the
task is splitted on the edge and paralleling executed by each
part of the task on several MEC servers when handover is
occured. Applications in IoV networks have flexible requirements
on latency and energy consumption. To realize the tradeoff
between latency and energy consumption, we formulate the task
offloading and splitting as an optimization problem with the aim
of minimizing the total cost of latency and energy consumption
by jointly optimizing the task splitting ratio and uplink transmit
power of vehicle terminal (VT). Because the proposed problem
is non-smooth and non-convex, we divide the original problem
into two convex subproblems, and apply an alternate convex
search (ACS) algorithm to obtain the optimized solution with
low computational complexity. Numerical simulation results show
that the proposed method can adjust the offloading strategy
properly according to task preference, and obtain a lower total
cost compared with the baseline algorithms.

Index Terms—Internet of vehicles, mobile edge computing,
resource allocation.

I. INTRODUCTION

W ITH the rapid growth of the computation-intensive
and latency-sensitive mobile applications in Internet

of vehicles (IoV), the requirements for IoV change from data
sharing into data transmitting and processing, which leads to
the challenges of the computing and communication ability
of IoV [1], [2]. mobile edge computing (MEC) has become
a promising solution for providing sufficient computing re-
sources for intelligent vehicles and meeting the low latency
requirement for vehicle applications [3]–[5].

Through the support of MEC networks, intelligent vehicles
can offload their large latency-sensitive computing service
tasks (L2SC) to MEC servers to reduce task execute latency

Manuscript received September 29, 2021; revised November 20, 2022;
approved for publication by Jalel Ben-Othman, Division 2 Editor, January
4 2023.

The work of this paper is funded by 2020 Industrial Technology Foundation
Public Service Platform Project (2020-0105-2-1).

Y. Chen is with the School of Computer and Communication Engineering,
University of Science and Technology Beijing, Beijing 100083, China and
Shunde Innovation School, University of Science and Technology Beijing,
Guangdong 528399, China, email: chenyy@ustb.edu.cn

T. Deng, G. Chen, M. Yang, and L. Du are with School of
Computer and Communication Engineering, University of Science and
Technology Beijing, Beijing 100083, China, email: dengtaoyu@126.com,
gchen ustb@foxmail.com, ustb yangmj@163.com, lpdu200@163.com.

Y. Chen is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2023.000004

and vehicle energy consumption [6]–[8]. Although MEC net-
works can improve computational performance, a roadside
MEC server cannot meet the growing and dynamic offloading
requirements of vehicle terminals (VTs) with high mobility in
its coverage. Hence, edge collaboration should be introduced
into MEC networks to solve this problem.

The existing researches on edge collaboration in IoV net-
works mainly focused on three collaboration methods: cloud
and MEC servers [9]–[13], vehicles [14]–[19], and multi MEC
servers. Cloud computing can enrich the computing resources
in MEC-enabled IoV networks. However, it can not meet
the low latency requirement. Computing resources such as
vehicles can utilize idle resources, but they change frequently,
which is lack stability. Therefore, the collaboration between
multi MEC servers can enrich edge resources and has better
stability than vehicle resources, becomes a feasible solution
to meet the growing and dynamice service requirements of
IoV networks. The authors of [20] proposed a network that
gave users three offloading options to reduce the computation
workload of the MEC system. In [21], the authors satisfied
the offloading requirements of the vehicle by purchasing
computing resources from an alternate MEC server. The work
by Xiao et al. [22] provided MEC cooperation based on traffic
heat awareness, which can purchase computing resources
from low-heat MEC servers to help high-heat MEC servers.
The above researches mainly focused on workload balancing
between multi MEC servers, but they didn’t considered task
splitting to further optimize the offloading strategy.

Considering the wide application of edge collaboration in
the IoV-MEC network, splitting tasks and processing them by
multiple edge devices will further improve the efficiency of
task processing. However, where the task is split and how
each subtask is offloaded and processed is still an open issue.
Existing researches can be categorized into four types: serial
offloading serial execution, serial offloading parallel execution,
parallel offloading serial execution, and parallel offloading
parallel execution. A further offloading strategy was proposed
in [23] to jointly optimize latency and energy consumption by
serial offloading serial execution. The authors of [24] provided
a parallel offloading serial execution strategy to minimize the
weighted sum of latency energy consumption. To minimize
transmission energy consumption, a parallel offloading parallel
execution strategy was provided in [25]. The authors of [26]
combined cloud computing with MEC to achieve workload
balancing through parallel offloading and parallel execution.
The work by Chai et al. [27] proposed a parallel offloading
parallel execution scheme, and categorized the tasks into
different priorities to minimize the maximum task completion

1229-2370/23/$10.00 © 2023 KICS

198 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023

time. The authors of [28] focused on reliability, where task
offloading and splitting were controlled through the SDN
network. And tasks were serially offloaded to access RSU and
split to multi-device for parallel execution. When VT moves
to the coverage of a new RSU, the services of MEC have
to migrate to a new server, this process is called handover.
However, this paper didn’t consider the handover caused by
vehicle mobility, the results of each subtask were still returned
to the access RSU to be sent back to the vehicle.

Considering the high mobility and frequent handover in IoV
networks. Some works have studied mobility prediction to help
avoid handover latency and reduce retransmitting energy con-
sumption, especially in MEC-enabled IoV networks [29]–[31].
There were also some studies focused on information source
selection algorithm to enhance transmission efficiency and
reliability in the dynamically changing network topology [32],
[33]. Moreover, in IoV networks, different applications have
different performance requirements. Hence, flexible offloading
strategies are essential to satisfy the requirements of various
applications while saving energy in IoV networks. The most
above-mentioned researches only focused on latency or energy
consumption. The authors of [34] proposed the weighted sum
of latency and energy consumption in a cellular network.
The tradeoff between latency and energy consumption was
introduced in IoV networks by the authors of [20], [35].
However, they didn’t consider edge cooperation.

