
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS 451

Trust-based Adversary Detection in Edge
Computing Assisted Vehicular Networks
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Abstract—Low-latency requirements of vehicular networks can
be met by installing mobile edge hosts that implement mobile
edge computing in the roadside units (RSUs). Adversaries can,
however, compromise these RSUs and use them to launch cyber
attacks. In this paper, we consider an adversary that selectively
drops packets or selectively corrupts packets between the RSU
and passing vehicles. Such strategies would lead to a higher
number of re-transmissions and thereby increase the latency
of the network, which in turn impacts critical delay-sensitive
applications like collision avoidance, emergency vehicle warning,
etc. We propose to use trust-based detection systems to detect
such an adversary. Each vehicle transmits its uplink and
downlink trust values about every RSU it has interacted with.
These trust values are relayed to the RSU gateway, where the
decision will be made, via the next RSU encountered by a
vehicle. At regular intervals, the gateway aggregates the uplink
and downlink trust values obtained from multiple vehicles. It
compares them against their respective thresholds to classify
the RSU as benign or malicious. We also consider the presence
of malicious vehicles trying to deceive the detection system by
reporting false trust values. A detection mechanism is proposed
to detect such vehicles. Simulation results generated using
MATLAB are presented to demonstrate the performance of the
proposed detection mechanisms and the impact of the adversary’s
parameters on the detection systems.

Index Terms—Malicious road side unit, least squares, trust,
vehicular networks.

I. INTRODUCTION

VEHICULAR networks (VNETs) are fast emerging
and prominent technologies for realizing safe and

efficient transportation systems. There are mainly two
types of channels equipped in VNETS; vehicle-to-vehicle
communication (V2VC) and vehicle-to-roadside unit (or
infrastructure) communication (V2IC). With V2VC and V2IC,
real-time information exchange among vehicles and between
vehicles and central control systems are enabled, which in
turn enables a host of safety, navigational, and infotainment
enhancements. Among these, road safety and traffic efficiency
applications have the strictest requirements in terms of data
quality, latency, and communication reliability. Time-sensitive
applications must operate with a communication latency of
less than 50 ms [1]. To ensure reliability and low latency,
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mobile edge computing (MEC) is a potential solution [2],
[3] as it provides computing services in close proximity to
vehicles that need them. In VNETS, MEC can be realized
by installing mobile edge hosts (MEHs) on the roadside
units (RSUs) or locating the MEHs physically close to the
RSUs. Vehicles offload their resource-intensive operations
onto these MEHs and run applications on multiple platforms.
Many factors influence MEC server deployment, including
scalability, physical deployment limits, and/or performance
standards (e.g., delay). There have been limited work in the
literature that address these issues [4]. Mostly the authors have
focused on finding a trade-off between installation costs and
QoS measured in terms of latency.

VNETs are vulnerable to various attacks that compromise
availability, confidentiality, integrity, and authenticity.
Researchers have proposed many methods to overcome attacks
like Sybil attack, Bogus information attack, wormhole, denial
of service (DoS), etc. [5], [6] that originate from compromised
vehicles and primarily affect V2VC. All these attacks can be
countered with high reliability using the methods previously
proposed [7], [8]. Therefore, attacks affecting V2VC are not
addressed in this paper.

The attacks on the wireless link between a vehicle and
an RSU in a VNET are similar to the attacks on the link
between a Mobile and a base station in mobile networks.
Attacks that affect such links like jamming, eavesdropping,
rogue base stations, etc., have already been addressed.
However, RSUs are not as secure as base stations in
mobile networks. Edge data centers generally include legacy
edge devices or are composed of microservers with limited
connectivity. Therefore, authentication protocols may not be
easily implemented and it may then be easier for an adversary
to launch attacks. Adversaries, in such cases, can launch
attacks like privacy leakage, physical damage, rogue data
center, channel degradation, service manipulation, etc.

A. Related Work

This section presents those attacks that can affect V2IC
and are well investigated in the literature. There are mainly
two sources of attack, i.e., the vehicle and the RSU. Attacks
that can be launched by the vehicle are similar to V2VC
attacks and have been extensively explored [9]–[11]. In this
section, we mainly focus on detection mechanisms for attacks
launched by a compromised RSU. To defend the network from
attacks like man in the middle and eavesdropping, authors
in [12] presented a protocol for mutual authentication between
the provider and the consumer. Rogue mobile edges can be
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detected using the detection systems provided in [13]. The
round trip time of a packet exchanged between the user and
the DNS server is used to detect the rogue nodes. In [14],
the authors proposed Wi-Fi malicious rogue access point
finder (RAF) to detect the presence of rogue nodes. RAF can
be installed on any device without any special requirement.
RAF detects the existence of a malicious rogue access
point (AP) based on different reverse traceroute information,
i.e., the set of IPs of the devices traversed by the packet. A
remote server collects this information. The authors presume
that the packet’s route will be different, but the adversary may
likely match the path of the packet.

Authors in [15] present a mechanism to detect the presence
of powerful hardware-based rogue access points (PrAPs).
The detection algorithm uses a dedicated device called
PrAP-Hunter and is based on intentional channel interference.
The detection algorithm requires additional devices to be
deployed and may be a viable option for large networks.
To address the issue of a rogue node, a discrete event
system (DES) based detection system is proposed in [16].
The detector proposed is a state estimator that keeps track
of the system using events and alerts if the system moves
into an attack state. In [17], the authors proposed an evil twin
detection and mitigation framework called “EvilScout”. The
framework utilizes the information of the IP prefix distribution
by the Legitimate AP. However, the performance of the
above two detection systems is limited by the data available.
Another major attack that could disrupt the communication
between the vehicles and the edge servers is jamming the
wireless channel. The authors in [18] introduce two algorithms
for countering stochastic jamming and adversarial jamming.
Malicious cloudlets present in LTE networks can be detected
using the reputation-based trust management system presented
in [19]. The system limits the effect of dishonest ratings and
prevents cloudlets from modifying the ratings from mobile
users.

