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Distributed Fronthaul-Constrained Joint Transmission Design
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Abstract—User-centric coordinated multipoint (CoMP) joint
transmission (JT) is a novel technique to manage interference and
enhance system performance with single frequency reuse, where
user equipment (UE) communicates with their closest transmission
points (TPs). Unfortunately, in coherent JT, requirement of
strict network synchronization accuracy makes it difficult and
expensive to be practically deployed. The noncoherent JT has
therefore received growing attention since it requires less strict
network synchronization accuracy compared to its coherent
counterpart as it does not require the signal to be phase-aligned
at the receiver. Moreover, cell-free massive MIMO, which is
regarded as combining CoMP with massive MIMO systems,
has recently been touted as a solution for avoiding intercell
interference and provide uniform coverage over a large area.
However, the operational costs of CoMP, such as the associated
control signaling and communication overhead and the increase of
network complexity, could prevent the practical implementation of
CoMP. A distributed joint transmission CoMP (JT-CoMP) scheme
is proposed herein that allows distributed design and selection of
cooperating transmission nodes. To maximize user capacity, the
proposed distributed consensus optimization problem assumes
spectrum underlay transmission is used so that the solution can
achieve non-orthogonal multiple access (NOMA) for cell-free user
centric JT-CoMP systems. The proposed algorithm is different
from others in the literature because it solves a design problem
that involves a coupling constraint that no existing algorithm
can solve. Analytical results based on spectral graph theory
are given to prove its convergence and characterize its rate of
convergence. The more practical scenario is further considered,
where limited fronthaul capacity is also included in the problem.
A successive convex approximation (SCA) method is used to solve
the resulting nonconvex problem, which is shown to maximize
spectral efficiency. Simulation results are provided to show that the
performance of both proposed distributed algorithms (that address
problem without and with fronthaul constraint) is comparable to
its centralized counterpart.

Index Terms—Distributed consensus algorithm, fronthaul con-
straint, NOMA, transmission point selection, user centric cell-free
cooperative MIMO.

I. INTRODUCTION

AS spectral efficiency of point-to-point transmission in
cellular networks approaches its theoretical limits, to
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further improve network capacity and ease network manage-
ment, traditional cellular networks are evolving into cell-free
massive MIMO systems, regarded as a combination between
user-centric coordinated multipoint (CoMP) [1] and traditional
massive multiple-input multiple-output (MIMO) systems [2]. In
this scenario, smarter resource coordination among transmission
points (TPs) for efficient interference management and transmis-
sion coordination can provide substantial gains in throughput
and user experience. CoMP allows joint transmission (JT) from
cooperating TPs, which gives the ability to simultaneously
transmit data to each user equipment (UE) by sharing the
same channel resources, such as time and frequency, to boost
reception performance. Qualcomm has implemented a 5G
CoMP testbed [3] which demonstrated that system capacity
can increase by four-fold when CoMP spatial multiplexing
was used, thus proving CoMP’s potential. However, finding
an optimal solution for joint TP selection and transmission
design problem is known to be NP-hard, because it requires
search for the determination of the cooperating sets. Besides,
the operational costs of JT-CoMP, prior phase alignment
and tight synchronization to the target user requirements
often hinder its implementation in industrial scale [4], not to
mention communication overhead and the increase of network
complexity.

Coordinated beamforming/scheduling and dynamic point
selection have been investigated as alternatives which require
less communication overhead compared to JT, but without
achieving the same transmission performance as JT. There
are two possible approaches to tackle the joint TP selection
and transmission design problem: centralized and distributed.
Among the advantages of the centralized approach is its relative
simplicity in algorithm implementation and the possibility
to directly use the interior point method (IPM) to solve
the joint design problem. However, to take full advantage,
the centralized server is required to handle high amount of
computations with high throughput communication backhaul
to every TPs. Among the data transmitted is the channel state
information (CSI) from the TPs to the server and precoder
coefficients from the server to the TPs. It is possible to
satisfy such a requirement for small networks but this is
not practical as the system scales up. Several joint transmit
and TP selection design strategies have been proposed in the
literature to reduce signaling overhead. [5] tackled the joint
precoder and clustering problem by formulating the problem as
a mixed-integer convex problem which minimizes the transmit
energy subject to signal-to-interference-plus-noise quality-of-
service (SINR QoS) constraint, where convex formulation was
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obtained upon a reformulation of the constraint. However, the
approach only applies to the case of a single receive antenna.
Two algorithms were proposed in [6] with similar problem
formulation, where one is based on iterative reweighed ℓ1-
norm minimization, and the other is based on solving the ℓ2-
norm relaxed problem and then iteratively removing the links
that correspond to the smallest transmit power. [7] extended
aforementioned designs by including per TP backhaul constraint
and solved the design problem by customized branch and the
bound algorithm applied to discrete monotonic optimization.
[8] proposed to minimize a sum transmit signal power subject
to the SINR QoS constraint similar to [5] with an additional
fronthaul capacity constraint. Proposed problem formulation
falls into a category of the mixed integer second order cone
problem and can be solved with continuous relaxation, or the
proposed inflation algorithm.

In addition, none of the aforementioned works are appropri-
ate for large-sized networks due to computational complexity
at the central unit that increases proportionally to the number
of TPs in the network as was mentioned before. [9] solved
the distributed precoder design problem by maximizing the
weighted sum rate via minimization of the weighted sum mean-
squared-error (WMMSE) proposed in [10], [11]. [12] developed
a CSI signaling technique for coordinated beamforming for
time division duplex (TDD) multi-cell system by also solving
the weighted sum rate problem by reformulating the problem
into minimizing the weighted sum mean-squared-error, making
implementation of this CoMP method feasible. A solution for
intercell interference level management for weighted sum rate
problem was proposed in [13] using primal decomposition
for multiple-input single-output (MISO) systems with SINR
constraints. The nonconvex problem was decomposed into a
master problem with several subproblems which, unlike the
scheme in [9], only involves coordination between cooperating
base stations. However, solving for the solution of the master
problem requires synchronous base stations. [14] proposed to
use dual decomposition method to decentralize interference
management among adjacent cells, which was extended by [15]
using the alternating direction of method of multiplier based
decentralized beamforming design. [16] used the WMMSE
technique in [9] and extend the linear transceiver design
problem for JT-CoMP. [17] has embedded rate QoS constraint
into the problem formulation and was able to solve the
problem in a way similar to [9], [16] via successive convex
approximation to turn one of the subproblems into convex
form. [18] proposed a distributed precoding design scheme for
JT-CoMP that requires coordination among cooperating base
stations using backhaul signaling where correlation information
among base stations, known as cross-term information, are
exchanged. Unfortunately, the signaling scheme does not scale
well with system size. [19] proposed distributed precoding
scheme for cell-free massive MIMO system by minimizing
weighted sum mean-squared-error, where a new over-the-
air signaling scheme was proposed to exchange cross-term
information that scales well with system size compared to the
backhaul signaling scheme in [18]. Since the quality of over-
the-air channel will usually be worse than that of the backhaul,
this may adversely affect the quality of the precoder. Table I

summarizes the methods above.
During the distributed design, agents in the network coordi-

nate as a swarm to perform a certain task and reach consensus.
[20] provided a theoretical framework for a wide range of
consensus algorithms for multiagent networked systems. [21]
and [22] have developed distributed algorithms based on
consensus-based primal-dual decomposition and [23] proposed
algorithm based on Newton’s method. However, [21]–[23] have
limitation in the form of the constraint to be

∑
q g

q(xq) ≤ 0,
where q is the node index, xq is the variable at node q and
gq(xq) is local constraint function at the qth node. Recently,
[24] has extended the algorithm in [22] to be applied to a
constraint of the form

∑
q g

q(xq) = L, where author interprets
L as a resource shared among nodes. Equality constraint implies
that after optimization all resources must be used. However,
it is more meaningful to replace equality with inequality∑

q g
q(xq) ≤ L to emphasize the amount of used resource

can be flexible. Recently, [25] has considered a problem with
the coupling constraint being an inequality and proposed an
algorithm that converges to a fixed point. The main focus of
that work is to solve a problem where the constraint graph
does not necessarily have to equal to the physical network
graph. However, global constraint functions gq(xq) are limited
to be an affine transformation. Moreover, problem formulation
in [25] does not include local constraint, which significantly
simplifies algorithm and convergence analysis.

In this work, a distributed consensus algorithm using dual
decomposition, which circumvents the previously mentioned
limitations using an adaptive “resource” allocation scheme,
is proposed. The proposed scheme can be effectively applied
to the distributed joint transmission and selection problem
where each TP is modeled as a processing node in the network.
Moreover, the amount of communication overhead does not
scale with the number of transmission points. The problem
of CSI overhead and data sharing among transmission points
is not considered herein. The internode communications are
modeled as an undirected graph, where the resulting graph
Laplacian is used to prove the convergence of the proposed
technique. This proof augments the ones from [21], [22],
[24], [26], [27] and extends them with the incorporation of
the analysis of the resource allocation scheme. In addition,
none of the distributed CoMP schemes above considered non-
orthogonal multiple access (NOMA) where transmitters can
transmit simultaneously using the same time, frequency and
space. This allows more users to be served and enhanced
spectrum efficiency. Spectrum underlay techniques [28]–[30]
are used herein where transceivers behave altruistically such
that transmission between one pair of transceiver does not cause
noticeable interference to other users (considered as victims).
The interference can be managed by constraining the transmit
power emitted by the transmitter toward its victims such that
victims are oblivious to other transmissions. Finally, to relax
the stringent requirement of coherent JT, noncoherent JT is
considered. The main contributions and novelties of this work
are as follows:

• This work attempts to jointly optimize the coordination
clusters and linear precoders in the network by solving a
nonconvex programming problem. Solving the problem
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Table I
COMPARISON OF DIFFERENT COMP DESIGNS.