Motivated by the above analysis, handover is frequent
in IoV networks and will cause the decrease of offloading
efficiency, but little literature studied the offloading strategy
during handover. In order to meet the VT’s offloading require-
ment with high mobility, we propose an offloading strategy
using the RSUs located on the VT’s pathway, in which RSUs
on VT’s pathway and other nearby RSUs are participated in
computing during handover. This requires task splitting and
transmitting subtasks to different RSUs to execute. Because a
lot of uplink wireless resources will be occupied by parallel
offloading, and tasks such as image recognition in IoV do not
need to be executed sequentially [36], we propose a serial
offloading parallel executing strategy to enhance task execu-
tion efficiency. Furthermore, as flexible offloading strategy is
required to meet the various requirement of IoV applications,
we propose to use multi MEC cooperation and adjust the
weight sum factor based on task preference. Therefore, in this
article, to achieve the various requirements of VT’s applica-
tions with high mobility, we propose a serial offloading parallel
execution strategy during the handover with latency energy
tradeoff in MEC based IoV network. Specifically, we propose
a MEC-based serial offloading parallel execution strategy to
enhance L2SC offloading service experience for VT, which
can utilize the handover time for edge execution. To reach the
tradeoff between user experience and energy efficiency, we
jointly optimize energy consumption and latency. The main
contributions of this paper are shown as follows.

• We propose a novel cooperative offloading MEC frame-
work in IoV networks, in which the task can be serial
transmitted to RSU and parallel executed in several
cooperate MEC servers, which can take full advantage
of roadside computing resources and utilize the handover

to satisfy the VT’s low latency requirements in IoV
networks.

• We introduce latency and energy consumption tradeoff
into the proposed framework, and we use the weighted
sum of latency and energy consumption as the cost.
This can flexibly adjust the weighting factor for different
IoV tasks, to meet the various requirements of IoV
applications while saving energy.

• Because of the non-smoothness and non-convexity of
the formulated problem, we provide an alternate convex
search (ACS)-based algorithm to divide the original prob-
lem into two convex subproblems and obtain the subopti-
mal solution by iteratively solving the two subproblems.

The rest of this paper is organized as follows. The system
model is presented in Section II. The problem formulation and
algorithm design are given in Section III and IV, respectively.
The proposed method is verified by simulation results in
Section V. Conclusions are drawn in Section VI.

II. SYSTEM MODEL

An MEC-enabled IoV network is considered as illustrated in
Fig. 1. There are one vehicle and several roadside units (RSU)
equipped with MEC servers, which are called edge nodes.
Edge nodes can work cooperatively to provide task offloading
service to the vehicle. All edge nodes are connected with one
high-speed optical fiber, and the transmission rate is equal
between any two edge nodes. The vehicle has one task to
offload to MEC servers when it is about to move into the
coverage of a new RSU. In this paper, we aim to verify
the performance of the proposed cooperative offloading MEC
framework. Therefore, we only consider a one-car scenario.
The multi-car scenarios will be studied in our future works.

To make the problem simple, we only consider the single
task scenario in this article, and the multi-tasks scenario will
be studied in our future works. We assume that the channel
status remains unchanged while the task is uploading, for
the reason that the coherence time is close to the uplink
transmission time. Because of the high speed of vehicles, a
vehicle may experience cell switching while offloading a L2SC
task. A RSU and its associated MEC server constitute an edge
node [37]. We assume that the MEC server will execute the
input task as soon as it receives all the data of the task. We
also assume that Bf represents the edge node who covered
the VT when the task was produced, Bl represents the edge
node who covered the VT when task offloading is over, and
for other edge nodes who participated in the collaboration,
we call them supporter. The task size (bits), the computation
workload (cycles/bit) [2], and the latency constrain of the task
are represented as C, α, Tmax, respectively. We also assume
that the task is bit independent [24] and can be divided into
several parts of arbitrary size after transmitted to Bf , one of
which is executed at Bf and others are further offloaded to
any other edge nodes. Because the task is bit independent, the
subtasks do not need to be executed in a certain order. We
assume that each edge node begins to execute the subtask at
the time they receive it, which we called parallel execute. The
results of each subtask will be transmit to Bl at the time it

DENG et al.: TASK OFFLOADING BASED ON EDGE COLLABORATION IN ... 199

finish execution and combined at Bl, finally Bl transmits the
final result to VT.

Fig. 1. System Model of multiple MEC-enabled IoV networks.

Let P denotes the transmit power from the VT to the edge
node Bf . The uplink transmit time between the VT and edge
node Bf can be given by

Ts =
C

Rs
=

C

Wlog2(1 +
Ph2

N0
)
, (1)

where Rs = Wlog2(1 + Ph2/N0) is the uplink transmit rate,
W , h, and N0 represent the uplink bandwidth, uplink channel
fading factor, and Gaussian noise power.

A. Task Splitting Model

To reduce the latency and save more energy, VT offloads the
whole task to the edge. After being received by Bf , the task
will be divided arbitrarily into K subtasks (K is the number of
edge nodes that help execute the task), and transmit to other
edge nodes through the high-speed optical fiber to execute
separately. Let ηm,m ∈ M with 0 < ηm < 1 be the proportion
of the subtask executed by edge node Bm,m ∈ M to the
original task size, and M is the set of all edge nodes. The
data size and computation complexity that offloaded to edge
node m are denoted by ηmC and αηmC. Then, the sum of all
fractions of the task should be equal to 1∑

m∈M

ηm = 1. (2)

B. Latency and Energy Consumption Model

1) Latency: The latency caused by task offloading can be
separated into chain latency and edge latency. Tchain is the
chain latency that represents the transmitting latency between
VT and edge nodes. Because the MEC computing latency and
the transmitting latency between edge nodes are both related
to the number of MEC servers, we define the sum of them as
edge latency, which is symbolized as Tedge.

Therefore, the total latency can be expressed as

Ttotal = Tchain + Tedge. (3)

Chain latency includes uplink transmit latency and downlink
transmit latency.

Tchain = Ts + Tx. (4)

According to Shannon equation, the uplink transmit latency
can be expressed as

Ts =
C

Rs
=

C

Wlog2(1 +
Ph2

N0
)
, (5)

where C represents the task data size, and uplink transmit
speed is denoted by Rs = Wlog2(1 + Ph2/N0). P , W , N0,
and h represent the vehicle’s transmit power, uplink channel
bandwidth, Gaussian noise power, and channel gain. Similarly,
downlink transmitting latency can be expressed as

Tx =
γC

Rx
=

γC

Wlog2(1 +
PENh2

N0
)
, (6)

where PEN represents the edge node’s transmit power. Be-
cause the result data is much less than the task data, and the
edge node’s transmit power is much larger than the vehicle’s
transmit power, the downlink transmitting latency will be
much smaller than the uplink transmitting latency. Hence, the
downlink transmitting latency can be ignored.