In our previous work in [20], [21], we considered only
an adversarial RSU that corrupts packets to be forwarded to
the vehicles (i.e., downlink packets are maliciously dropped).
We proposed a trust-based intrusion detection system (IDS)
to detect the adversary. With trust values obtained using
the estimated attack probability that was obtained using
maximum likelihood estimation (MLE). Since we could not
get closed-form expressions for the estimate, we used the
weighted least square approach to obtain the same in this
paper. Using the Neyman-Fischer factorization theorem, we
also prove that the statistics used for obtaining the downlink
trust value are sufficient. Also, bounds on the mean and
variance of the estimated downlink attack probability are
presented. This paper additionally presents a detection system
to identify an adversarial RSU that drops uplink packets. With
this feature, our method defends against an attacker using the
RSU to attack only the uplink or the downlink or both.

B. Our Contribution

In this paper, we consider that the adversary has obtained
root access to an RSU and is disrupting the communication

between the RSU and the vehicles. The adversary considered
in this paper mimics a bad radio channel between the vehicles
and the RSU. Therefore, the adversary can successfully
increase the computation and communication latencies by
launching such an attack and creating a substantial additional
delay in the network. This mainly affects delay-sensitive
applications and also leads to wastage of edge computing
resources. In this paper, we introduce a trust-based IDS for
such attacks. The key novelty behind the IDSs proposed in
this paper is the use of the measured packet drop rate (on
the downlink) and packet retransmission rate (on the uplink)
between vehicles and RSUs. The downlink IDS relies on
vehicles recording the wireless channel quality in terms of
packet drop rate. The uplink IDS relies on vehicles recording
the packet retransmission rate. We also present a mechanism to
detect the presence of any malicious vehicles trying to deceive
the detection systems into falsely classifying an RSU. For
example, vehicles can report low trust values about benign
RSUs and make the detection system classify the benign RSU
as malicious.

C. Organization

The rest of the paper is organized as follows. In Section II,
the network and the adversary models are described.
Section III presents the downlink detection system and obtains
sufficient statistics and bounds on the mean and variance of
the downlink attack probability. We also present a mechanism
to detect malicious vehicles that are trying to deceive the IDS.
In Section IV, we present the uplink detection system and a
mechanism to detect malicious vehicles. In Section V, results
are presented to demonstrate the performance of the proposed
detection algorithms. Finally, in Section VI, we conclude our
paper and provide some directions for future work.

II. SYSTEM MODEL

A. Network Model

A vehicular network with the hierarchical architecture
indicated in Fig. 1 is considered. The vehicles in the
network are denoted using Vj , j ∈ {1, 2, · · ·}. The roadside
units (RSUs) are denoted using Ri, i ∈ {1, 2, · · ·}. The RSUs
are further connected to RSU gateways (RSUGs). Each RSU
is connected to only one RSUG. Also, at a given instant, a
vehicle Vj is connected to only one RSU. When the vehicle
moves away from a previously connected RSU, say Ri, it
connects to a new RSU, say Rk, which provides better signal
to noise ratio (SNR) than Ri. Each RSU is equipped with a
Mobile Edge host that enables MEC. Such a model is proposed
in both IEEE 802.11 and 5G cellular networks [3]. There will
be a non-zero probability of decoding a packet in error for any
given network in normal operation due to various network
imperfections. Packet errors occur on both the uplink and
downlink. We assume a retransmission protocol is used in
both links, i.e., every dropped packet is retransmitted until
successfully received, or the communication is timed out.

A corrupted packet can be detected at the receiver using the
cyclic redundancy check (CRC) code embedded in the MAC
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Fig. 1. Network model illustration.

layer payload. Due to mobility, the natural PDP1 of packets
transmitted between the same RSU-vehicle pair at different
times may differ significantly. The proposed algorithm requires
the natural PDP to be known or estimated. To estimate the
packet drop probability of every downlink packet received
by the vehicle, we can assume that a vehicle has access
to a signal quality indicator. There are three quantities that
can be measured at a receiver which strongly correlates with
PDP: Signal to noise ratio, link quality indicator (LQI), and
received signal strength indicator (RSSI). RSSI provides the
signal strength of the received packet. When there are no
transmissions, the RSSI is equal to the noise floor. SNR
is typically given by the difference in decibel between the
pure (i.e., without noise) received signal strength and the noise
floor. LQI is measured based on the first eight symbols of the
received packet as a score ranging from 50 to 110 (higher
values are better). These three measures are related, but SNR
is known to be the best indicator for characterizing the quality
of the link [22]. In this paper, the SNR will be used by
the vehicles to obtain the PDP of the downlink packets. For
the uplink packets, such signal quality indicators cannot be
assumed to be known by the vehicle.

B. Adversary Model

We assume that the adversary that has compromised one
or more RSUs disrupts the communication between vehicles
and the RSUs. The adversary can launch many attacks that
impact message security, quality of service, etc., using the
compromised RSU. Attacks that compromise message security
by eavesdropping, stealing credentials, etc., can be taken
care of using cryptography. Attacks that focus on service
interruption, e.g., jamming, black hole, selective forwarding,
etc., have been thoroughly explored and can be countered
using already proposed detection systems in the literature [12],
[13], [18], [19]. These attacks can be detected with high
reliability and therefore are not addressed in this paper. The
adversary considered in this paper implements the following
strategies:

1) On the downlink, the compromised RSU, say Ri,
selectively modifies a packet to be transmitted to the
vehicle Vj with a probability that is unknown and denoted
by δdij . The adversary can achieve this by flipping some
of the bits of the physical layer payload and/or corrupting

1Packet drop probability in the absence of attack.

the channel pilots used for channel estimation and
equalization. When the vehicle receives such a packet,
it will be dropped because the CRC check failed, and a
request for re-transmission will be sent.