Objective Limitations
[5] Transmit power Limited to single antenna receivers
[6] Reweighted ℓ1 and ℓ2 relaxed

of transmit power
Limited to single antenna receivers

[7] Sum rate Requires branch and bound, slow convergence
[8] Total power consumption Use of MISOCP solver (high computational complexity) or continuous relaxation
[9] Weighted sum rate Design for coordinated beamforming, misestimation of received signal covariance matrix can degrade performance

[12] Weighted sum rate Design for coordinated beamforming, guarantees to only obtain a stationary solution of the WMMSE problem
[13] Weighted sum rate Design for coordinated beamforming, requires synchronous base stations to solve master problem
[14] Total transmit power Requires consistency among interference at different base stations, requires single antenna receivers
[15] Weighted total transmit power Design for coordinated beamforming, signaling between base stations may be high for large system
[16] Weighted sum rate, proportional

fairness
Guarantees to only obtain a stationary solution of the WMMSE problem

[17] Weighted sum-rate Local optimal solution is obtained using SCA. QoS constraint may not be satisfied for fast-fading channels
[18] Weighted sum rate Requires backhaul signaling that does not scale well with system size
[19] Weighted sum mean squared er-

ror
Quality of over-the-air channel may adversely impact precoder design

allows users to transmit non-orthogonally, enabling cell-
free user centric JT-CoMP systems [2], thus increasing
user capacity compared to orthogonal multiple access
techniques. The resulting solution maximizes received
signal power at the UEs, which in return increases the
overall system sum rate.

• The transformed problem can be regarded as a multiagent
convex problem with coupling constraints including one
of the form

∑
q g

q(xq) ≤ L. An efficient distributed
algorithm that computes a stationary solution to the
transformed problem is proposed.

• The proposed distributed algorithm generalizes the works
in [21], [22], [24] as they failed to handle

∑
q g

q(xq)≤L
type of constraints. Analytical results prove the conver-
gence property of the proposed algorithm to a stationary
solution of the transformed problem. It is important to
solve the problem distributively with inequality constraints
as the considered problem with equality constraints is often
infeasible.

• Algorithm is further extended to incorporate the fronthaul
constraint as part of the design. Proposed consensus based
primal dual decomposition method is augmented with
successive convex approximation (SCA) and alternating
direction method of multipliers (ADMM) and allows for
sophisticated fronthaul resource allocation.

• The convergence and effectiveness of the proposed algo-
rithm have been theoretically validated and evaluated via
extensive simulations.

The rest of the paper is organized as follows. In Section II,
system model is presented. The joint TP selection and precoder
design problem is formulated and then transformed into
convex form in Section III. The proposed efficient distributed
algorithm is proposed in Section IV to solve the transformed
problem. The algorithm convergence properties and underlying
assumptions are stated in Section V. Extension of the proposed
distributed algorithm to fronthaul-constrained transmission
nodes is presented in Section VI. Discussion about proposed
algorithms’ complexity and system overhead is given in
Section VII, followed by numerical examples and analytical
results to validate the proposed algorithms in Section IX. The
paper is concluded in Section X and proofs of the theorems
are given in the Appendix.

Table II
NOTATIONS.

Symbol Definition

B Number of spatial streams.
c(n) Dual consensus/objective balance coefficient.
Cq qth TP’s fronthaul capacity threshold.

Cq/C̃q Local constraint set of qth TP.
fq(·) qth TP’s objective function.
Fq

i Precoder from qth TP to ith UE.
gq(·) qth TP’s coupling constraint term.
Hq

i Channel from qth TP to ith UE.
i,j UEs subscript indices.
I Total number of users
Ith Instantaneous interference leakage power constraint thresh-

old
Qq

i Precoder variable from qth TP to ith UE.
nT /nR Number of Tx/Rx antennas.
L
q(n)
ij Instantaneous leakage interference power at nth iteration.
N q qth TP’s neighborhood set.
Q TPs cooperating set, i.e., all TPs.
q ,r TPs superscript indices.
Sq
ij Slack leakage interference power for qth TP on ij

interference link.
W Consensus matrix.

[W]rq Weight between TPs q and r.
α Fronthaul penalty parameter.
λq Dual variable for interference leakage constraint.
ℓq Consensus dual variable for interference leakage con-

straint.
σ2 Noise power
φ Number of consensus iterations in Wφ

Notations: Uppercase (lowercase) bold face letters indicate
matrices (column vectors). Superscript H denotes Hermitian,
T denotes transposition. Diag(a) creates an N ×N diagonal
matrix using the elements of a ∈ CN . A ⪰ 0 designates A
as a symmetric positive semidefinite matrix, 1M denotes an
M × 1 vector, containing 1 in all of its entries. [A]mn denotes
the (m,n)th element of A. ∥ · ∥0, ∥·∥2, and ∥·∥F denote ℓ0, ℓ2
and Frobenius norm, respectively. |A| denotes the elementwise
magnitude value of A. P+[·] denotes the projection operator
that projects the argument onto R+. The superscripts q(n),r(n)

on Q
q(n)
i ,Q

r(n)
j are used to denote the matrix Q at the q, rth

TP and at the nth global iteration.
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Fig. 1. System model.

II. SYSTEM MODEL

A depiction of the system model under consideration is
shown in Fig. 1 and described below. Assume the network
consists of a set of TPs Q = {1, · · ·, Q}, known as the coop-
erating set, each having nT transmit antennas. I = {1, · · ·, I}
denotes a set of UEs that should be served by subset of
Q, with each user equipped with nR receive antennas. Data
from UEs are delivered to each TP from a serving gate
through a fronthaul link (labeled in yellow) with limited
capacity and transmitted through a serving link (green and blue
arrows). The fundamental idea of JT-CoMP is to simultaneously
serve multiple users over the same spectrum resources (time,
frequency, and space) at the expense of inter-user interference
(red beams). It is assumed that TPs can estimate channel
through uplink pilot sequence and share it with cooperating
set through X2 interface [31]. Denote channel between the
qth TP and the ith user as Hq

i ∈ CnR×nT . Furthermore,
precoder matrix from the qth TP to the ith user is defined
as Fq

i ∈ CnT×B , where B ≤ nT denotes number of spatial
streams. The received signal for user i can thus be written
as yi =

∑
q H

q
iF

q
i si +

∑
j ̸=i

∑
q H

q
iF

q
jsj + ni, where the

second term represents interference and ni denotes additive
white Gaussian noise (AWGN) with known variance σ2

i . It is
assumed that the noise is uncorrelated with the data signal
si ∈CB with E[sHi si] = 1. Major notations used throughout
this paper can be found in Table II.

In coherent JT, based on the CSI shared among all cooperat-
ing set, all TPs transmit signals that are jointly precoded with
prior phase alignment and tight synchronization to the target
user [32]. The requirement of strict network synchronization
accuracy makes it difficult and expensive to be practically
deployed. The noncoherent JT has therefore received growing
attention since it requires less strict network synchronization
accuracy compared to its coherent counterpart. It, however,
requires more complex operation at the receiver because the
UEs need to successfully decode all received signals [33] and
combine them such that the overall received signal power
is equal to the sum of received signal powers from each TP.
Nevertheless, due to its advantages, the noncoherent JT scenario
is considered, which led to the problem formulation below.

III. PROBLEM FORMULATION

A. Joint TP Selection and Precoder Design Objective

In the system model considered hereafter, a user receives
a noncoherent sum of multiple data streams of the useful
signal transmitted by the cooperating TPs (i.e., noncoherent JT).
Therefore, the UEs’ rate equals to a sum of rates from individual
TPs. Due to the monotonic relationship between received signal
power and SINR, direct dependence of achievable throughput
on SINR, and the use of spectrum underlay transmission, the
problem is formulated as maximization of a sum of the received
signal power subject to the instantaneous leakage interference
power being constrained below the threshold parameter Ith,
which is usually obtained from long-term statistical measures or
link budget to guarantee successful communication between TP
and UE [34] for all users. Notably, for noncoherent JT-CoMP,
received signal power is represented as sum of powers of each
TP-UE link. In contrast, for the coherent version, the power
would be written as power of sum of the signals as signals are
phase-aligned. However, the leakage interference constraint is
still not amenable to distributed design, as will be shown in the
sequel. Finally, the transmit power of the q ∈ Q TP is limited
below P q . However, an increasing number of cooperating TPs
will impact operational complexity and create extra load on the
fronthaul infrastructure, which has to deliver each UEs’ data
to each TP in the cooperating set. This can preclude usage of
the cooperative scheme in practice. The number of precoding
elements at all TPs selected to be in the cooperation set can be
done by including a sparsity inducing ℓ0 regularization term
in the objective. Hence, the problem can be formulated as

max
Fq

i ,i∈I,q∈Q

∑
i

∑
q
∥Hq

iF
q
i ∥

2 − α∥Fq
i ∥

2
0 (1a)

s.t.
∑

q

∥∥Hq
jF

q
i

∥∥2 ≤ Ith, i, j ∈ I : i ̸= j (1b)∑
i
∥Fq

i ∥
2 ≤ P q, q ∈ Q, (1c)

where α ∈ R+ is a regularization parameter that represents
the associated cost for assigning TP to a UE and shall be
referred to as the fronthaul penalty parameter. An increase in α
will undoubtedly promote sparsity in the precoder vector, thus
lowering operating cost. Although many NOMA techniques
have been proposed in literature, only spectrum underlay is
considered as the focus of this work is on distributed user-
centric noncoherent JT-CoMP.

B. Problem Reformulation

It can be observed that (1) is not a convex problem because
the objective consists of sum of convex and nonconvex terms
and optimal solution cannot be found in polynomial time. This
can be easily circumvented by defining Qq

i≜F
q
iF

qH
i such that

received signal power for user i becomes
∑

q tr(H
q
iQ

q
iH

qH
i )

and all terms inside the constraints can be rewritten in similar
fashion. Finally, relaxing the ℓ0 norm by replacing it with the
ℓ1 norm and using rank relaxation on Qq

i [35], i.e., removing
the constraint rank(Qq

i ) =B, the complete design problem
can be written as

max
Q

∑
i

∑
q
tr
(
Hq

iQ
q
iH

qH
i

)
− α1T

nT
|Qq

i |1nT
(2a)
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Algorithm 1: Distributed consensus-based dual decomposition joint TP design and selection.