The edge latency includes the time of subtask execution in
MEC servers and the time of subtask transmission between the
MEC servers. In the considering scenario, the edge node Bf

receives the original task from the VT, divides the original
task into m subtasks, then Bf executes the subtask that
it undertakes and sends mth subtask to Bm,m ∈ M/{f}
simultaneously. Finally, Bf sends the result of its subtask to
Bl. The edge node Bi, i ∈ I receives the subtask sent by
Bf . Then Bi, i ∈ I executes the subtask that it undertakes.
Finally, Bi, i ∈ I sends the result of its subtask to Bl. Bl

receives the subtask sent by Bf and the results of the tasks that
Bm,m ∈ M/{l} undertakes. Then Bl executes its subtask.
Finally, Bl sends the final result of the original task to the
VT. Because we consider parallel execution of the task, the
edge latency is expressed as follows,

Tedge =max

{
αηfC

f
+

γηfC

β
;

ηiC

β
+

αηiC

f
+

γηiC

β
;
αηlC

f
+

ηlC

β

}
i ∈ I,

(7)

where I is the set of all supporters, and ηf , ηi, and ηl denote
the proportion of the subtask executed by edge nodes to the
original task size. The sum of all fractions of the task should
be equal to 1, i.e., ηf + ηl +

∑
i∈I

ηi =
∑

m∈M

ηm = 1. β,

γ, and f (note to distinguish this f with the f in the foot-
mark of Bf) represent the transmit speed on the high-speed
optical fiber(bit/s) [38], the proportion between task result
and itself [39], and the computation ability of MECs (rad/s)
respectively. The first term αηfC/f+γηfC/β in the max {·}
of (7) is the edge latency caused by executing the subtask in
the Bf . αηfC/f is the subtask execution time, while γηfC/β
is execution result transmission time between the Bf and
Bl. The second term ηiC/β + αηiC/f + γηiC/β, i ∈ I in
the max {·} of (7) is the edge latency caused by executing
the subtask in the Bi, i ∈ I . ηiC/β is the time of the

200 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023

unexecuted subtask transferred from Bf to Bi. αηiC/f is the
subtask execution time. And γηiC/β is the execution result
transmission time between the Bi and Bl. The third term
αηlC/f + ηlC/β in the max {·} of (7) is the edge latency
caused by executing the subtask in the Bl. ηlC/β is the time
of the unexecuted subtask transferred from Bf to Bl, while
αηlC/f is the subtask execution time.

2) Energy consumption: The energy consumption of the
vehicle caused by offloading is mainly from two aspects,
the uploading task energy consumption and the receiving
result energy consumption. Then, the vehicle’s total energy
consumption can be expressed as

etotal = es + ex, (8)

where the upload task energy consumption es can be expressed
as

es = PTs. (9)

Because the result data is much lesser than the task, and
data receiving energy consumption is much lesser than data
transmitting energy consumption, we ignore the vehicle’s
energy consumption ex caused by receiving the result.

III. PROBLEM FORMULATION

To reduce the waste of energy while ensuring QoE, we
introduce a weighting factor δ and propose an optimization
objective based on energy efficiency cost (EEC) [40]. The
weighting factor δ ranges from [0,1], which value is deter-
mined by task preference. In other words, when the task is
served for safety such as accident information analysis, the
weighting factor δ will be set to a bigger value to satisfy the
low latency demand of the task. Similarly, δ will be set to a
smaller value when meeting entertainment task to save energy.

ε(ηm, P) = δTtotal + (1− δ)µetotal, (10)

where ε(ηm, P) represents the EEC, and weight balancing
factor is denoted by µ. The energy efficiency cost ε(ηm, P)
is a unitless parameter, it reflects the latency and energy con-
sumption tradeoff performance of the offloading strategy. To
make delay and energy consumption have the same influence
on EEC, we introduce a weight balancing factor µ. µ is defined
as the ratio of the expected delay with δ = 1 to the expected
energy consumption with δ = 0 [34], which keeps latency
and energy consumption in the same order of magnitude.
Therefore, when the value of δ changes, only the weight
of delay and energy consumption will be changed, and the
value of EEC will not be affected. Hence, tasks with different
requirements can still be compared through EEC. When δ = 1,
ε(ηm, P) only considers latency cost, and the optimization
problem degenerates to a latency optimization problem. On
the contrary, when δ = 0, ε(ηm, P) only relates to energy
consumption cost, and the optimization problem degenerates
to an energy consumption optimization problem.

As a result, the problem of minimizing EEC can be formu-
lated as

min
ηm,P

ε(ηm, P) m ∈ M

s.t. C1 :
∑
m∈M

ηm = 1

C2 : 0 ≤ ηm ≤ 1 (11)
C3 : 0 ≤ δ ≤ 1

C4 : Ttotal ≤ Tmax

C5 : 0 ≤ P ≤ Pmax,

where C1 represents that the sum of all fractions of the VT’s
task should equal to 1, C2 and C3 represent the domains for
ηm and δ ,C4 corresponds to the stringent latency constraint
for the VT’s task, and C5 corresponds to the stringent transmit
power constraint for the VT.

The difficulties of solving this problem mainly lie in the
non-convexity and non-smoothness of the objective function,
and it is impractical to obtain the globally optimal solution by
resorting to conventional optimization techniques. Hence, we
apply an alternate convex search based algorithm to converge
a sub-optimal solution to the problem. To be more specific,
we first introduce an auxiliary variable Tn to convert the
original problem to a smooth optimization problem, and then
we transform the initial problem into two convex subproblems
with low computation complexity by fixing some variable
blocks, after that we use an ACS algorithm to obtain the
optimized solution by iteratively solving two subproblems.

IV. ALGORITHM

According to the alternate convex search based algorithm,
we first introduce an auxiliary variable Tn, which satisfies
Tdege + Ts ≤ Tn + Ts ≤ Tmax to convert the original
problem (11) to a smooth optimization problem.

min
ηm,Tn,P

ε
′
(ηm, Tn, P) m ∈ M

s.t. C1 :
∑
m∈M

ηm = 1

C2 : 0 ≤ ηm ≤ 1,m ∈ M

C3 : 0 ≤ δ ≤ 1

C5 : 0 ≤ P ≤ Pmax (12)
C7 : Tn + Ts ≤ Tmax

C8 :
γηfC

β
+

αηfC

f
≤ Tn

C9 :
ηiC

β
+

αηiC

f
+

γηiC

β
≤ Tn i ∈ I

C10 :
αηlC

f
+

ηlC

β
≤ Tn,

where

ε
′
(ηm, Tn, P) = δ(Tn + Ts) + (1− δ)µPTs. (13)

In the converted problem (12), we add three complementary
constraints C8, C9, and C10 based on Tn + Ts ≤ Tmax, and
replace Ttotal with Tn + Ts in the optimization objective and

DENG et al.: TASK OFFLOADING BASED ON EDGE COLLABORATION IN ... 201

constraint C4 (C4 was changed to C7 after this operation).
The transformed problem (12) is a smooth optimize problem
which has no max function in its objective function.