2) On the uplink, the compromised RSU, say Ri, selectively
drops a packet received from a vehicle Vj with a
probability that is unknown and denoted by δuij . Then, the
adversary deliberately makes the vehicle re-transmit the
dropped packet by sending a negative acknowledgment.

The increased packet transmission delay disrupts
time-sensitive services, leading to possibly severe safety
consequences. Also, this increases the number of simultaneous
transmissions, increasing the number of packet collisions and
resulting in an effective radio range reduction. Applications
where delay and network availability are significant factors
like road safety, traffic efficiency, etc., can get severely
affected. Such attacks are difficult to detect because they
mimic a poor radio channel.

C. Packet Drop Probabilities

Firstly, we calculate the PDP of the downlink packets in the
presence of attack given the PDP in the absence of attack. For
every kth packet k ∈ {1, 2, · · ·}, sent by Ri and received by
vehicle Vj , the PDP of the kth packet is estimated as follows:

1) Firstly the SNR of the packet is estimated and the
corresponding symbol error rate sdij,k is obtained using
standard models [23].

2) The packet is dropped when at least one symbol is
received in error. Therefore the PDP, using the obtained
symbol error rate, is estimated as:

αd
ij,k = 1− (1− sdij,k)

m, (1)

where m is the number of symbols present in a packet.
In the event of an attack, a packet drop is either due to poor

channel conditions or due to the RSU’s misbehavior. When
the RSU misbehaves, a packet drop occurs for sure. When
the RSU chooses not to corrupt the packet, the packet drop
occurs due to the poor channel conditions. More precisely, in
the presence of attack, the PDP of the kth packet increases to

βd
ij,k = δdij + (1− δdij)α

d
ij,k, (2)

where δdij is the attack probability on each packet. In the
absence of the attack, βd

ij,k = αd
ij,k i.e., δdij is equal to zero.

For the uplink case, the PDP in the absence of the attack
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cannot be estimated by the vehicle since the SNR of the packet
received by the RSU is not accessible to the vehicle. However
the relation between the PDPs in the presence and absence of
attack is similar to (2) i.e.,

βu
ij,k = δuij + (1− δuij)α

u
ij,k, (3)

where βu
ij,k is the PDP of the kth packet in the presence of

attack, αu
ij,k is the PDP of the kth packet in the absence of

attack and δuij is the attack probability. Similar to the downlink
case, in the absence of the attack, βu

ij,k = αu
ij,k i.e., δuij is equal

to zero.

D. Intrusion Detection System

We propose to implement trust-based Intrusion Detection
Systems for detecting adversaries executing the attacks in
Section II-B. Trust-based detection systems that have been
proposed in the recent literature are attractive methods to
deal with security threats in highly distributed and dynamic
scenarios. This methodology is adopted in the VNET scenario
precisely for this reason. The detection algorithm is divided
into three phases that are listed below:

1) Trust calculation: The individual vehicle’s trust level
towards the RSU will be calculated at the vehicle’s
end. The trust value, for downlink packets, calculated by
vehicle Vj for RSU Ri is denoted by Θd

ij . For the case
of uplink packets, the trust value is represented by Θu

ij .
These trust values will be relayed to the RSU Gateway
via an RSU other than Ri.

2) Trust aggregation: At regular intervals, the trust values
obtained from all the vehicles towards a given RSU will
be combined (at the RSU Gateway) to get an aggregated
trust value for that RSU. The aggregated trust value, for
downlink, for Ri is denoted by Θd

i and for uplink is
represented by Θu

i .
3) Adversary detection: Once the aggregated trusts are

available, they are compared against thresholds, Γu for
uplink and Γd for downlink, to detect the adversary’s
presence.

In this paper, we also consider that a small percentage of
vehicles can be malicious. Malicious vehicles are those that
try to trick the detecting system into labeling a benign RSU as
malicious or vice versa. Using the aggregated and individual
trust values of different RSUs, we estimate a similarity metric
that will be used to identify the presence of malicious vehicles.

III. DOWNLINK INTRUSION DETECTION SYSTEM

In this section, we present the detection system for attacks
on downlink packets. The detection algorithm, for RSU Ri,
based on the feedback from a set of vehicles Vi, is presented.

A. Individual Trust Evaluation

In this section, we compute Θd
ij , vehicle Vj’s individual

trust value for RSU Ri. Unfortunately trust as a concept has no
universally accepted definition. The trust value must somehow
dynamically reflect the behavior of the RSU. Therefore, we

TABLE I
LIST OF SYMBOLS USED IN THE PAPER.