0. Initialization Choose λq(0) ∈ R+, α ∈ R+, γ, sequence c(n) = γ/(n+ 1), φ ∈ Z+. Choose ϵglo as stop criteria
parameter. Set n = 0 as iteration index.

while ∥Q(n) −Q(n−1)∥F ≤ ϵglo do
1. Local primal optimization: Compute Q

q(n+1)
i by solving (9); Compute λq(n+1) using (12);

2. Communication: Compute S
q(n+1)
ij and send it with λq(n+1) to neighbors;

3. Local dual optimization: Compute ℓq(n+1) by (13) and obtain I
q(n+1)
th,ij using (14); n = n+ 1;

4. Obtain precoder Fq
i : Apply randomization procedure on Q

q(n)
i as described in Section VIII.

s.t.
∑

q
tr
(
Hq

jQ
q
iH

qH
j

)
≤ Ith, i ∈ I : j ̸= i (2b)∑

i
tr (Qq

i ) ≤ P q, Qq
i ⪰ 0, q ∈ Q, i ∈ I, (2c)

where maximization with respect to Q denotes maximization
with respect to Qq

i ,∀i ∈ I,∀q ∈ Q. (2) is a convex
programming problem and global optimal solution to it can be
found using interior-point method [35]. After Qq

i is obtained,
Fq

i can be obtained via randomization procedure as described
in Section VIII, which is asymptotically optimal approach for
the rank recovery.

Notice that (2b) contains |I|(|I| − 1) number of constraints
and |Q| variables, with the former usually greater than the latter.
Thus, if these constraints are converted to equality constraints,
there is no way to guarantee feasibility in (2), hence, this is
not considered in this work.

IV. DISTRIBUTED CONSENSUS BASED ALGORITHM WITH
UNLIMITED FRONTHAUL

The proposed distributed algorithm is summarized in Al-
gorithm 1 and developed based on a combination of dual
decomposition and proximal minimization with inequality-
coupled constraints that are different from the one in [21]
and [22], which is of the form

∑
q g

q(xq) ≤ 0, where only
dual variables are exchanged between agent (TP) q and its
one-hop neighbors, i.e., members of N q ⊆ Q. This increases
privacy protection as it is difficult, in the context of the current
problem, to convert the dual variables to the primal ones even
if someone is eavesdropping on the network. Local copies of
the dual variable and auxiliary variable will have to be created
and exchanged to achieve consensus amongst all the nodes.

Note that the leakage interference power constraint (2b) can
only be written in this form

∑
q tr(H

q
jQ

q
iH

qH
j ) − Ith ≤ 0,

if processing is done in a centralized manner, but not in a
distributed manner, as there is no apparent way to optimally
distribute Ith amongst all the agents without impacting system
performance such as sum rate.

It is also possible to argue, since Ith is the interference
threshold, each agent should have a priori information about
Ith at each node. However, the goal here is to obtain a solution
that is close, or identical, to the one obtained by centralized
processing. Hence, being able to obtain the optimal interference
threshold for each node is required. Moreover, even though it
is possible for each node to determine its interference leakage
power threshold, this will most likely require an exchange of
location information amongst cooperating TPs, which will raise
privacy concerns.

The proposed algorithm is separated into three steps, namely,
local processing, communications, and a consensus step. All
steps are summarized in Algorithm 1 and are described in
detail in following sections.

A. Local Processing - Computing Qq
i , λq , and ℓq

Define Cq ≜ {Qq
i :
∑

i tr(Q
q
i )≤P q,Qq

i ⪰0, i∈I , q∈Q},
then (2) can be written as

max
Q

∑
q

∑
i
tr
(
Hq

iQ
q
iH

qH
i

)
− α1T

nT
|Qq

i |1nT
(3a)

s.t.
∑

q
tr
(
Hq

jQ
q
iH

qH
j

)
≤ Ith, i, j ∈ I : j ̸= i (3b)

Qq
i ∈ Cq, i ∈ I, q ∈ Q. (3c)

(3) is a convex optimization problem, but the existence of
the coupling constraints (3b) makes it impossible to solve (3)
in a distributive manner as solution at each node depends on
precoder from other nodes, resulting in an inequality-coupled
problem [22]. In such a problem, each agent aims to optimize a
local performance criterion subject to local constraints and yet,
the decision variables from each agent need to agree. In the case
of (3), Ith is regarded as a resource that is available to all agents
but its exact value is unknown at each node. [21] and [22]
considered a similar problem, however, assumed resource is
equally distributed. For problem (3), it means that Ith is evenly
distributed amongst all agents as Iqth,ij = Ith/Q, ∀q, i ̸= j,
which represents the leakage interference power threshold for
the qth agent that is used to bound the instantaneous leakage
interference power to the jth user when signal is transmitted
to the ith user. However, equal distribution of the resource
is not optimal as shown in Fig. 3 of [36]. Therefore, an
adaptive algorithm for interference leakage resource allocation
is proposed herein to obtain a suboptimal Iqth,ij , which is
presented in detail in Section IV-B.

Before presenting distributed optimization framework, (3)
shall be rewritten in shorter form for clarity. First, denote the
objective function as

fq (Qq) ≜
∑

i
tr
(
Hq

iQ
q
iH

qH
i

)
−α1T

nT
|Qq

i |1nT

with Qq ≜ Diag ([Qq
1 · · · Qq

I ]). Second, the constraint
function rewritten as∑

q
tr(Hq

jQ
q
iH

qH
j )− Iqth,ij ≜

∑
q
gqij (Q

q
i ) ≤ 0.
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Now, (3) can be written as

max
Q

∑
q
fq (Qq) (4a)

s.t.
∑

q
gqij (Q

q
i ) ≤ 0,∀i, j ∈ I, j ̸= i (4b)

Qq
i ∈ Cq, i ∈ I ,∀q ∈ Q. (4c)

To begin with distributed algorithm for (4), the problem
with coupling constraint (4b) should be circumvented.
This is done by forming a Lagrangian function that
includes the objective and the coupling constraint.
Dual variables for user pairs (i, j) of node q are
denoted as λq ≜ [λq

12, · · ·, λ
q
1I , · · ·, λ

q
ij , · · ·, λ

q
I(I−1)]

T

and correspond to constraint functions gq (Qq) ≜
[gq12, g

q
13, · · ·, g

q
1I , · · ·, g

q
ij , · · ·, g

q
I(I−1)]

T ∈ RI(I−1). Therefore,
the Lagrangian can be written as

L(Q,λ) =
∑

q
fq (Qq) + λqTgq (Qq)

=
∑

q
Lq(Qq,λq)

(5)

with requirement that λq
ij = λr

ij ,∀q, r ∈ Q for each (i, j)
user pair, so that constraint (4b) is satisfied. Notably, terms
inside (5) are independent for different q and can be computed
by different node independently and in parallel. In order
for all nodes to reach consensus in the Lagrangian function
above, λq will be broadcasted from each node q ∈ Q, to its
neighboring set Nq . An auxiliary dual variable ℓq , computed as
ℓq ≜

∑
r∈N q [Wφ]rqλ

r, is used to achieve consensus on dual
variable λq . First, ℓq is used as a surrogate for λq when solving
for Qq

i . It is then used as a proximal term when solving for
λq to promote consensus. These two steps will be elaborated
clearly later. The update equation for ℓq is a weighted sum
of λq, where the weights are contained inside the consensus
matrix [26] W ∈ RQ×Q, with properties

[W]rq = 0 if r /∈ N q, W = WT , W1Q = 1Q, (6)

lim
φ→∞

Wφ =
1Q1

T
Q

Q
, and ρ

(
W −

1Q1
T
Q

Q

)
≤ ν < 1, (7)

where ρ(·) is the spectral radius operator and ν is spectral
radius upper bound value. φ denotes the number of consensus
iterations, which reflects how far messages from one node are
passed to next-hop nodes. W is used to model the TP network
as a connected undirected graph. As indicated in Algorithm 1,
the update for ℓq is carried out after that of λq .

Since consensus for λq(n) is obtained through ℓq , hence, the
Lagrangian function in (5) can be approximated at point ℓq as

Lq(Qq, ℓq)= fq (Qq) + ℓqTgq (Qq) (8)

and it will be used to find the precoder matrix. Before
proceeding, it should be indicated that when iteration index (n)

appears above certain mathematical quantity, it means that this
variable is fixed and obtained after corresponding optimization
iteration n. When the index is absent, the corresponding
quantity is a variable or contains a variable that should be
optimized. For instance, gq in (9) contains Qq , while gq(n) in
(11) is a quantity evaluated at iteration n at Qq(n+1).

The local processing step is stated as follows. At the nth
iteration of the proposed algorithm, part of the local processing
stage will be solving for Qq

i in the next iteration and will
require maximizing Lq(Qq, ℓq) at a fixed point ℓq(n) to obtain

Qq(n+1) = argmax
Qq∈Cq

fq(n) (Qq)+ℓq(n)Tgq (Qq) . (9)

In the simulation, ℓq(0) was initialized to be 4. The other part
of the local processing involves solving for the dual variable λq

which can be done by minimizing the Lagrange dual function
d (λq) ≜ maxQq∈Cq Lq(Qq,λq) with respect to λq . This dual
function will be augmented with a proximal term to incentivize
the consensus of the dual variables. Specifically, the new dual
problem is formulated as

min
λq⪰0

max
Qq∈Cq

{
Lq(Qq,λq) +

∥λq − ℓq(n)∥22
2c(n)

}
(10)

for each TP, where the second term in the inner objective is a
proximal term. c(n) is a scalar that balances emphasis between
objective and consensus on λq . The update of λq(n), denoted
as λq(n+1), can be obtained as

λq(n+1) = argmin
λq≥0

λqTgq(n) +
∥λq − ℓq(n)∥22

2c(n)
, (11)

which requires the computation of gq(n) ≜
tr(HqQq(n+1)HqH) − I

q(n)
th,ij . Using the fact that λq ⪰ 0,

then λq for the next iteration is obtained via differentiation as

λq(n+1) = P+

[
ℓq(n) − c(n)gq(n)

]
, (12)

where c(n) can be regarded as an (adaptive) step size at the nth
iteration and gq(n) is a subgradient of the objective function
in (11). Finally, ℓq(n) is updated according to

ℓq(n+1) =
∑

r∈N q
[Wφ]rqλ

r(n+1). (13)

The local updates of Qq
i , λq

i and ℓqi are summarized in Step 1
and 3 of Algorithm 1, respectively.