However, the converted problem (12) is still non-convex and
hard to solve. We need to convert the smooth optimize problem
to a smooth biconvex problem by fixing some variable blocks.

A. The ACS Based Algorithm
1) Update ηm, Tn: Let τ denotes the τ th iteration. P τ−1 is

determined in the τ−1th iteration. Substituting them into (12),
we can obtain a linear problem with respect to ηm and Tn,
which is given by

min
ηm,Tn

δTn m ∈ M

s.t. C1 :
∑
m∈M

ηm = 1

C2 : 0 ≤ ηm ≤ 1

C3 : 0 ≤ δ ≤ 1

C7 : Tn + T τ−1
s ≤ Tmax (14)

C8 :
γηfC

β
+

αηfC

f
≤ Tn

C9 :
ηiC

β
+

αηiC

f
+

γηiC

β
≤ Tn i ∈ I

C10 :
αηlC

f
+

ηlC

β
≤ Tn.

Problem (14) is a classic optimization problem and can
be solved by many efficient methods with low computation
complexity, e.g., the simplex method [41]. But in order to
better express its mathematical characteristics, we give the
analytical solution of this problem as follows:

Tn =max

{
αηfC

f
+

γηfC

β
;

ηiC

β
+

αηiC

f
+

γηiC

β
;
αηlC

f
+

ηlC

β

}
i ∈ I (15)

ηl =
1

f+αβ
γf+αβ + J f+αβ

(1+γ)f+αβ + 1
,

where ηf = f+αβ
γf+αβ ηl , ηi = f+αβ

(1+γ)f+αβ ηl , and J represents
the number of supporters. The proof of this solution is shown
in Appendix A.

2) Update P : We can obtain ητm , T τ
n by solving the linear

programming problem (14). Substituting them into (12), we
can obtain an optimization problem with respect to P

min
P

δ(T τ
n + Ts) + (1− δ)µPTs

= δ(T τ
n +

C

Wlog2(1 +
Ph2

N0
)
)

+ (1− δ)µP
C

Wlog2(1 +
Ph2

N0
)

(16)

s.t. C3 : 0 ≤ δ ≤ 1

C5 : 0 ≤ P ≤ Pmax

C7 : T τ
n + Ts ≤ Tmax.

Algorithm 1 The alternate convex search based algorithm

Require: Network parameters δ, α, γ, etc; convergence tol-
erance ζ, iteration index τ = 1

Ensure: ηm, P
1: Initialize starting variables η0m, T 0

n , P 0 and a0

2: repeat
3: Update ητm and T τ

n according to linear problem (14)
4: Update aτ by solving convex problem (18)
5: Obtain P according to problem(17)
6: until ε

′
(ητm, T τ

n , P
τ)− ε

′
(ητ−1

m , T τ−1
n , P τ−1) ≤ ζ

7: return ηm, P

The form of problem (16) is complicated so that we have
to use variable substitution before we confirm the convexity
of (16). Hence, we introduce a variable

a =
1

Rs
=

1

Wlog2(1 +
Ph2

N0
)
, (17)

and problem (16) can be transformed to a convex optimization
problem with respect to a

min
a

δ(T τ
n + Ca) + (1− δ)µ

N0

h2
Ca(2

1
aW − 1)

s.t. C3 : 0 ≤ δ ≤ 1 (18)

C11 :
1

Wlog2(1 +
Pmaxh2

N0
)
≤ a

C12 : Ca+ T τ
n ≤ Tmax,

where P is replaced by N0

h2 (2
1

aW − 1) in the optimization
objective and constraints (C5, C7 were changed to C11, C12
after this operation).

Furthermore, we can derive that when f
′
(a) = 0 prob-

lem (18) obtains the optimal solution:

2
1

aW (1− ln2

aW
) =

δh2

(δ − 1)N0
+ 1. (19)

The proof of the convexity and solution of problem (18) are
shown in Appendix B.

In summary, because (18) is equivalent to (12) if ηm = ητm
and Tn = T τ

n are the optimal solutions to (14). The original
problem can converge to a sub-optimal solution by iterating
between (14) and (18) after converted into a smooth optimiza-
tion problem (12). The process of the ACS based algorithm is
shown in Algorithm 1.

The Algorithm 1 is still useful when δ = 1, and when δ = 0
the original problem degenerates to a convex optimization
problem and can be solved by many efficient methods with low
computation complexity. The proof is shown in Section IV.B
and Section IV.C.

B. Special Case: δ = 1

202 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023

The smooth optimization problem (12) converts to a new
optimization problem, and the proposed algorithm is still
suitable.

min
ηm,Tn,P

Tn + Ts m ∈ M

s.t. C1 :
∑
m∈M

ηm = 1

C2 : 0 ≤ ηm ≤ 1

C5 : 0 ≤ P ≤ Pmax (20)
C7 : Tn + Ts ≤ Tmax

C8 :
γηfC

β
+

αηfC

f
≤ Tn

C9 :
ηiC

β
+

αηiC

f
+

γηiC

β
≤ Tn i ∈ I

C10 :
αηlC

f
+

ηlC

β
≤ Tn.

1) Update ηm, Tn: We can obtain a linear problem.

min
ηm,Tn

Tn m ∈ M

s.t. C1 :
∑
m∈M

ηm = 1

C2 : 0 ≤ ηm ≤ 1

C7 : Tn + T τ
s ≤ Tmax (21)

C8 :
γηfC

β
+

αηfC

f
≤ Tn

C9 :
ηiC

β
+

αηiC

f
+

γηiC

β
≤ Tn i ∈ I

C10 :
αηlC

f
+

ηlC

β
≤ Tn.

2) Update P : By introducing an auxiliary variable as
we did in Section IV, we can obtain a convex optimization
problem.

min
a

δ(T τ
n + Ca)

s.t. C3 : 0 ≤ δ ≤ 1 (22)

C11 :
1

Wlog2(1 +
Pmaxh2

N0
)
≤ a

C12 : Ca+ T τ
n ≤ Tmax.