Symbol Description

αd
ij,k PDP of the kth downlink packet in the absence of attack

βd
ij,k PDP of the kth downlink packet in the presence of attack

αu
ij,k PDP of the kth uplink packet in the absence of attack

βu
ij,k PDP of the kth uplink packet in the presence of attack

δdij Downlink attack probability of Ri for Vj

δuij Uplink attack probability of Ri for Vj

Θd
ij Vj ’s individual downlink trust value for Ri

Θu
ij Vj ’s individual uplink trust value for Ri

Θd
i Aggregated downlink trust value of Ri

Θu
i Aggregated uplink trust value of Ri

Γd Threshold for downlink IDS

Γu Threshold for uplink IDS

Bd
ij,k Denotes whether kth downlink packet is dropped ot not

Bu
ij,k Denotes whether kth uplink packet is dropped ot not

wd
ij Weight of Vj ’s individual downlink trust value

wu
ij Weight of Vj ’s individual uplink trust value

δ̂dij Estimated value of δdij
µd
ij Mean of δ̂dij

σd
ij Standard Deviation of δ̂dij

pij Uplink packet retransmission rate of Vj

ρdj Downlink similarity measure of Vj

γd
j Downlink threshold to detect malicious vehicles

ρuj Uplink similarity measure of Vj

γu
j Uplink threshold to detect malicious vehicles

Nd
ij Number of packets transmitted on the link Ri → Vj

Nu
ij Number of packets transmitted on the link Vj → Ri

adopt the following definition of trust based on the attack
probability δdij . Since this is an unknown parameter, we need to
obtain the estimated value, denoted by δ̂dij , using the following
proposed method:

1) We first introduce the variable Bd
ij,k, defined as follows. If

the kth packet, transmitted by Ri, is received successfully
by Vj , then Bd

ij,k = 0, otherwise Bd
ij,k = 1. Given that

there are only two outcomes, we can assume that Bd
ij,k

follows Bernoulli distribution and define the probability
mass function (PMF) of Bd

ij,k as follows:

P (Bd
ij,k = b; δdij) = (βd

ij,k)
b (1− βd

ij,k)
(1−b), (4)

for b ∈ {0, 1}, where βd
ij,k was defined in (2). The

expected value of Bd
ij,k, for a given δdij , is βd

ij,k.
2) Using the weighted least squares approach [24], we obtain

an estimate of δdij by minimizing

J(δdij) =

Nd
ij∑

k=1

wd
ij,k (Bd

ij,k − βd
ij,k)

2, (5)

where wd
ij,k are the weights and Nd

ij is the total number
of packets transmitted by Ri to Vj . The weights are
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chosen such that the contributions of reliable samples2

are emphasized. The weight wd
ij,k is defined as

wd
ij,k =

1

(αd
ij,k)(1− αd

ij,k)
,∀k. (6)

By equating the first derivative of (5) with respect to δij
to zero, we obtain

δ̂dij = max (0, δ′ij), (7)

where

δ′ij =

∑Nd
ij

k=1

(
Bd

ij,k

αd
ij,k

− 1

)
∑Nd

ij

k=1

(
1

αd
ij,k

− 1
) . (8)

3) Using the obtained δ̂dij , we now define

Θd
ij = 1− δ̂dij . (9)

B. Estimated Attack Probability: Mean and Variance

Given the expression in (7), estimating the mean µd
ij and

variance (σd
ij)

2 of δ̂dij is difficult. In this section we calculate
bounds on both the mean and variance, for a given δdij .
From (7), the following can be established.

δ′ij ≤ δ̂dij ⇒ E[δ′ij ] ≤ E[δ̂dij ] (10)

δ′ij
2 ≥ (δ̂dij)

2 ⇒ E[δ′ij
2
] ≥ E[(δ̂dij)

2] (11)

E[x] refers to the expected value of the random variable x.
Using these, the following can be inferred:

E[(δ̂dij)
2]− (E[δ̂dij ])

2 ≤ E[δ′ij
2
]− (E[δ′ij ])

2. (12)

The variable δ′ij is a weighted sum of independent Bernoulli
variables. Therefore, the expectation of δ′ij is the weighted
sum of the mean of each Bernoulli variable i.e.,

E[δ′ij ] =
1∑Nd

ij

k=1

(
1

αd
ij,k

− 1
) Nd

ij∑
k=1

(
E[Bd

ij,k]

αd
ij,k

− 1

)

=
1∑Nd

ij

k=1

(
1

αd
ij,k

− 1
) Nd

ij∑
k=1

(
βd
ij,k

αd
ij,k

− 1

)
. (13)

The variance of δ′ij is calculated as:

V [δ′ij ] =

 1∑Nd
ij

k=1

(
1

αd
ij,k

− 1
)


2
Nd

ij∑
k=1

V [Bd
ij,k]

(αd
ij,k)

2

=

 1∑Nd
ij

k=1

(
1

αd
ij,k

− 1
)


2
Nd

ij∑
k=1

(βd
ij,k)(1− βd

ij,k)

(αd
ij,k)

2
,

(14)

2Defined as those channels with small variance of Bd
ij,k .

where V [x] denotes the variance of the random variable x.
Using (13) and (14), the lower bound on the mean and the
upper bound on the variance of δ̂dij can be derived as

µd
ij ≥ δdij , (15)

(σd
ij)

2 ≤
(δdij)(1− δdij)(∑Nd
ij

k=1

(
1

αd
ij,k

− 1
))2

Nd
ij∑

k=1

(
1

αd
ij,k

− 1

)2

+
1− δdij∑Nd

ij

k=1

(
1

αd
ij,k

− 1
) . (16)

The variance decreases as we increase the attack probability.
Therefore, for a higher δdij , a more accurate estimate can be
expected.

C. Sufficient Statistics

We now obtain the sufficient statistics required for
estimating the attack probability δdij . For this, we need the
joint distribution of the variables Bd

ij,k, k ∈ {1, 2, · · ·, Nd
ij}.

The packet transmissions between Ri and Vj occur over a
highly mobile wireless channel. Therefore, we can assume
that the packet drop events for two separate packets are
independent. Hence, the joint probability distribution of the
variables Bd

ij,k, k ∈ {1, 2, · · ·, Nd
ij} is given by the product of

their individual probability distributions, as shown below.