B. Adaptive Strategy for Computing Iqth,ij

Since the coupling constraint
∑

q g
q
ij (Q

q
i ) ≤ 0 must have

prior knowledge about Iqth,ij and even distribution of Ith is not
optimal, adaptive resource allocation algorithm is proposed to
allocate Ith across all agents which achieves better performance
than the even distribution scheme in [21], [22], [24]. The issue
of distributing resource for the coupling sum constraint was
considered in [37], in which knowledge about the lower and
upper bound of the second-order derivative of the objective
is required. However, this approach cannot be applied to (4)
as the objective is not differentiable. Even if the penalty term
in (3a) is removed, the second-order derivative equals to zero.
Besides, it is unclear how the scheme in [37] can be applied
with additional coupling constraints as is the case in Section VI.

To address problem above, novel resource allocation pro-
posed in [36] is used, while the scheme’s optimality is proven in
this work. The procedure is illustrated as follows. Initialization
is done with I

q(0)
th,ij = Ith/Q, i.e., equal distribution. Define the

slack leakage interference power as Sq(n+1)
ij ≜ I

q(n)
th,ij−L

q(n+1)
ij
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where L
q(n+1)
ij ≜ tr(Hq

jQ
q(n+1)
i HqH

j ) is the instantaneous
leakage interference power. S

q(n+1)
ij can be viewed as the

amount of excess leakage interference power (resource) that is
not used by the qth TP while serving the ith user. Then a new
value for the leakage threshold can be updated as

I
q(n+1)
th,ij ≜ L

q(n)
ij +

∑
r∈N q

[W]rqS
r(n+1)
ij , (14)

which corresponds to Step 3 of Algorithm 1. Notice that the
slack leakage interference power Sq(n+1)

ij is transmitted from
the qth agent to all members of N q in Step 2 in Algorithm 1.
After Iq(n+1)

th,ij is computed at the nth iteration, it will be used in

(9) to compute gqij (Q
q
i ) = tr

(
Hq

iQ
q
iH

qH
j

)
− I

q(n+1)
th,ij , which

will be used to obtain Qq(n+2) at the next iteration. Notice that
all nodes q ∈ Q will be running the above steps in parallel. De-
fine L(n)

na ≜
{
S
q(n)
ij

∣∣Sq(n)
ij > 0

}
and L(n)

a ≜
{
S
q(n)
ij

∣∣Sq(n)
ij =0

}
.

The optimality of the proposed adaptive resource allocation
scheme is stated in the theorem below.

Theorem 1. Adaptive interference leakage allocation scheme
converges, i.e.,

lim
n→∞

∑
q
S
q(n)
ij = S∞

ij ∀i, j ∈ I, j ̸= i.

Moreover, if leakage interference constraint is active at the
optimal solution of (3), then

lim
n→∞

∑
q
S
q(n)
ij = 0 ∀i, j ∈ I, j ̸= i.

That is, limn→∞ L(n)
na will be empty.

See Appendix A for proof.

V. ALGORITHM CONVERGENCE

In this section, convergence of the proposed primal-dual
decomposition algorithm is presented. Theorems 2–4 shown
herein are similar to those in [21] and state the dual convergence
and optimality (Theorem 2 and Theorem 3, respectively), and
then, primal objective optimality (Theorem 4). Notably, these
optimality bounds are different from [21] due to two reasons.
First, the proposed algorithm uses an adaptive step size c(n)

instead of fixed step size. Second, in [21], consensus step is
done prior to projection, which requires computation of sets
Dµ and DG over which projections are done. For definitions of
these sets, please refer to the original work. On the contrary, in
the proposed algorithm, projection is done prior to consensus
and hence avoids the difficulty and requires a new proof.

Convergence results described in a sequel hold under the
assumptions below.

Assumption 1. Between any two nodes q, r ∈ Q in a network
there exists a path of edges.

Assumption 2. {c(n)}n≥0 is a nonincreasing sequence of
positive reals and satisfies

lim
n→∞

c(n) = 0;
∑∞

n=0
c(n) = ∞;

∑∞

n=0
(c(n))2 < ∞.

One possible choice for c(n) satisfying Assumption 2 is c(n) =
γ/(n + 1) for some γ > 0. Notice that choice of c(n) that
satisfies Assumption 2 guarantees limn→∞ ∥λ(n)−ℓ(n)∥22 = 0.

Assumption 3. The difference between consensus dual vari-
ables after the first iteration of Algorithm 1 is bounded as
∥ℓq(1) − ℓr(1)∥2 ≤ β(1),∀q, r ∈ Q.

Assumption 4. Constraint functions gqij(Q
q
i ),∀Q

q
i , are finite,

i.e.,
∥gqij(Q

q
i )∥2 ≤ G, for any Qq

i ∈ Cq.

Assumption 4 defines a bound on the subgradient of the
qth Lagrange dual function in (5), that exists due to convexity
nature of the dual problem. From (3), the value of G can be
upper bounded by P q∥Hq

j∥2F .

Assumption 5. Lagrangian multipliers and related variables
are bounded as following

∥λq∥22 ≤ Λ, ∥ℓq∥22 ≤ Λ, ∥y∥22 ≤ Λ, (15)

for some nonnegative constant Λ. This assumption follows
naturally from the assumption of the bounded dual function. y
is an auxiliary dual variable and is defined in Appendix D to
be used for the convergence proof.

Theorem 2. Dual variable convergence
Define ℓ̄

(n)
≜ 1

Q

∑
q ℓ

q(n) as the mean value of the consensus
dual variables. Assume Assumptions 1-5 hold, W satisfies the
conditions in (6) and ν is defined as in (7). Let p := νδβ(1)

β(1)+c(n)G
.

There exists a number of consensus iterations φ̄, such that if
φ ≥ φ̄+ δ, δ ≥ 0, then ℓq reaches consensus as

∥ℓq(n) − ℓ̄
(n)∥2≤ 2pn−1νδσβ(1)+2pc(n)G

1−pn−1

1− p
,∀q∈Q.

Moreover, φ̄ = log(β(1))−log(4Q(β(1)+c(n)G))
log(ν) + δ ≜ φ̄+ δ.

Theorem 3. Dual objective optimality
Let λ be generated with Algorithm 1, which corresponds to
ϵ-subgradient algorithm [38]. Given that the Lagrange dual
function d(λ) ≜ argmaxQ L(Q,λ) is bounded, then

lim inf
n→∞

d(λ(n)) = d⋆ +Qζ,

where d⋆ denotes the optimal value of d(λ) and ζ is a constant
inside the ϵ-subgradient algorithm.

Theorem 4. Primal objective convergence
(a) A lower bound on the primal cost is given by

f(Qq(n)) ≥ f⋆ − Λ2

2nc(n)/Q
− e(n);

(b) An upper bound on the primal cost is given by

f(Qq(n)) ≤ f⋆ +
5Λ2

2nc(n)/Q
+ e(n),where

e(n) =
c(n)Q(G+ τ)2

2
+QτΛ

+Q(β(1)(4G+ 2τ) + ζ).

Proofs of Theorems 1, 2, 3, and 4 can be found in Appendices
A, C, D, and E, respectively.
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Algorithm 2: Distributed augmented consensus-based dual decomposition for joint fronthaul-constrained TP design and
selection.
0. Initialization Choose λq(0) ∈ R+, α ∈ R+, γ, sequence c(n) = γ/(n+ 1), φ ∈ Z+. Choose ϵglo and ϵSCA as stop
criteria parameters. Set n = 0 as iteration index.

while ∥Q(n) −Q(n−1)∥F ≤ ϵglo do
1. Local primal optimization: Compute Q

q(n+1)
i using SCA:

while ∥Q(m) −Q(m−1)∥F ≤ ϵSCA do
Compute Q

q(m+1)
i by solving (22);

Compute λq(n+1) using (12);
2. Communication: Compute S

q(n+1)
ij and send it with λq(n+1) to neighbors;

3. Local dual optimization: Compute ℓq(n+1) by (13) and obtain I
q(n+1)
th,ij using (14);

4. Consensus Step: Compute Q
q(n+1)
d using (23); n = n+ 1;

5. Obtain precoder Fq
i : Apply randomization procedure on Q

q(n)
i as described in Section VIII.