The original problem can converge to a sub-optimal solution
by iterating between the above two convex problems after
converted into a smooth optimization problem (12). The proof
is finished.

C. Special Case: δ = 0

The original problem (11) convert to a new convex opti-
mization problem.

min
ηm,P

µPTs m ∈ M

s.t. C1 :
∑
m∈M

ηm = 1

C2 : 0 ≤ ηm ≤ 1

C5 : 0 ≤ P ≤ Pmax (23)

C13 :
γηfC

β
+

αηfC

f
+ Ts ≤ Tmax

C14 :
ηiC

β
+

αηiC

f
+

γηiC

β
+ Ts ≤ Tmax i ∈ I

C15 :
αηlC

f
+

ηlC

β
+ Ts ≤ Tmax.

By introducing an auxiliary variable as we did in Section IV,
the above problem can be transformed to an optimization
problem with respect to a and ηm.

min
a,ηm

µ
N0

h2
Ca(2

1
aW − 1)

s.t. C1 :
∑
m∈M

ηm = 1

C2 : 0 ≤ ηm ≤ 1

C11 :
1

Wlog2(1 +
Pmaxh2

N0
)
≤ a (24)

C13 :
γηfC

β
+

αηfC

f
+ Ca ≤ Tmax

C14 :
ηiC

β
+

αηiC

f
+

γηiC

β
+ Ca ≤ Tmax i ∈ I

C15 :
αηlC

f
+

ηlC

β
+ Ca ≤ Tmax.

Problem (24) is a convex problem, which can be proved by
Appendix B. The proof is finished.

D. Complexity Analysis of Algorithm 1

Because Algorithm 1 solves the original problem by iterate
solving problem (14) and problem (16), the computation com-
plexity of Algorithm 1 is equal to the sum of the computation
complexity of these two problems. Problem (14) is a linear
problem, which has the complexity of O(a2b), where a is
the number of variables and b is the number of constraints.
The interior-point method is used for solving the convex prob-
lem (16), and it has the complexity of O(n3.5log(1/ϵ)), where
n is the variable dimension, and ϵ is the target precision [42].
Therefore, the complexity of Algorithm 1 is O(28+ log(1/ϵ))
where ϵ is the target precision.

V. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the performance of the proposed partial offloading strategy by
comparing it to three baseline strategies. We assume that there
is a vehicle traveling down a one-way straight highway at the
speed of about 100 km/h, and the coverage of RSU is 10 m.
The transmission frequency between VT and edge nodes is

DENG et al.: TASK OFFLOADING BASED ON EDGE COLLABORATION IN ... 203

TABLE I
KEY PERFORMANCE INDICATORS.

Parameters Values
δ weighting factor 0–1

α computation workload 40 cycles/bit
γ proportion between task result and itself 0.2

β transmit speed on the high-speed optical fiber 1010 bit/s
C task data size 1–10 Mbits

Transmission frequency 5.9GHz
f computation ability of MECs 8× 109 cycles/s

h channel gain Rayleigh fading channel
N0 power spectral density 3× 10−13 W

Tmax vehicle’s task latency upper bound 30 ms
Pmaxvehicle’s transmit power upper bound 0.2 W

5.9 GHz. During the L2SC task offloading, the vehicle will
experience handover, and receive the computing result after the
handover. According to the existing researches, we express the
existing offloading strategies into three baseline algorithms:

Baseline method 1 (no cooperation strategy): All fractions
of the task are computed at the node Bf after the task is
offloaded to it, then transmit the result to the node Bl, and
then transmit the result to the VT. It represents the recent
offloading strategies that didn’t consider MEC cooperation.

Baseline method 2 (further offloading strategy): The task
is first offloaded to the node Bf and transmit all fractions
of the task to node Bl , then computing all the task at node
Bl, and then transmit the result to the VT. It represents the
recent offloading strategies that used MEC binary offloading or
further offloading. This method didn’t consider task splitting
in MEC cooperation.

Baseline method 3 (serial cooperate strategy): The task is
split at the VT and offloading to several edge nodes parallelly,
then MEC servers execute each part of the task serially in a
fixed order. Finally, each part of the task result transmits to
node Bl and then transmit the result to the VT. It represents
the recent offloading strategies that have considered MEC
cooperation by the serial computing of MEC servers.

For the parallel cooperate offloading which we proposed, we
also give the performance comparison between the schemes
with different number of edge nodes.

The detailed simulation parameters are given in Table I.
Fig. 2 represents the latency performance in terms of

the task data size. It shows the task data size that can be
executed by different methods while meeting the 20 ms delay
requirement of IoV application. We can also see that latency
increases with the increase of task data size and the curve is
linear. This is because task data size C is in direct proportion
to Ttotal. As we deduced in part II, Ttotal = Tedge + Ts,
and we can obtain from equation (5) and equation (7) that
C is in direct proportion to Tedge and Ts. Hence, C is in
direct proportion to Ttotal, which makes the curve linear. And
proposed MEC cooperation strategy shows less latency than
the three baseline strategies. Moreover,with the increase of
the number of cooperation MECs, latency performance shows
more superiority. This is because the proposed strategy splits
the tasks properly and uses the resources more rationally.

The latency performance in terms of the task data size is
shown in Fig. 3, in which K is equal to 3. It indicates the

0 1 2 3 4 5 6 7 8 9 10

C (Mbit)

0

10

20

30

40

50

60

70

L
a
te

n
c
y
(m

s
)

Parallel Cooperate Strategy,K=2

Parallel Cooperate Strategy,K=3

Parallel Cooperate Strategy,K=4

No Cooperation Strategy

Further Offloading Strategy

Serial Cooperate Strategy

Fig. 2. Latency performance versus task data size.

1 2 3 4 5 6 7 8 9 10

C (Mbit)

0

5

10

15

20

25

30

L
a
te

n
c
y
(m

s
)

Edge Latency

Chain Latency

Fig. 3. Proportion of chain&edge latency in latency performance.

proportion of chain latency and edge latency in Fig. 2. We
can observe that edge latency occupies more proportion of the
total latency, and the proportion between chain latency and
edge latency remains unchanged with the increase of task data
size. This is because the task preference index and the number
of MEC servers remain unchanged, the proportion will change
when these two parameters change.