P (Bd
ij = bdij ; δ

d
ij) =

Nd
ij∏

k=1

(βd
ij,k)

bdij,k (1−βd
ij,k)

(1−bdij,k), (17)

where Bd
ij = {Bd

ij,1, B
d
ij,2, · · ·, Bd

ij,Nd
ij
}, bdij =

{bdij,1, bdij,2, · · ·, bdij,Nd
ij
} and Nd

ij is the total number of
packets received by the vehicle Vj from RSU Ri. Note that
the joint PDF can be factorized as

P (Bd
ij = bdij ; δ

d
ij) =g(T1(b

d
ij), T2(b

d
ij), · · ·, TNd

ij
(bdij))

× h(bdij), (18)

where the functions G ≜ g(T1(b
d
ij), · · ·, TNd

ij
(bdij)),

T1(b
d
ij), · · ·, TNd

ij
(bdij) and h(bdij) are defined below.

G =

Nd
ij∏

k=1

(1− βd
ij,k)

(
βd
ij,k

1− βd
ij,k

)Tk(b
d
ij)

(19)

Tk(b
d
ij) = bdij,k,∀k (20)

h(bdij) = 1 (21)

Therefore, using the Neyman-Fischer factorization theorem,
bdij,k, k ∈ {1, · · ·, Nij} are jointly sufficient statistics for the
attack probability δdij and hence sufficient for the trust value
Θd

ij . Our estimate of δdij in (8) is thus based on jointly
sufficient statistics.
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D. Trust Aggregation and Detection Algorithm

We refer to aggregation as a process of combining the
trust values reported by different vehicles. Aggregating these
trust values reduces the uncertainty of the detection system.
maximum, minimum, average, and weighted sum are
the most widely used aggregation operators [25]. Due to
the estimation errors in computing δ̂dij , the trust values
computed by vehicles for a malicious RSU can be high even
in the presence of an attack. Therefore, if the maximum
aggregation operator is used, the detection system would result
in classifying a malicious RSU as benign with a non-negligible
probability. Similarly, in the absence of an attack, due to
the erroneously obtained δ̂dij , the trust values computed for
a benign RSU can be smaller. Therefore, if the minimum
aggregation operator is used, the detection system would result
in classifying a benign RSU as malicious with a non-negligible
probability. The reliability of each vehicle’s computed trust
value depends on the number of packets they observe. As
different vehicles may receive different numbers of packets
average aggregation will not be appropriate. Therefore a
weighted sum, with weights based on the number of packets
received, is proposed to obtain the aggregated trust value.
Using the individual trust values reported by the vehicles
Vj , j ∈ Vi, the aggregated trust value Θd

i is defined as

Θd
i =

∑
j∈Vi

ωd
ijΘ

d
ij , (22)

where ωd
ij is the weight given to the trust value computed

by vehicle Vj , j ∈ Vi. The accuracy of estimated attack
probability increases with the number of packets Nd

ij .
Therefore the weights are assigned in proportion to the number
of packets Nd

ij , i.e., the number of packets transmitted from
Ri to Vj .

ωd
ij =

Nd
ij∑

j∈Vi
Nd

ij

(23)

With the aggregated trust available, the detection system
decides that RSU Ri is malicious on the downlink if

Θd
i ≤ Γd. (24)

The expression for the aggregated trust is

Θd
i =

∑
j∈Vi

ωd
ij

1−max

0,

∑Nd
ij

k=1

Bd
ij,k

αd
ij,k

−Nd
ij∑Nd

ij

k=1
1

αd
ij,k

−Nd
ij


 . (25)

It can be seen that obtaining the distribution of Θd
i is

not trivial. Exact analytical expressions for the performance
characteristics, i.e., false alarm and missed detection
probabilities, are therefore unavailable. So, we propose to
obtain the threshold value heuristically. Let us say that the
estimate of attack probabilities, i.e., {δ̂ij , j ∈ Vi}, in the
absence of attack is mostly less than ϵd. Hence, the minimum
accepted individual trust values computed from (9) will be
equal to (1 − ϵd). This implies that the accepted aggregated
trust will be (1− ϵd), and hence we assign it as the threshold
value.

IV. UPLINK INTRUSION DETECTION SYSTEM

In this section, we present the detection system for attacks
on uplink traffic. The detection algorithm, for RSU Ri, based
on the feedback from a set of vehicles Vi, is presented.
Unlike downlink packets, we cannot assume that the uplink
packets’ packet retransmission rate (PRR) will be accessible
to the vehicles. Hence the detection system proposed in (24)
cannot be modified like in [20] to identify the malicious RSU.
Therefore, we first find sufficient statistics for estimating the
attack probability δuij and use them for obtaining the trust value
using fuzzy logic.

A. Sufficient Statistics

We first introduce the variable Bu
ij,k, defined as follows. If

the kth packet, transmitted by RSU Ri, is received successfully
by Vj , then Bu

ij,k = 0, otherwise Bu
ij,k = 1. The probability

distribution function (PDF) of Bu
ij,k is

P (Bu
ij,k = b; δuij) = (βu

ij,k)
b (1− βu

ij,k)
(1−b), (26)

for b ∈ {0, 1}. The joint probability distribution of
the variables Bu

ij,k, k ∈ {1, 2, · · ·, Nu
ij}. Since the packet

transmissions between Ri and Vj occur over a highly mobile
wireless channel, we can assume that the event of the k1th
packet (k1 ∈ {1, 2, · · ·, Nu

ij}) being dropped is independent
of k2th packet (k2 ∈ {1, · · ·, k1 − 1, k1 + 1, · · ·, Nu

ij})
being dropped. Hence, the joint probability distribution of the
variables Bu

ij,k, k ∈ {1, 2, · · ·, Nu
ij} is given by the product of

their individual probability distributions, as shown below:

P (Bu
ij = buij ; δ

u
ij) =

Nu
ij∏

k=1

(βu
ij,k)

buij,k (1−βu
ij,k)

(1−buij,k), (27)

where Bu
ij = {Bu

ij,1, B
u
ij,2, · · ·, Bu

ij,Nu
ij
}, buij =

{buij,1, buij,2, · · ·, buij,Nu
ij
} and Nu

ij is the total number of
packets received by the vehicle Vj from RSU Ri. The joint
PDF, similar to the downlink case, can be factorized as

P (Bu
ij = buij ; δ

d
ij) =g(T1(b

u
ij), T2(b

u
ij), · · ·, TNu

ij
(buij))

× h(buij), (28)

where the functions G ≜ g(T1(b
u
ij), · · ·, TNu

ij
(buij)),

T1(b
u
ij), · · ·, TNu

ij
(buij) and h(buij) are defined as

G =

Nu
ij∏

k=1

(1− βu
ij,k)

(
βu
ij,k

1− βu
ij,k

)Tk(b
u
ij)

, (29)

Tk(b
u
ij) = buij,k,∀k, (30)

h(buij) = 1. (31)

Therefore, using Neyman-Fischer factorization theorem, the
statistics T1(b

u
ij), T2(b

u
ij), · · ·, TNu

ij
(buij) are jointly sufficient

statistics for the attack probability δuij and hence sufficient for
constructing the trust value Θu

ij .
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B. Individual Trust Evaluation

We compute the vehicle Vj’s individual trust value i.e., Θu
ij

for RSU Ri. We propose to obtain the trust values using fuzzy
logic based on the following rules:

1) For low values of packet retransmission rate, we
can assume that the probability of an attack being
implemented is low and therefore assign high trust values.
Specifically, if the packet retransmission rate is equal to
zero, the trust value equals one.

2) We can suppose that the possibility of an attack being
carried out is high when the packet retransmission rate
is high and hence assign low trust levels. Specifically, if
the packet retransmission rate is equal to one, the trust
value equals zero.

3) When the packet retransmission rate is moderate, the
uncertainty in determining the presence of an attack is
high. Therefore, we assign average trust values.

We follow the below procedure to obtain the trust values.
1) We use the variables Bu

ij,k, k ∈ {1, 2, · · ·, Nu
ij} to

calculate the average packet retransmission rate, denoted
by pij . The PRR is calculated as the ratio of packets
retransmitted to the total number of packets transmitted.
The PRR is calculated as follows:

pij =

∑Nu
ij

j=1 B
u
ij,k

Nu
ij

, (32)

where Nu
ij is the number of packets forwarded by Vj .

2) We use the sigmoid function [26] to generate the trust
values. Using the obtained pij , we now define

Θu
ij =

1 + exp(2)

1 + exp( 2
1−pij

)
. (33)

It can be seen that the expression for the trust satisfies
the rules stated previously.

C. Trust Aggregation and Detection Algorithm

Similar to the aggregation mechanism followed in (22), we
use weighted sum to obtain the aggregated trust value Θu

i

which is defined as

Θu
i =

∑
j∈Vi

ωu
ijΘ

u
ij , (34)

where ωu
ij is the weight of the vehicle Vj , j ∈ Vi and Θu

ij , j ∈
Vi are the individual trust values reported by the vehicles. The
accuracy of the PRR of vehicle Vj increases with an increasing
number of packets Nu

ij implying that the uplink trust value can
be estimated with better accuracy. As a result, the weights are
proportional to the number of packets Nu

ij , i.e., the number of
packets sent from Vj to Ri.

ωu
ij =

Nu
ij∑M

j=1 N
u
ij

(35)

Using the aggregated trust in (34), the detection system decides
the presence of the attack if

Θu
i =

∑
j∈Vi

ωu
ij

(
1 + exp(2)

1 + exp( −2
pij−1 )

)
≤ Γu

i . (36)

Fig. 2. Real-life traffic scenario.

Obtaining the expressions for false alarm and missed detection
probabilities is difficult since they would depend on many
unknown variables (i.e., {αu

ij,k,∀k, j ∈ Vi} and {δuij , j ∈
Vi}). We therefore heuristically obtain the threshold value.
In the absence of attack, the acceptable maximum PRRs
i.e., {pij , j ∈ Vi} is equal to ϵu. Hence, the minimum
individual trust values computed from (33) will be equal
to exp (−2ϵu/(1− ϵu)). This implies that the minimum
aggregated trust will be exp (−2ϵu/(1− ϵu)) and hence we
assign it as the threshold value.

V. RSU DETECTION DELAY

Let’s say the proposed algorithm evaluates the network
for every MF number of vehicles leave the network. Since
each vehicle transmits one feedback packet, the total number
of feedback packets are also equal to MF . Therefore, there
will be a delay in identifying the compromised RSU. To
analyze the same, we used urban mobility (SUMO) simulation
package with OSMWebWizard. Consider a part of the region
of the National University of Singapore, shown in Fig. 2 with
vehicles and buses moving with no pause. The vehicle density
can be increased by increasing the value of the parameter
“Number of vehicles per km per hour” available in the SUMO
simulator. The average time taken by the algorithm to detect
a compromised RSU for different vehicular densities for the
network in Fig. 2 is presented in Fig. 3. It can be seen that
the time taken to detect a malicious RSU is high when the
vehicle density is high. Also, a higher number of vehicles
in decision-making improves the accuracy of the detection
algorithm. However, it takes more time to make the decision.