VI. EXTENSION TO LIMITED FRONTHAUL SCENARIO

The distributed design algorithm described below extends
the one proposed in [39] for the case of centralized joint
precoder and selection design. Wireless and fiber optics are
expected to serve as fronthaul between TPs and backhaul
between the cloud processing units, with the fronthaul capacity
usually lower than that of the backhaul, which will bound the
transmission rate to the users. Thus, it is imperative to include
this constraint in the joint TP selection and precoder design
problem. The proposed distributed algorithm is summarized
in Algorithm 2 and derivations are explained below. Note
that the main differences between Algorithm 1 and 2 are that
Step 1 is modified and an extra step is added to solve the
limited-fronthaul problem. Fronthaul capacity constraint can
be mathematically formulated as constraining the sum of rates
offered to different users by the fronthaul capacity bound Cq .
That is,

∑
i log (1 + SINRq

i ) ≤ Cq, where SINRq
i denotes the

signal-to-interference-plus-noise ratio in the link between the
qth TP and ith user. Writing the SINR explicitly, the constraint
becomes∑

i

log

(
1 +

tr(Hq
iQ

q
iH

qH
i )

σ2 +
∑

j ̸=i

∑
r tr(H

r
iQ

r
jH

rH
i )

)
≤ Cq, (16)

∀q ∈ Q. To shorten notations, define Rq
i ≜ tr(Hq

iQ
q
iH

qH
i )

and Irij ≜ tr(Hr
iQ

r
jH

rH
i ), so that (16) becomes∑

i
log
(
1 +Rq

i /(σ
2 +

∑
j ̸=i

∑
r
Irij)
)
≤ Cq, (17)

∀q ∈ Q. The SINR term in (17) can be rewritten using
exponential function as∑

i

log
{
1 + exp

[
log(Rq

i )− log(σ2 +
∑
j ̸=i

∑
r

Irij)
]}

≤ Cq,

(18)
where exp and log are inserted into the numerator. Notice
that the expression is still nonconvex because the exponential
function is nondecreasing and it requires its argument to
be convex for the constraint to be convex, which is not
the case. To circumvent this problem, affine approximation
around an arbitrary point x0 of log(x) is used so that
log(x) ≈ log(x0) + (x− x0)/x0 can be used as a convex
upper bound of the original constraint. x0 can be chosen to

be Q
q(m−1)
i , i.e., the variable Qq

i at the previous (m − 1)th
SCA iteration, which can be regarded as a constant in the mth
SCA iteration. Hence, the fronthaul constraint at the mth SCA
iteration becomes∑

i

log

{
1 + exp

[
log(ϵ+R

q(m−1)
i ) +

(Rq
i −R

q(m−1)
i )

ϵ+R
q(m−1)
i

− log(σ2 +
∑
j ̸=i

∑
r

Irij)

 ≤ Cq, (19)

where R
q(m−1)
i = tr

(
Hq

iQ
q(m−1)
i Hq T

i

)
and ϵ = 10−8 is

added to avoid numerical problem since the algorithm initializes
with Q

q(0)
i = 0,∀i ∈ I,∀q ∈ Q. Since the argument inside

exp is convex, the function is log-convex, hence, the left-hand
side of (19) is convex. Moreover, the proposed SCA results in
an upper bound for the original constraint, hence, it is a valid
substitute. The proposed scheme converges because at each
iteration, the feasible region of the problem shrinks, leading
to monotonic increase in the objective.

However, in the distributed optimization scenario, (19) is a
coupling constraint since the interference term in (19) forces the
constraint for the qth TP to be dependent on the rth precoder,
for ∀r ̸= q. This problem can be circumvented by replacing
the interference term with the one from the previous (global)
(n− 1)th iteration. To ensure feasibility and convergence, the
ADMM scheme is applied, and the constraint Qq

i = Q
q(n−1)
i

is added, thus converting the problem into

maxQ
∑

q

∑
i
tr
(
Hq

iQ
q
iH

qH
i

)
− α1T

nT
|Qq

i |1nT

s.t.
∑

q
tr
(
Hq

jQ
q
iH

qH
j

)
≤ Ith, i, j ∈ I : j ̸= i∑

i

log

{
1 + exp

[
log(ϵ+R

q(m−1)
i ) +

(Rq
i −R

q(m−1)
i )

ϵ+R
q(m−1)
i

− log

σ2 +
∑
j ̸=i

∑
r

I
r(n−1)
ij

 ≤ Cq,

Qq
i = Q

q(n−1)
i , Qq

i ∈ Cq, i ∈ I, q ∈ Q, (20)

where I
r(n−1)
ij ≜ tr(Hq

iQ
r(n−1)
j Hq H

i ) denotes the interference
from the rth precoder to the ith user while transmitting to
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the jth user at the (n − 1)th consensus iteration. Similar to
[36], the above problem can be modified by adding a quadratic
penalty term into the objective and express (20) as

maxQ
∑

q
fq (Qq) + ρ∥Qq

i −Q
q(n−1)
i ∥2F

s.t.
∑

q
gqij (Q

q
i ) ≤ 0,∀i, j ∈ I, j ̸= i

Qq
i ∈ C̃q,Qq

i = Q
q(n−1)
i , i ∈ I ,∀q ∈ Q.

(21)

Notice that the fronthaul constraint in (19) has now be absorbed
into the local constraint set Cq, which is denoted as C̃q. (21)
can be solved using a scheme similar to Algorithm 1. That is,
Qq(n+1) can be computed as

Qq(n+1) = argmaxQq∈C̃q f
q (Qq) + ℓq(n)Tgq(n) (Qq)+∑

i
tr(QqH

i d(Q
q
i −Q

q(n−1)
i ))+ρ∥Qq

i −Q
q(n−1)
i ∥2F (22)

using the SCA method, where Qq
i d ⪰ 0 is the Lagrangian

multiplier associated with equality constraint in (20). The
Lagrange multiplier can be updated as [40]

Q
q(n+1)
i d = Q

q(n)
i d + ρ(Q

q(n)
i −Q

q(n−1)
i ). (23)

The overall proposed scheme is summarized in Algorithm 2.

VII. ALGORITHM OVERHEAD AND COMPLEXITY

To justify the proposed distributed design schemes outlined
in Algorithm 1 and 2, a description of complexity and system
overhead is provided. For the proposed iterative schemes,
it is assumed that the channels can remain static during a
transmission time interval (TTI), which can be expected for
static environments. The timing bottleneck for Algorithm 1 is
processing delay in the local optimization step, which consists
of computation time of SDP convex programming problem
of size equals to the number of transmit antennas multiplied
by the number of UEs. The feasibility of time complexity
of the convex programming techniques for signal processing
and mobile communications is further supported in [42],
which states that it is possible to solve modest-sized convex
optimization problems on microsecond time scales. Despite
strong dependence on the solver implementation, it is important
to understand the advantages of the proposed method over the
centralized one proposed in [39]. For centralized approach,
the computational complexity of the IPM for SDP grows at
complexities O(n3) ∼ O(n6) [41] per iteration depending
on the problem structure. The amount of transferred data is
O(n), where n = n2

TQI with nT being the number of transmit
antennas, Q is the number of TPs, and I is the number of UEs.
Using the distributed method, the computational complexity per
iteration is O(m3) ∼ O(m6), with m = n2

T I , and the amount
of data transferred is O(I). As a result, the computational
complexity and amount of transferred data of the algorithm do
not scale with the number of TPs. Even though the distributed
algorithm may take more iterations to converge than IPM,
this difference in practice is less than an order of magnitude
(30–40 iterations for centralized IPM, 80–300 iterations of
the distributed algorithm). Therefore, there is a clear tradeoff

between the two, with distributed algorithm suited more for
cell-free cooperative MIMO systems.

The aforementioned analysis also holds for Algorithm 2 with
the added complexity that an SDP problem needs to be solved
during each SCA iteration. Hence, the complexity of local
optimization in Algorithm 2 is multiplied by the number of
SCA approximations being done compared with Algorithm 1.

Notably, the proposed distributed algorithms require nodes
exchange information in Step 2 of Algorithm 1 and 2, which
creates some overhead. Particularly, each node sends a real-
valued dual variable of size I(I − 1) to its’ neighbors. Given
that the X2 infrastructure existing between TPs being a high
throughput optical cable, which is a must to support a feasible
CoMP system, expected transmission delay is negligible
compared to other steps of the algorithm.

VIII. RANDOMIZATION PROCEDURE

The randomization procedure described herein is invoked
in Step 4 and 5 in Algorithm 1 and 2, respectively. For
Algorithm 1, Qq

i is obtained from (4), Fq
i with rank B is

recovered distributively by using the randomization procedure
similar to the one in [28]. Specifically, Nrand number of
Fq

i = 1/BUQq
i
Λ

1/2

Qq
i
E are generated. UQq

i
and Λ

1/2

Qq
i

are
the eigenvector and eigenvalue matrix of Qq

i , respectively.
[E]ml = ejθml and θml is independent and identically
distributed uniformly on [0, 2π], with m = 1, · · · , nT and
l = 1, · · · , B. Only those Fq

i ’s that satisfy the leakage
interference constraints, i.e., ∥HqFq(n)∥ − I

q(n)
th,ij ≤ 0, are

retained. The remaining Fq
i ’s are compared, and the one which

maximizes the objective is the optimal precoder.
It is, however, more difficult to retrieve Fq

i distributively
from Q

q(n)
i in Algorithm 2 after convergence because Fq

i has to
satisfy the limited fronthaul constraint, which requires knowing
the interference power terms from of all agents at each agent.
This procedure can be done distributively similar to Algorithm 1.
It, however, requires additional system overhead between TPs
to exchange fronthaul constraint related data. Fortunately, in
simulation, the limited fronthaul capacity constraint will often
be satisfied after Fq

i is obtained because the SINR will remain
relatively unchanged since both received signal and interference
power will decrease by relatively the same amount. Although
extra communication overhead will be incurred by the exchange
of precoders to satisfy the limited fronthaul constraint, only a
few trials of randomization are required.

IX. NUMERICAL RESULTS

A. Simulation Environment

An example of the simulated network is shown in Fig. 2.
Each service sector contains a TP (green triangle) in the middle,
surrounded by three or five UEs (red squares). A service sector
herein looks similar to a cell, but it is an area where users can
be serviced by multiple TPs in a cooperating set, and a single
TP can serve multiple users in different sectors. UEs are placed
at the edge of each of these service sectors to promote JT and to
emulate cell-free users in 5G NR networks using JT-CoMP. The
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Fig. 2. Example of simulated networks: 3 (left) and 5 (right) UEs per sector.

Table III
SIMULATED NETWORK PARAMETERS.