Fig. 4 represents the total cost performance in terms of
latency requirement. As shown in Fig. 4, the total cost first
decreases and then remains unchanged as the latency require-
ment Tmax increases. We can also see that, the proposed
strategy can reach more rigorous latency requirements while
consuming less total cost. It can be concluded from Fig. 4 that,
the proposed MEC cooperation partial offloading strategy can
satisfy the requirement of L2SC tasks while saving energy,
which is more suitable for L2SC tasks.

The energy consumption performance in terms of latency
requirement is illustrated in Fig. 5. We can observe that energy
consumption first decreases and then remains unchanged as the
latency requirement increases. We can also see that, comparing
with the three baseline strategies, the proposed strategy can

204 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023

1 2 3 4 5 6 7 8

Tmax (ms)

0

0.005

0.01

0.015

0.02

0.025

0.03

T
o
ta

l
C

o
s
t

Cooperate Offloading,K=2

Cooperate Offloading,K=3

Cooperate Offloading,K=4

First MEC Offloading

Last MEC Offloading

Serial Cooperate Offloading

Fig. 4. Total cost performance versus latency requirement.

1 2 3 4 5 6 7 8

Tmax (ms)

0

1

2

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
(J

o
u
le

)

10-4

Parallel Cooperate Strategy,K=2

Parallel Cooperate Strategy,K=3

Parallel Cooperate Strategy,K=4

No Cooperation Strategy

Further Offloading Strategy

Serial Cooperate Strategy

Fig. 5. Energy consumption performance versus latency requirement.

reach more rigorous latency requirements when the energy
consumption is the same, and the proposed strategy shows
more superiority when approaching the minimum latency
requirement that the strategy can reach(more suitable for low
latency scene). Besides, with the increase of the number of
cooperation MECs, energy consumption performance shows
more superiority.

Fig. 6 represents the latency performance in terms of latency
requirement. It can be seen that latency first increases and
then remains unchanged as the latency requirement Tmax

increases. We can also see that the proposed strategy shows
less latency than the three baseline strategies and can satisfy
more rigorous latency requirements, and with the increase of
the number of cooperation MECs, latency performance shows
more superiority.

The latency performance in terms of task preference is
shown in Fig. 7. It shows that latency decreases with the
increase of task preference index. This is because a large δ
indicates the user’s low latency tolerance, where we should
enhance our latency performance to meet the user’s require-
ment.Besides, with the increase of the number of cooperation

2 3 4 5 6 7 8

Tmax (ms)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

L
a
te

n
c
y
(m

s
)

Parallel Cooperate Strategy,K=2

Parallel Cooperate Strategy,K=3

Parallel Cooperate Strategy,K=4

No Cooperation Strategy

Further Offloading Strategy

Serial Cooperate Strategy

Fig. 6. Latency performance versus latency requirement.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

L
a
te

n
c
y
(m

s
)

Parallel Cooperate Strategy,K=2

Parallel Cooperate Strategy,K=3

Parallel Cooperate Strategy,K=4

Fig. 7. Latency performance versus task preference index.

MECs, latency performance shows more superiority.
The energy consumption performance in terms of task

preference index is shown in Fig. 8. It indicates that energy
consumption increases with the increase of task preference
index. This is because a small δ indicates the user’s low energy
consumption tolerance, where we should enhance our energy
consumption performance to meet the user’s requirement.

Figs. 9 and 10 show the influence of different task prefer-
ence indexes for the proposed method(where we set K = 3
as an example). We can observe from Fig. 9 that the proposed
method can reach a better latency performance when choosing
a higher task preference index. And with the increase of the
task data size, latency performance shows more superiority.
Fig. 10 shows the energy consumption performance in terms
of task data size for different task preference indexes. It shows
that the proposed method can reach a better energy con-
sumption performance when choosing a lower task preference
index, and with the increase of the task data size, energy
consumption performance shows more superiority.

DENG et al.: TASK OFFLOADING BASED ON EDGE COLLABORATION IN ... 205

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

E
n
e

rg
y
 C

o
n

s
u
m

p
ti
o

n
(J

o
u
le

)

10-8

Parallel Cooperate Strategy,K=2

Parallel Cooperate Strategy,K=3

Parallel Cooperate Strategy,K=4

Fig. 8. Energy consumption performance versus task preference index.

0 1 2 3 4 5 6 7 8 9 10

C (Mbit)

0

5

10

15

20

25

30

L
a
te

n
c
y
(m

s
)

Fig. 9. Latency performance versus task data size for different task preference
indexes.

VI. CONCLUSION

In this paper, we investigate an edge collaborative task
serial offloading parallel executing strategy in MEC-enabled
IoV networks, which can split the task on the edge and use
several MEC servers to paralleling execute each part of the
task. And we formulate the problem as the minimization
of the weighted sum of the energy consumption and the
latency which is non-smooth and non-convex. An alternate
convex search algorithm is provided to tackle the problem
efficiently, which can converge to a sub-optimal solution.
The numerical simulation results show that the proposed
multi-MEC cooperating partial offloading strategy can take
advantage of the roadside computing resources properly, and
shows superiority in the weighted sum of latency and en-
ergy consumption. When latency requirement becomes more
relaxed, the proposed strategy can further reduce the total
cost. And for different tasks, the proposed strategy can also
change dynamically to meet their needs by adjusting the task
preference index. Moreover, the impacts of various parameters
were revealed, which validate the feasibility of the proposed

0 1 2 3 4 5 6 7 8 9 10

C (Mbit)

0

0.5

1

1.5

2

2.5

E
n

e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
o

u
le

)

10-3

Fig. 10. Energy consumption performance versus task data size for different
task preference indexes.

method in different situations. For future investigation, we plan
to study the multi-task condition, and schedule the offloading
sequence based on priority and task sequence. To solve the
multi-task arriving problem, we will also study queuing issues.