VI. MALICIOUS VEHICLE IDENTIFICATION

In this section, the detection mechanism for identifying
the malicious vehicles reporting false feedback is explained
in detail. The objective of these vehicles is to deceive the
detection system into classifying a benign RSU as malicious
or vice versa. For example, let us say a malicious vehicle Vj is
trying to influence the IDS into classifying a benign RSU Ri

as malicious. To make it appear as if the attack probability of
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Fig. 3. Average time taken for the detection algorithm to identify the corrupt
RSU.

Ri equal to δv > 0, the vehicle Vj generates the trust values
as follows:

1) Downlink trust value: When the kth packet is received
by the vehicle, irrespective of whether it is in error or
not, the value of Bd

ij,k is decided using a Bernoulli
distribution with probability δv . Therefore, the packet
drop rate observed would be equal to δv , and the trust
according to 9 will be equal to 1− δv .

2) Uplink trust value: When the kth packet is transmitted,
irrespective of whether it is received by the RSU or not,
the value of Bu

ij,k is decided using a Bernoulli distribution
with probability δv . Therefore, the packet retransmission
rate observed would be equal to δv and the trust according
to (33) will be equal to 1+exp(2)

1+exp( 2
1−δv

)
.

If the vehicle wants to influence the IDS into classifying a
malicious RSU as benign, then the vehicle relays very high
trust values despite the RSU’s behavior. Such vehicles need to
be identified since they can have a significant impact on the
IDS. Firstly, we focus on the vehicles affecting the downlink
detection algorithm. The key observation used is that there
will be a huge gap between trust values reported by the
malicious vehicles and the trust values of the RSUs. This
implies that the distance between Ld = {Θd

1, · · ·,Θd
K} and

Ld
j = {Θd

1j , · · ·,Θd
Kj} will be large if Vj is giving false

feedback. We, therefore, need a metric that can calculate
the similarity between Ld

j and Ld. One possible metric is
the Gaussian kernel similarity measure [27]. For Vj , it is
calculated as:

ρdj = exp(−
∥∥Ld − Ld

j

∥∥2). (37)

The value of ρdj computed in (37) is now compared to a preset
threshold γd

j to decide whether Vj is malicious or not, i.e., we
decide that the (downlink) trust is false if and only if

ρdj ≤ γd
j . (38)

The detection for the uplink case is similar to the downlink,
i.e., we decide the (uplink) feedback is false if and only if

ρuj ≤ γu
j , (39)

where ρuj = exp(−
∥∥Lu − Lu

j

∥∥2), Lu = {Θu
1 , · · ·,Θu

K} and
Lu
j = {Θu

1j , · · ·,Θu
Kj}.

VII. SIMULATION RESULTS

We present results to demonstrate the following in this
section. The results were generated using MATLAB. The
results were generated using the vehicle model illustrated in
Fig. 4. The length of the road considered is 300 meters, and
the RSU R1 is placed at its midpoint. The road is divided into
600 slots, and therefore the distance between the RSU and a
vehicle present in the U th slot is given by |U−300|/2. In every
time slot, the vehicle moves one slot. For every 30 time slots, a
new vehicle arrives into the 1st slot and connects to R1. Once a
vehicle moves out of the 600th slot, it loses its connection with
R1. Hence, at any time, there are 20 vehicles on the road. In
every time slot, using a uniform distribution in MATLAB, we
decide which vehicle is transmitting. At the maximum, only
one packet is transmitted in a single time slot. The path loss
model in [28] is used where L0 = −47 dB and x = −3. The
transmit power is 20 dBm and the noise variance (additive)
is −100 dBm. The PDP is calculated using the symbol rate
expressions in [23]. The expressions for 16 QAM transmission
in Rayleigh fading channels are used for the same.

A. Downlink IDS - Estimated Attack Probability

To demonstrate that the mean of the least square estimate,
of vehicle V6, is close to its actual value, i.e., δ̂d16 is close to
δd16, we ran the following steps:

1) For a given value of δd16 ≜ δ, we determine the number
of packets dropped for the vehicle V6.

2) We then calculate the value of δ̂d16 using (7).
3) The simulated values obtained over 105 Monte Carlo

simulations are averaged for each value of δ. The obtained
averages are shown in Fig. 5. The average value is
denoted using δ̂.

It can be seen from Fig. 5 that the average estimated value is
almost equal to the actual value in all the cases.

B. Performance Characteristics

The performance of IDSs are generally characterized using
false alarm and missed detection probabilities. The probability
that the detection system decides that a malicious RSU is
authentic is referred to as missed detection probability, and
the probability that a benign RSU is classified as malicious is
called false alarm probability i.e.,

P k
MD,i = P (

∑
j∈Vi

ωd
ijΘ

k
ij > Γk;

∑
j∈Vi

δkij > 0), (40)

P k
FA,i = P (

∑
j∈Vi

ωd
ijΘ

k
ij ≤ Γk; δ

k
ij = 0, j ∈ Vi), (41)

for k ∈ {u, d}. We ran the following steps, over 106 Monte
Carlo simulations, to obtain the performance characteristics of
the downlink IDS:

1) We set up the network such that δd1j = 0 ∀j.
2) In each iteration, M1 vehicles obtain their respective

individual trust value for R1. We then calculate the
aggregated trust value using these individual trust values.
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Fig. 4. Simulation model.
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Fig. 5. Mean of the least square estimate.

3) We then compared the above obtained aggregated trust
value to a set of pre-defined threshold values to decide
about the attack.

The simulated P d
FA values are obtained by averaging over

106 Monte Carlo simulations. To obtain the simulated P d
MD

values, we set up the network such that δd1j = δ ∀j and
follow the above approach. The results obtained for different
values of M1 and δ are plotted in Fig. 6. It can be seen from
Fig. 6(a) that performance of the downlink IDS improves with
increasing δ. Also, from Fig. 6(b), it can be observed that the
performance improves with an increasing value of M1.