# of TPs/UEs Q=7, I=21, 30
# of Antennas nT =4, nR=2

Ith 10−4 W
P q 1 W
σ2 −33 dB

L0 Ref loss (dB) 60
d0 Ref distance (m) 10

PL exponent 3.76
Shadowing 10 dB

Tx antenna gain 10 dB
Carrier frequency 2.5 GHz

channel is constructed as Hq
i = Hi

wG
i
q , where Hi

w ∈ CnT×nT

denotes the channel matrix with i.i.d. zero-mean complex
Gaussian entries, Gi

q is an nT ×nT diagonal matrix whose nth

diagonal element equals
√
10L0/10 (d/d0)

−α
10ξn/10, with L0

denoting the reference path loss, d and d0 denoting the distance
between the transmitter and receiver and the reference distance,
respectively, α is the path loss exponent, and the shadow
fading 10ξn/10 is independent of the path loss (d/d0)

−α and
is a log-normal distributed random variable, with ξn being
a normal distributed random variable with zero mean and
variance equals to 10 dB as indicated in Table III. The transmit
power and instantaneous interference leakage power threshold
were chosen similar to [39] and [28]. The choice of Ith = 10−4

W is because the average SINR in cellular systems varies from
−5 to 20 dB. The average power received from a reference
signal has a typical range from −40 dBm to −140 dBm, which
equals 10−4 to 10−14 W. Therefore, choosing Ith = 10−4 W
and having received signal power around 10−4 W will make
the SINR to be around 0 dB, which is typical SINR QoS value
in the references. Other network and algorithm parameters
are summarized in Table III and are selected according to the
3GPP 5G NR user equipement radio transmission and reception
specification document [43]. CVX [47] with MOSEK [48] was
used to obtain solution to (3) and (20) on an Intel Core i7
4790 4GHz machine with 32GB RAM. Centralized algorithm
in [39] is used as a baseline for the proposed algorithm. In
addition, joint precoder design and user selection works in
[22], [24], and [46] are used for performance comparison.

With the exception of Fig. 6, all simulation results below are
based on the network with 3 UEs per sector shown in Fig. 2.
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Fig. 3. Two instances of Algorithm 1 convergence for different connection
density with unlimited fronthaul.

B. Convergence Behavior

In particular interest of this work is to show the impact
that network connectivity and the number of message passing
have on algorithm convergence for unlimited fronthaul capacity.
Fig. 3 shows convergence behavior when each TP is connected
to two and three nearest neighbors, labeled as 2NN and
3NN, respectively. A fully connected network is used as a
performance benchmark, and is labeled as FC in Fig. 3. For
each node q, weights [W]qr, r ∈ N q are selected to be equal
1/|N q|. Number of consensus iterations was set to φ=1.

It can be seen from the results that the algorithm converges
faster for a more densely connected network, as stated in
Theorem 1. To highlight the effect of limited fronthaul capacity,
Cq = 1, 2, 3, 4 bits/Hz/sec were simulated. The first value
corresponds to worst-case microwave fronthaul capacity in [44]
and the last corresponds to the situation when the fronthaul
constraint becomes looser than the leakage interference power
constraint so that the latter becomes active. Convergence results
are shown in Fig. 4. Comparing to the unlimited fronthaul
capacity scenario, it can be observed from Fig. 4 that the
objective value of the distributed design, regardless of the
density of the connection, will exceed that of the centralized in
the first few iterations, which does not occur in the unlimited
fronthaul case. This is due to the fact that before convergence is
reached, interference power tends to oscillate a lot due to the use
of the SCA in the interference term in (20), making fronthaul
approximation imprecise and producing infeasible solutions.
However, as the algorithm proceeds, a solution close to the
centralized one can be achieved. Next, algorithm convergence
was tested for a different number of consensus iterations. Fig. 5
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Fig. 4. Two instances of Algorithm 2 convergence for different connection
density, Cq = 2 bits/sec/Hz.
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Fig. 5. Two instances of Algorithm 1 convergence for different number of
consensus iterations (message passing).

shows convergence behavior when 1, 2, and 13 number of
consensus iterations are used with different connection density.
The latter case corresponds to the situation where information
of each node is passed to all other nodes in the network. The
centralized and distributed design with φ = ∞ are used as
performance benchmarks. The latter is equivalent to the FC case
(with equal edge weights) in the previous experiment, which
holds from (7). From experimental data, it can be observed
that convergence becomes faster as the number of consensus
iterations increases.

C. Performance with Different α and Cq

Next, the performance of the proposed algorithms in terms
of average objective value and sum rate (average over the
number of channel realizations) are compared to the previously
proposed centralized design in [39]. Moreover, in order to
show performance degradation of the proposed algorithms
due to unknown interference leakage threshold distribution
per TP, i.e., Iqth,ij , q ∈ Q, i, j ∈ I : i ̸= j, the proposed
algorithm with a priori knowledge of Iqth,ij is simulated and
is labeled as “GNDTR” (ground truth) in the subsequent
figures. The ground truth value of Iqth,ij is obtained from the
centralized solution. Fig. 6 shows the performance difference
for FC, 2NN, and 3NN topologies and FC with ground truth
Iqth,ij . Also, performance for different network densities is
assessed, for 3 and 5 UEs per sector, respectively. Each point
is obtained based on 500 channel realizations with random user
placement in each iteration. It can be observed that the average
performance degrades for less densely connected networks
and there is also some degradation due to the use of the
adaptive resource allocation scheme proposed in Section IV-B,
which supports the theoretical results above. It can also be
seen that the proposed adaptive resource adaptive scheme
performs well compared to the ground truth case and causes
relatively small degradation. Even though ground truth Iqth,ij
is obtained using the solution from the centralized design,
it slightly underperforms the centralized design due to the
suboptimality of the primal solution as stated in Theorem 4. It
is also important to mention that when the number of users
per sector increases, overall performance degrades, as there
are more constraints regarding interference that need to be
satisfied. Next, Fig. 7 shows performance gain in terms of
average objective and normalized sum rate for the proposed
adaptive resource allocation in comparison to existing schemes
in [22] and [24], that considered equal resource allocation. The
gain obtained in the proposed method is due to the fact that
Iqth,i,j is computed more precisely such that “victims” that can
sustain higher leakage interference will lead to higher received
signal power allocated to the desired users, resulting in higher
rate.

Performance results for the fronthaul-constrained network
are shown in Figs. 8 and 9. The performance loss is noticeably
bigger for a weakly connected network, due to the combination
of dual decomposition, resource allocation, and ADMM
algorithms. The average sum rate performance vs. Cq with
different values of α of the proposed algorithm is also compared
with the joint beamforming-semidefinite relaxation (JB-SDR)
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Fig. 6. Average objective . Average normalized rate. Average objective value
and average normalized rate vs. α of Algorithm 1 without fronthaul constraint
for different connection density.

algorithm in [46] in Fig. 9, which shows the proposed algorithm
can outperform JB-SDR when Cq is relatively small.

Finally, the run time performance vs. number of transmit
antennas for the proposed distributed algorithms are compared
to its centralized counterpart and [22] with and without limited
fronthaul in Fig. 10. As expected, the run time grows as the
system size increases. Also, the run time for the algorithms
that need to solve problem with limited fronthaul is higher
than those which consider unlimited fronthaul because SCA
needs to be employed in both the centralized and distributed
cases when fronthaul constraint exists.

Fig. 7. Average objective. Average normalized rate. Average objective
value and average normalized rate vs. α of Algorithm 1 without fronthaul
constraint comparison for optimal resource resource allocation, proposed
resource allocation scheme and equal resource allocation in [22] and [24].

X. CONCLUSION

A joint TP selection and precoding scheme for cell-free co-
operative MIMO using underlay transmission is proposed. The
original nonconvex problem is converted into a convex one such
that a unique global solution can be found efficiently. Novel
consensus-based dual decomposition distributed algorithm for
unconstrained fronthaul has been proposed to obtain a solution
to the reformulated problem where only a small amount of
information needs to be exchanged between different agents.
Also, data privacy is ensured as it is difficult to reconstruct the
primal solution from the exchanged information. This algorithm
extended previous works by not requiring a priori knowledge
about the interference constraint threshold, i.e., the availability
of an oracle is not needed. Convergence has been proven and the
convergence rate equation has been shown. Next, the proposed
scheme is extended to a limited fronthaul capacity scenario. A
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combination of successive convex approximation and ADMM
are used to resolve the nonconvexity and constraint coupling
problems to make distributed optimization possible.

APPENDIX A
PROOF OF THEOREM 1

Proof. First, from the proposed resource allocation scheme,
the sequence L

q(n)
ij is nonincreasing. This is true because if

the constraint is active, the threshold will not decrease. Denote
the overall amount of slack for pair ij as S

(n)
ij =

∑
q S

q(n)
ij .

Using (14), S(n)
ij can be written as

S
(n)
ij =

∑
q

(
I
q(n)
th,ij − L

q(n)
ij

)
=
∑

q

(
L
q(n−1)
ij +

∑
r∈N q

[W]rqS
r(n−1)
ij − L

q(n)
ij

)
=
∑

q

(
L
q(n−1)
ij − L

q(n)
ij +

∑
r∈Lq

[W]rqS
r(n−1)
ij

)
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Fig. 9. Average sum rate for α = 0 and α = 5e− 4 . Average sum rate for
α = 2.5e− 4 and α = 1e−3. Average sum rate vs. Cq of Algorithm 2 with
fronthaul constraint for different α.

= S
(n−1)
ij +

∑
q

(
L
q(n−1)
ij − L

q(n)
ij

)
︸ ︷︷ ︸

some slack that has been consumed
by nodes with active constraints,<0

,

where the last equality is obtained using (6). As explained at
the beginning of the proof Lq(n)

ij ≤ L
q(n−1)
ij , hence S

(n)
ij is also

non-increasing and first statement of the theorem holds. Further,
if constraint (3b) is active at optimal point, limn→∞ S

(n)
ij = 0

and it can be concluded that inf S(n)
ij = 0 due to the fact that if

a sequence of real numbers is decreasing and bounded below,
then its infimum is the limit.

APPENDIX B
BASIC RELATIONS FOR THEOREMS PROOFS

The first two lemmas are general results from consensus
theory in [26] and are repeated here for completeness. Other
lemmas and theorems are new and are written and proven to
establish the convergence properties of the proposed distributed
algorithm.
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Lemma 1 ([26] Lemma 1).
Define xq ∈RI(I−1) as a subvector of x(n) ∈RI(I−1)Q, i.e.,
x(n)≜ [x1T · · ·xQT ]T . Denote x as the mean of xq , i.e., x =
1
Q

∑Q
q=1 x

q . Then for q, r = 1, · · ·, Q and q ̸= r

(a) if ∥xq − xr∥2 ≤ β, then ∥xq − x∥2 ≤ Q−1
Q β,

(b) if ∥xq − x∥2 ≤ β, then ∥xq − xr∥2 ≤ 2β.