APPENDIX A
PROOF OF THE ANALYTICAL SOLUTION OF PROBLEM (14)

It is obvious that the optimal solution of problem (14) is
obtain at the minimum point of Tn , and we can derive from
C8, C9, and C10 that

Tn =max

{
αηfC

f
+

γηfC

β
;

ηiC

β
+

αηiC

f
+

γηiC

β
;
αηlC

f
+

ηlC

β

}
i ∈ I,

(25)

to reach the minimum value of this max function, we need
each part of the fuction to take the same value:

αηfC

f
+

γηfC

β
=

ηiC

β
+

αηiC

f
+

γηiC

β

=
αηlC

f
+

ηlC

β
. (26)

Based on function (21), we can obtain that

ηf =
f + αβ

γf + αβ
ηl

ηi =
f + αβ

(1 + γ)f + αβ
ηl. (27)

Finally, we can derive from C1, C2, and ηf + ηl +
∑
i∈I

ηi = 1

that

ηl =
1

f+αβ
γf+αβ + J f+αβ

(1+γ)f+αβ + 1
. (28)

206 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 25, NO. 2, APRIL 2023

APPENDIX B
PROOF OF THE CONVEXITY AND ANALYTICAL SOLUTION

OF PROBLEM (18)

Proof of the convexity: Let f(a) represent the objective of
(18) as

f(a) = δ(T τ
n + Ca) + (1− δ)µ

N0

h2
Ca(2

1
aW − 1). (29)

The second-order derivative of f(a) in terms of a can be
written as

f”(a) = (1− δ)µ
N0

h2
C
(ln2)2

a3W 2
2

1
aW . (30)

It is easy to obtain that the second-order derivative is always
positive because a > 0 , and it is also obvious that the
constraints are convex. Hence, f(a) is a convex function, and
problem (18) is a convex optimization problem. The proof is
finished.

Proof of the analytical solution: Because the second order
derivative of f(a) is always positive, the first order derivative
is a monotonously increasing function with a. Moreover, the
first order derivative satisfies lima→+∞ f

′
(a) = δc > 0 and

lima→0 f
′
(a) → −∞ < 0. Therefore, f

′
(a) has and only has

one zero point, which is the unique minum point of f(a). As
a result, the minum value of f(a) is obtained at its minum
point where f

′
(a) = 0. The proof is finished.

REFERENCES

[1] P. Papadimitratos, A. D. La Fortelle, K. Evenssen, R. Brignolo, and
S. Cosenza, “Vehicular communication systems: Enabling technologies,
applications, and future outlook on intelligent transportation,” IEEE
Commun. Mag., vol. 47, no. 11, pp. 84–95, 2009.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tut., vol. 19, no. 4, pp. 2322–2358, 2017.

[3] J. A. Guerrero-ibanez, S. Zeadally, and J. Contreras-Castillo, “Inte-
gration challenges of intelligent transportation systems with connected
vehicle, cloud computing, and Internet of things technologies,” IEEE
Wireless Commun., vol. 22, no. 6, pp. 122–128, 2015.

[4] S. Bitam, A. Mellouk, and S. Zeadally, “‘VANET’-cloud: A generic
cloud computing model for vehicular ad hoc networks,” IEEE Wireless
Commun., vol. 22, no. 1, pp. 96–102, 2015.

[5] F. Spinelli and V. Mancuso, “Toward enabled industrial verticals in 5G:
A survey on MEC-based approaches to provisioning and flexibility,”
IEEE Commun. Surveys Tut., vol. 23, no. 1, pp. 596–630, 2021.

[6] Y. Wu and J. Zheng, “Modeling and analysis of the uplink local delay
in MEC-based VANETs,” IEEE Trans. Veh. Technol., vol. 69, no. 4,
pp. 3538–3549, 2020.

[7] S. Xu et al., “RJCC: Reinforcement-learning-based joint
communicational-and-computational resource allocation mechanism for
smart city IoT,” IEEE Internet Things J., vol. 7, no. 9, pp. 8059–8076,
2020.

[8] D. Sabella et al., “MEC-based infotainment services for smart roads in
5G environments,” in Proc. IEEE VTC, 2020, pp. 1–6.

[9] X. Kong et al., “Deep reinforcement learning-based energy-efficient
edge computing for Internet of vehicles,” IEEE Trans. Ind. Informat.,
vol. 18, no. 9, pp. 6308–6316, 2022.

[10] R. W. L. Coutinho and A. Boukerche, “Modeling and analysis of a
shared edge caching system for connected cars and industrial IoT-based
applications,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 2003–2012,
2020.

[11] S. M. A. Kazmi et al., “Infotainment enabled smart cars: A joint
communication, caching, and computation approach,” IEEE Trans. Veh.
Technol., vol. 68, no. 9, pp. 8408–8420, 2019.

[12] K. Sasaki, N. Suzuki, S. Makido, and A. Nakao, “Vehicle control system
coordinated between cloud and mobile edge computing,” in Proc. IEEE
SICE, 2016, pp. 1122–1127.

[13] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicu-
lar networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956,
2019.

[14] Y. Wang, X. Hu, L. Guo, and Z. Yao, “Research on V2I/V2V hybrid
multi-hop edge computing offloading algorithm in IoV environment,” in
Proc. IEEE ICITE, 2020, pp. 336–340.

[15] C. Chen, Y. Zeng, H. Li, Y. Liu, and S. Wan, “A multi-hop task
offloading decision model in MEC-enabled Internet of vehicles,” IEEE
Internet Things J., p. 1, 2022.

[16] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning enabled task
scheduling for online vehicular edge computing,” IEEE Trans. Mobile
Comput., vol. 21, no. 2, pp. 598–611, 2022.

[17] Y. Li et al., “Joint offloading decision and resource allocation for ve-
hicular fog-edge computing networks: A contract-stackelberg approach,”
IEEE Internet Things J., vol. 9, no. 17, pp. 15 969–15 982, 2022.

[18] S. Olariu, T. Hristov, and G. Yan, “The next paradigm shift: From
vehicular networks to vehicular clouds,” Mobile ad hoc networking:
Cutting edge directions, pp. 645–700, 2013.

[19] D. Han, W. Chen, and Y. Fang, “A dynamic pricing strategy for vehicle
assisted mobile edge computing systems,” IEEE Wireless Commun. Lett.,
vol. 8, no. 2, pp. 420–423, 2019.

[20] H. Wang, Z. Lin, K. Guo, and T. Lv, “Computation offloading based
on game theory in MEC-assisted V2X networks,” in Proc. IEEE ICC
Workshops, 2021, pp. 1–6.

[21] K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang, “Optimal delay
constrained offloading for vehicular edge computing networks,” in Proc.
IEEE ICC, 2017, pp. 1–6.

[22] Z. Xiao et al., “Vehicular task offloading via heat-aware MEC coop-
eration using game-theoretic method,” IEEE Internet Things J., vol. 7,
no. 3, pp. 2038–2052, 2020.