We followed a similar procedure to obtain the performance
characteristics of the uplink IDS. To obtain the value of Pu

FA,
the values of δuij , j ∈ 1, · · ·,M1 are set to zero. To obtain
the Pu

MD values, they are set to δ. The results obtained for
different values of M1 and δ are plotted in Fig. 7. It can be
observed that the performance of the uplink IDS improves
with increasing δ and M1.

C. Performance in the Presence of Malicious Vehicles

In this section, we demonstrate the performance of the
downlink and uplink IDSs in the presence of malicious
vehicles. We consider a situation where RSU R1 is benign
and M1 = 25. i.e., twenty five vehicles reported trust
values (both uplink and downlink). The number of vehicles
reporting false trust values is equal to M . Generally, in such
a situation, the false alarm probability is used to evaluate
the performance of the detection system. The false alarm
probability is measured, over 106 Monte Carlo simulations,
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Fig. 6. Performance of the downlink IDS when (a) M1 = 15 and the value
of δ is varied (b) δ = 0.1 and the value of M1 is varied.
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Fig. 7. Performance of the uplink IDS when (a) M = 15 and the value of δ
is varied (b) δ = 0.1 and the value of M is varied.

using the procedure described in Section VII-B. The only
difference is that the M malicious vehicles obtain their
respective individual trust values as described in Section VI.
The results for different values of M and δv are plotted in
Figs. 8 and 9, respectively. From both the figures, it can
be observed that the false alarm probability increases as δv
and/or M increase. However, the false alarm probability value
remains negligible unless the value of δv is large and/or M is
greater than the number of benign vehicles.
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Fig. 8. Performance of the downlink IDS in the presence of malicious vehicles
when (a) δv = 0.25 and M is varied (b) M = 3 and δv is varied.
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Fig. 9. Performance of the uplink IDS in the presence of malicious vehicles
when (a) δv = 0.6 and M is varied (b) M = 3 and δv is varied.

D. Malicious Vehicle Identification

Let’s now consider a situation where twenty vehicles
reported their individual trust values for ten benign RSUs. The
number of vehicles reporting false trust values is M = 3. The
performance of the Gaussian kernel (GK) based algorithms
in (38) and (39) are characterized using false alarm and missed
detection probabilities. We ran the following steps, over 105

Monte Carlo simulations, to obtain the false alarm probability:
1) The vehicles obtain their individual trust values for the

10 RSUs in each iteration, and then the aggregated trust
value for all the RSUs is obtained.

2) We then use the trust values of a benign vehicle to obtain
its similarity metric.

3) Then, we compare the similarity of the benign vehicle
with a pre-defined threshold to decide if the vehicle is
benign or malicious.

The missed detection probability values are obtained using
a similar approach, with the only difference being that the
similarity metric of a malicious vehicle is used. From the
Figs. 10 and 11 it can be observed that the Gaussian
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Fig. 10. Malicious vehicle identification on the downlink.

Kernel-based similarity measure achieves almost equal to one
detection probability.
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Fig. 11. Malicious vehicle identification on the uplink.

E. Comparison

The trust model presented in Section III-A is compared to
the data-centric trust computation model described in [29].The
individual trust (Θc

ij) of vehicle Vj towards Ri (for downlink)
using the model in [29] can be computed as follows:

Θc
ij =

Nd
ij

Nd
ij +

∑
k B

d
ij,k

. (42)

The overall trust can be calculated using the procedure detailed
in Section III-D. We follow the process in Section VII-B
to obtain the performance characteristics, and the same are
plotted in Fig. 12. We set δij = δ ∀j. It can be seen that
the IDS presented in this paper outperforms the Data-centric
trust-based IDS for both the values of δ used. The trust value
computed in (42) is calculated using the number of packets
dropped by the vehicles. Therefore, the estimated trust value
reflects the adversary’s and the wireless channel’s combined
impact on the network. On the other hand, the trust value
computed in Section III-D depends on the estimated attack
probability and captures only the effect of the adversary on the
network. The impact of the adversary can be seen distinctly



N. V. ABHISHEK AND T. J. LIM: TRUST-BASED ADVERSARY DETECTION ... 461

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
-5

Fig. 12. Performance comparison of the IDSs for (a) δ = 0.1 (b) δ = 0.15.

in the trust calculated in this paper, i.e., in Section III-D as
against to [29]. Therefore, we can achieve better performance.

VIII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, trust-based IDSs are proposed to detect
an adversary that has compromised an RSU, corrupting the
communication between the RSU gateway and the vehicles.
Firstly, the individual trust values are calculated by the vehicles
and reported to the gateway. These values are then aggregated,
using weighted sum, to obtain a single trust value for
the RSU. The aggregated trust is then compared against a
threshold to classify the RSU as benign or malicious. The
packet drop probabilities of the packets received are used to
determine the downlink trust values. The uplink trust values
are calculated using the overall packet retransmission rate.
The downlink trust value is obtained using the least square
approach, and the uplink trust value is based on fuzzy logic.
In addition, we also considered that there could be a small
fraction of vehicles that report false trust values. A Gaussian
kernel-based similarity metric is deployed to identify such
vehicles. The similarity metric for a vehicle is calculated using
the trust values reported by the vehicle about benign RSUs and
the aggregated trust values of these RSUs. The similarity is
then compared against a pre-defined threshold to classify if the
vehicle is benign or malicious. The simulation findings show
that malicious RSUs and malicious vehicles can be detected
with a high degree of accuracy.
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