Proof.
(a) ∥xq − x∥2 =

1

Q

∥∥∥Qxq −
∑

q
xq
∥∥∥
2

=
1

Q

∥∥∥∑
q
xq −Qxq

∥∥∥
2

=
1

Q

∥∥∥∑
q ̸=r

(xq − xr)
∥∥∥
2

≤ 1

Q

∑
q ̸=r

∥xq − xr∥2 ≤ Q− 1

Q
β.

(b) ∥xq − xr∥2 = ∥xq − x+ x− xr∥2
≤ ∥xq − x∥2 + ∥x− xr∥2 ≤ 2β.

Lemma 2 ([26] Lemma 2). Suppose x(n+1) =(
Wφ ⊗ II(I−1)

)
x(n), with W fulfilling the conditions

in (6) and (7). Let ∥xq(n)−xr(n)∥2≤σ≤∞, q, r = 1, · · ·, Q.
Then

∥xq(n+1) − xr(n+1)∥2 ≤ 2νφQσ. (24)

Proof. Let x(n) = x̃(n) + a(n) with x̃(n+1) =(
1Q1T

Q

Q ⊗II(I−1)

)
x(n) and 1T

I(I−1)Qa
(n) = 0. a(n) ∈

RI(I−1)Q also contains subvectors aq(n), similarly to x(n)

and xq(n). The results of Lemma 1 shows that ∥aq(n)∥2 ≤
Q− 1/Qσ < σ, for Q > 1. Hence, ∥a(n)∥2 ≤ Qσ.
Furthermore, x(n+1)=

(
Wφ⊗II(I−1)

)
(x(n) + a(n)) = x(n) +(

Wφ ⊗ II(I−1)

)
aq(n). Using this relationship,∥∥∥xq(n+1) − x(n+1)

∥∥∥
2
≤
∥∥∥x(n+1) − x̃(n+1)

∥∥∥
2

=
∥∥∥(Wφ ⊗ II(I−1))(a

(n) − 0Q)
∥∥∥
2

=
∥∥∥[ (Wφ − 1Q1

T
Q/Q

)
⊗ II(I−1)

]
a(n)

∥∥∥
2

≤
∥∥∥[ (Wφ −

(
1Q1

T
Q/Q

)φ)⊗ II(I−1)

]
a(n)

∥∥∥
2

≤
∥∥(W − 1Q1

T
Q/Q

)∥∥φ
2

∥∥II(I−1)

∥∥
2

∥∥a(n)∥∥
2
≤ νφQσ,

where the last inequality is true because ∥W− 1Q1
T
Q/Q∥2 =

ρ
(
W − 1Q1

T
Q/Q

)
≤ ν according to (7). Then, according to

part (b) of Lemma 1,∥∥xq(n+1) − xr(n+1)
∥∥
2
≤ 2νφQσ.

Before presenting the next lemma,
define ℓ ≜

[
ℓ1T · · · ℓQT

]T
and

g ≜
[
g1T · · ·gQT

]T
, then from (13) and (12), the update of ℓ

becomes

ℓ(n+1) = (Wφ ⊗ II(I−1))P+[ℓ
(n) − c(n)g(n+1)]. (25)

Also define ℓ ≜ 1
Q

∑
q ℓ

q, i.e., average of all ℓqs ∀q ∈ Q.
Lemma below establishes important bound for iterates of ℓq.

Also, in order to shorten notations,
(xx)

≤ is used to denote
“inequality follows from equation (xx)”.

Lemma 3.
Suppose ℓ, is generated according to (25) and ν is defined in
(7). Assuming ∥ℓq(n) − ℓ

(n)∥2 ≤ β, there exists a φ ≥ 1, such
that if φ ≥ φ+ δ with φ ≥ 0 and δ ≥ 0, then ∀q ∈ Q

∥ℓq(n+1) − ℓ
(n+1)∥2 ≤ νδβ,

Proof. Let uq ∈ RI(I−1) and vq ∈ RI(I−1), ∀q ∈ Q, at the
nth iteration, be defined as

uq(n) ≜ ℓq(n) − c(n)gq(n), (26)

with gq(n) being the subgradient of the objective function in
(9) at the nth global iteration after Qq(n+1)

i is obtained. Then
the distance between iterates of uq(n) can be bounded as

∥uq(n)−ur(n)∥2 = ∥ℓq(n) − c(n)gq(n) − ℓr(n) + c(n)gr(n)∥2
≤ ∥ℓq(n) − ℓr(n)∥2+∥c(n)(gr(n)− gq(n))∥2
≤ ∥ℓq(n) − ℓr(n)∥2+2c(n)G

Lemma1(b)
≤ 2(β + c(n)G). (27)

Next, the non-expansive property of P+ can be used to obtain

∥P+[u
q(n)]− P+[u

r(n)]∥2 ≤ ∥uq(n) − ur(n)∥2
≤ 2(β + c(n)G). (28)
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Next, (25) implies that ℓq(n+1) =
∑

p∈N q [Wφ]pqP+[u
p(n+1)],

then after consensus step

∥ℓq(n+1) − ℓr(n+1)∥2 =∥∥∥ ∑
p∈N q

[Wφ]pqP+[u
p(n+1)]−

∑
p∈N r

[Wφ]prP+[u
p(n+1)]

∥∥∥
2
=∥∥∥[Wφ⊗II(I−1)P+[u

(n+1)]
]
q
−
[
Wφ⊗II(I−1)P+[u

(n+1)]
]
r

∥∥∥
2

(28),(24)

≤ 4νφ(Q− 1)(β + c(n)G) ≤ 4νφQ(β + c(n)G), (29)

where u ≜
[
u1T · · ·uQT

]T
. Furthermore, by Lemma 1 (a)

∥ℓq(n+1)−ℓ̄
(n+1)∥2 ≤ 4νφQ(β + c(n)G).

Next, substituting

φ≥log(β)−log(4Q(β + c(n)G))

log(ν)
+δ ≜ φ+ δ, δ≥0 (30)

into previous equation produces ∥ℓq(n+1) − ℓ
(n+1)∥2 ≤ νδβ

and the lemma is proven.

APPENDIX C
PROOF OF THEOREM 2

The quantity ∥ℓq(1) − ℓ̄
(1)∥2 is upper bounded by β(1) from

Assumption 3. Choose φ ≥ φ̄ + δ, δ ≥ 0, with φ̄ stated in
Theorem 2. Then, by Lemma 3 it follows that,

∥ℓq(2) − ℓ̄
(2)∥2 ≤ νδβ(1);

∥ℓq(3) − ℓ̄
(3)∥2 ≤ 4νφQ(νδβ(1) + c(n)G)

(30)
=

νδβ(1) ν
δβ(1) + c(n)G

β(1) + c(n)G
;

∥ℓq(4) − ℓ̄
(4)∥2 ≤

νδβ(1)

β(1) + c(n)G

(
νδβ(1) ν

δβ(1) + c(n)G

β(1) + c(n)G
+ c(n)G

)
;

∥ℓq(n) − ℓ̄
(n)∥2 ≤ νδβ(1)

(
νδβ(1)

β(1) + c(n)G

)n−1

+c(n)G

(
−1 +

n−1∑
t=0

(
νδβ(1)

β(1) + c(n)G

)t
)
.

Defining p ≜ νδβ(1)

β(1)+c(n)G
, since p < 1, then sum of geometric

series formula can be used to obtain

∥ℓq(n)− ℓ̄
(n)∥2≤pn−1νδβ(1)+pc(n)G

1− pn−1

1− p
≜β(n) (31)

and the theorem is proved.

APPENDIX D
PROOF OF THEOREM 3

Definition 1. A vector g is subgradient of a convex function
d at x if

d(y) ≥ d(x) + gT (y − x),∀y ∈ dom f. (32)

Definition 2. The set of all subgradients of a convex function
d is called subdifferential of d at x, and is denoted by ∂d(x):

∂d(x)=
{
g|d(y)≥ d(x) + gT (y − x),∀y∈domf

}
. (33)

Definition 3. The ϵ-subdifferential set for ϵ ≥ 0 of a convex
function d at x is the collection of ϵ-subgradients:

∂ϵd(x) =
{
g|d(y)≥d(x)+gT (y−x)−ϵ,∀y∈dom f

}
.
(34)

Next lemma shows important property of ϵ-subdifferential.

Lemma 4. Let d(x) : X → R be a convex function. Let
the set X ⊂ Rn be convex and compact and in particular
maxx∈X ∥x∥2 ≤ η. There exist two finite scalars ϵ > 0 and
τ > 0 such that, ∀x ∈ X, ∀g(x) ∈ ∂d(x), and ∀ν, with
∥ν∥2 ≤ τ ,

g(x) + ν ∈ ∂ϵd(x)

holds.

Proof. The claim is proven by directly using the definition of
ϵ-subgradient. Since q is convex function ∀x,y ∈ X , by (32),

d(y)− d(x) ≥ ⟨g(x),y − x⟩
= ⟨g(x) + ν,y − x⟩ − ⟨ν,y − x⟩
≥ ⟨g(x) + ν,y − x⟩ − ∥ν∥2∥y − x∥2
≥ ⟨g(x) + ν,y − x⟩ − 2τη

holds, which has the form of (34) for τ ≤ ϵ/(2η).
Next, define y(n) ∈ RI(I−1) and d(n) ∈ RI(I−1) as

y(n) ≜ P+[ū
(n−1)] and d(n)≜ ℓ̄

(n) − y(n), (35)

where ū(n−1) ≜ 1/Q
∑

q u
q(n−1), with uq(n) defined in (26).

To prove convergence, ∥ℓ̄(n) − y(n)∥2 will be shown to be
bounded, where y is updated via an ϵ-subgradient method.
Therefore, Proposition 4.1 in [45] can be used to establish a
basis for the convergence rate. Then the combination of ∥ℓ̄(n)−
y(n)∥2 and convergence rate of the ϵ-subgradient method can
then directly prove Theorem 3. To see this, the following
lemmas need to be established.