[23] W. Fan, Y. Liu, B. Tang, F. Wu, and Z. Wang, “Computation offloading
based on cooperations of mobile edge computing-enabled base stations,”
IEEE Access, vol. 6, pp. 22 622–22 633, 2018.

[24] M. Qin et al., “Service-oriented energy-latency tradeoff for IoT task par-
tial offloading in MEC-enhanced multi-RAT networks,” IEEE Internet
Things J., vol. 8, no. 3, pp. 1896–1907, 2021.

[25] M. Zeng and V. Fodor, “Parallel processing at the edge in dense wireless
networks,” IEEE Open J. Commun. Soc., vol. 3, pp. 1–14, 2022.

[26] W. Zhang, G. Zhang, and S. Mao, “Joint parallel offloading and load
balancing for cooperative-MEC systems with delay constraints,” IEEE
Trans. Veh. Technol., vol. 71, no. 4, pp. 4249–4263, 2022.

[27] R. Chai, M. Li, T. Yang, and Q. Chen, “Dynamic priority-based com-
putation scheduling and offloading for interdependent tasks: Leveraging
parallel transmission and execution,” IEEE Trans. Veh. Technol., vol. 70,
no. 10, pp. 10970–10985, 2021.

[28] X. Hou et al., “Reliable computation offloading for edge-computing-
enabled software-defined IoV,” IEEE Internet Things J., vol. 7, no. 8,
pp. 7097–7111, 2020.

[29] X. Wang, Z. Ning, and L. Wang, “Offloading in Internet of vehicles:
A fog-enabled real-time traffic management system,” IEEE Trans. Ind.
Informat., vol. 14, no. 10, pp. 4568–4578, 2018.

[30] S. Zhou et al., “Short-term traffic flow prediction of the smart city using
5G internet of vehicles based on edge computing,” IEEE Trans. Intell.
Transp. Syst., pp. 1–10, 2022.

[31] S. D. A. Shah, M. A. Gregory, S. Li, R. d. R. Fontes, and L. Hou,
“SDN-based service mobility management in MEC-enabled 5G and
beyond vehicular networks,” IEEE Internet Things J., vol. 9, no. 15,
pp. 13425–13442, 2022.

[32] J. Wang et al., “Vehicular sensing networks in a smart city: Principles,
technologies and applications,” IEEE Wireless Commun., vol. 25, no. 1,
pp. 122–132, 2018.

[33] J. Wang, C. Jiang, Z. Han, Y. Ren, and L. Hanzo, “Internet of vehicles:
Sensing-aided transportation information collection and diffusion,” IEEE
Trans. Veh. Technol., vol. 67, no. 5, pp. 3813–3825, 2018.

[34] J. Zhang et al., “Energy-latency tradeoff for energy-aware offloading
in mobile edge computing networks,” IEEE Internet Things J., vol. 5,
no. 4, pp. 2633–2645, 2018.

[35] H. Wang, Z. Lin, K. Guo, and T. Lv, “Energy and delay minimization
based on game theory in MEC-assisted vehicular networks,” in Proc.
IEEE ICC Workshops, 2021, pp. 1–6.

[36] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Trans. Veh. Technol., vol. 64, no. 10,
pp. 4738–4755, 2015.

DENG et al.: TASK OFFLOADING BASED ON EDGE COLLABORATION IN ... 207

[37] Y. Wu and J. Zheng, “Modeling and analysis of the downlink local delay
in MEC-based VANETs,” IEEE Trans. Veh. Technol., vol. 69, no. 6,
pp. 6619–6630, 2020.

[38] C. Song et al., “Hierarchical edge cloud enabling network slicing for 5G
optical fronthaul,” J. Opt. Commun. Netw., vol. 11, no. 4, pp. B60–B70,
2019. [Online]. Available: https://opg.optica.org/jocn/abstract.cfm?URI=
jocn-11-4-B60

[39] W. He et al., “Latency minimization for full-duplex mobile-edge com-
puting system,” in Proc. IEEE ICC, 2019, pp. 1–6.

[40] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,” in Proc.
IEEE INFOCOM, 2016, pp. 1–9.

[41] V. Chvatal, et al., Linear programming. Macmillan, 1983.
[42] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut

and complex semidefinite programming,” Mathematical Programming,
vol. 149, no. 1, pp. 47–81, 2015.

Taoyu Deng received the B.S. degree from Univer-
sity of Science and Technology Beijing, in 2019.
He is currently pursuing his M.S degree with the
School of Computer and Communication Engineer-
ing, University of Science and Technology Beijing,
China. His current research interests are mobile edge
computing and Internet of vehicles.

Yueyun Chen is a Professor of Information and
Communication Engineering at University of Sci-
ence and Technology Beijing. She graduated with
a B.S. degree in Radio Technology from South
China University of Technology, and M.S. and Ph.D.
degrees in Communication and Information System
from Beijing Jiaotong University, respectively. Her
research interesting includes wireless mobile com-
munication, AI in wireless communications, radio
signal processing, massive MIMO, wireless net-
works, space information and communication sys-

tems, massive MIMO, MEC, etc.

Guang Chen received the B.S. degree from Uni-
versity of Science and Technology Beijing, in 2018.
He is currently pursuing the Ph.D. degree with the
School of Computer and Communication Engineer-
ing, University of Science and Technology Beijing,
China. His research interests include mobile edge
computing, game theory, convex optimization.

Meijie Yang received the B.S. degrees in Univer-
sity of Science and Technology Beijing, China, in
2016. She is currently pursuing the Ph.D. degree
in University of Science and Technology Beijing,
China. Her research interests are mostly focused on
physical layer, advanced waveforms techniques and
signal processing for 5G systems.

Liping Du Liping Du, received her B.Eng. and
MA.Sc degree from Zhengzhou University, P.R.
China, in 1998 and 2001, and her Ph.D from the
Department of Electrical Engineering, Beijing Insti-
tute of Technology, P.R. China, in 2005. From 2005
to 2006, she worked as a Research Associate in the
Department of Electrical Engineering, City Univer-
sity of Hongkong, Hongkong, under the supervision
of IEEE Fellow Hong Yan. In 2006, she joined the
Department of Communication, University of Sci-
ence and Technology Beijing. From 2014 to 2015,

she visited the CRES Lab of the University of California, Los Angeles. Now
She is currently with the School of Computer & Communication Engineering,
University of Science and Technology Beijing as an associate professor. Her
research interest covers wireless communication, signal processing, cognitive
radio.