Lemma 5. Let y(n) be defined as in (35). Under the same
assumptions as in Theorem 2, ∀n ≥ 1

(a) The quantity ∥d(n)/c(n)∥ is upper bounded by β(n)/c(n).
(b) The following inequalities are true for all q ∈ Q

d(ℓq(n)) ≥ d(y(n))− 2QGβ(n), (36)

dq(y)≥dq(y(n))+⟨gq(n)+ν,y − y(n)⟩− ϵ(n)

Q
, y∈R+, (37)

where d(y(n))≜
∑

qd
q(y(n)) and ϵ(n)=Q(β(n)(4G+2τ)+ζ).

(c) The quantity h(n) ≜
∑

q

(
gq(n) + d(n)

c(n)

)
is an ϵ-

subgradient of d(y) with respect to y.
(d) The variable y(n) is updated according to the ϵ-subgradient
method

y(n+1) = P+

[
y(n) − c(n)

Q
h(n)

]
. (38)

Proof.
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(a) The bound can be proven by proving ∥d(n)∥2<β(n). Using
non-expansive property of P+,

∥d(n)∥2 =
1

Q

∥∥∥∑
q
P+[u

q(n)]− P+

[∑
q
ū(n)

]∥∥∥
2

≤ 1

Q

∑
q
∥uq(n) − ū(n)∥2 ≤ β(n).

(b) By the convexity of dq(ℓq(n)) for q, r ∈ Q it can be written

dq(ℓq(n))
(33)

≥ dq(y(n))+⟨g, ℓq(n)−y(n)⟩,where g∈∂ϵ(n)d(y
(n))

= dq(y(n))− ⟨g,y(n) − ℓq(n)⟩
= dq(y(n))− ⟨g,y(n) − ℓ̄+ ℓ̄− ℓq(n)⟩
≥ dq(y(n))− ∥g∥2∥y(n) − ℓq(n)∥2
≥ dq(y(n))−G

(
∥ℓ̄(n) − ℓq(n)∥2 + ∥d(n)∥2

)
≥ dq(y(n))−G(β(n) + β(n))

= dq(y(n))− 2Gβ(n), (39)

where the last inequality is obtained from (31). Then, summing
the last equation over q ∈Q equals (36). Moreover, for any
y∈R+, from Lemma 4 and (39), dq(y) is upper bounded as

dq(y)
(33)

≥ dq(ℓq(n)) + ⟨gq(n) + ν,y − ℓq(n)⟩ − ζ

(39)

≥ dq(y(n)) + ⟨gq(n) + ν,y − ℓq(n)⟩ − 2Gβ(n) − ζ

= dq(y(n)) + ⟨gq(n) + ν,y − y(n) + y(n) − ℓq(n)⟩
− 2Gβ(n) − ζ

≥ dq(y(n)) + ⟨gq(n) + ν,y − y(n)⟩
− ∥gq(n) + ν∥2∥ℓq(n) − y(n)∥2 − 2Gβ(n) − ζ. (40)

Since ∥ν∥2 ≤ τ , ∥gq(n))∥2 ≤ G, ∥ℓq(n)− ℓ̄
(n)∥2 ≤ β(n) and

∥d(n)∥2 ≤ β(n), and using (35), it is possible to bound
following quantities as

∥gq(n) + ν∥2 ≤ G+ τ,

∥ℓq(n) − y(n)∥2 = ∥ℓq(n) − ℓ̄
q
+ d(n)∥2 ≤ 2β(n) to obtain

dq(y)≥dq(y(n))+⟨gq(n)+ν,y−y(n)⟩−(β(n)(4G+ 2τ) + ζ)︸ ︷︷ ︸
≜ϵ(n)/Q

,

which is (37).
(c) From (33), the inequality in (37) implies (gq(n) + ν) ∈
∂ϵ(n)/Qq

q(y) with ϵ(n)/Q = (β(n)(4G+ 2τ) + ζ). Summing
over q yields

d(y)≥d(y(n))+
〈∑

q
gq(n)+ν,y−y(n)

〉
−Q(β(n)(4G+2τ)+ζ),

where the inequality holds for any ν satisfying ∥ν∥ ≤ τ . Since
τ can be selected such that β(n)/c(n) ≤ τ , then it is possible
to choose ν = d(n)/c(n), which proves part (c).

(d) It is sufficient to write explicitly the update rule for y(n).
Using the definition of y(n+1) in (35) and (35), y(n+1) can
be written as

y(n+1) = P+

[ 1
Q

∑
q

(
ℓq(n) − c(n)gq(n)

) ]
= P+

[
ℓ̄
(n) − c(n)

Q

∑
q
gq(n)

]
= P+

[
y(n) + d(n) − c(n)

Q

∑
q
gq(n)

]
= P+

[
y(n) − c(n)

Q

∑
q

(
gq(n) +

d(n)

c(n)

)]
,

which proves part (d).
Proof. (Theorem 3) Given Lemma 5, the sequence {y(n)}
is generated with an ϵ(n)-subgradient algorithm to maximize
d(y). For n ≥ 1

y(n+1) = P+

[
y(n) − (c(n)/Q)hq(n)

]
.

Therefore, by using Proposition 4.2 in [45],

lim
n→∞

sup d(y(n)) = d∗ + lim
n→∞

supQ(β(n)(4G+ 2τ) + ζ)

= d∗ +Qζ,

holds, which concludes proof of the theorem.

APPENDIX E
PROOF OF THEOREM 4

Lemma 6. Let y(n) be defined as (35). Under the same
assumptions as Theorem 3
(a) For any y ∈ R+,∑n

t=1
⟨h(t),y−y(t)⟩≥−∥y(1)−y∥22

2c(n)/Q
−n

c(n)Q(G+τ)2

2
; (41)

(b) For any y ∈ R+,
n∑

t=1

⟨h(n),y−y∗⟩ ≥ −∥y(1) − y∥22
2c(n)/Q

−n
c(t)Q(G+ τ)2

2
−ϵ(n),

(42)
where ϵ(n) = Q(β(n)(4G+ 2τ) + ζ).

Proof.
(a) Since ∥gq(n)+ν∥2 ≤ G+ τ , using the update rule in (38),
for any y ∈ R+,

∥y(t+1) − y∥22 =
∥∥∥y(t) − c(t)

Q
h(t) − y

∥∥∥2
2

=

(
c(t)

Q

)2

∥h(t)∥22 −
2c(t)

Q

〈
h(t),y(t) − y

〉
+
∥∥∥y(t) − y

∥∥∥2
2

≤ ∥y(t) − y∥22 −
2c(t)

Q

〈
h(t),y(t) − y

〉
+ c(t)2(G+ τ)2,

holds, where ∥h(t)∥2 = ∥
∑

q g
q(t)+d(t)/c(t))∥2 ≤ Q(G+τ).

Therefore, for any y ∈ R+

⟨h(t),y−y(t)⟩≥ ∥y(t+1)−y∥22−∥y(t)−y∥22
2c(t)/Q

− c(t)Q(G+τ)2

2
.

(43)
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Summing across t leads to∑n

t=1
⟨h(t),y−y(t)⟩≥ −∥y(1) − y∥22

2c(n)/Q
− n

c(n)Q(G+τ)2

2
,

which proves part (a).
(b) Since h(t) is an ϵ(t)-subgradient of the dual function d(·)
at y(t), using the ϵ-subgradient inequality (34)

d(y∗) ≥ d(y(t)) +
〈
h(t),y∗ − y(t)

〉
− ϵ(t)

⇒ ⟨h(t),y(t) − y∗⟩ ≥ d(y(t))− d(y∗)− ϵ(t) ≥ −ϵ(t),

where the last inequality comes from the optimality condition
d(y(t)) ≥ d(y∗). Then, it follows

⟨h(t),y − y∗⟩ = ⟨h(t),y − y(t)⟩+ ⟨h(t),y(t) − y∗⟩
≥ ⟨h(t),y − y(t)⟩ − ϵ(t).

(44)

Substituting the right-hand side of (43) into the right-hand
side of (44), it follows

⟨h(t),y − y∗⟩ ≥∥y(t+1) − y∥22 − ∥y(t) − y∥22
2c(t)/Q

− c(t)Q(G+ τ)2

2
− ϵ(t).

Summing the above expression across t to get∑n

t=1
⟨h(t),y−y∗⟩≥− ∥y(1)−y∥2

2c(t)/Q
−n

c(t)Q(G+ τ)2

2

−
∑n

t=1
ϵ(t),

which proves part (b).
Proof. (Theorem 4)
(a) By concavity of the primal cost function f (n) ≜

∑
q f

q(n)

and definition of Qq(n+1) as a local Lagrangian maximizer of
local Lagrangian function Lq(Qq, ℓq),

f (n) =
∑

q
dq
(
ℓq(n)

)
−
〈
gq(n), ℓq(n)

〉
≥ 1

n

n∑
t=1

∑
q
dq
(
ℓq(t)

)
−
〈
gq(t), ℓq(t)

〉
.

(45)

is true. By (37) in Lemma 5 with y = ℓq(t)

dq(ℓq(t)) ≥ dq(y(t)) +
〈
gq(t), ℓq(t)

〉
+ ⟨ν, ℓq(t)⟩

−
〈
gq(t) + ν,y(t)

〉
− ϵ(t)/Q

with ϵ(t)/Q = β(t)(4G+ 2τ) + ζ. Summing over q leads to∑
q
dq(ℓq(t)) ≥

∑
q

(
dq(y(t)) + ⟨ℓq(t),gq(t)⟩

+⟨ν, ℓq(t)⟩ − ⟨gq(t) + ν,y(t)⟩ − ϵ(t)/Q
)
.

Replacing dq(ℓq(t)) in (45) with the lower bound in the
preceding equation, (45) becomes

f (n)≥ 1

n

n∑
t=1

∑
q

dq(y(t))+ ⟨ν, ℓq(t)⟩− ⟨gq(t)+ν,y(t)⟩− ϵ(t)

Q
.

(46)
Since h(t) =

∑
q g

q(t) + ν, the third term on the right-
hand side in (46) can be replaced by the lower bound in

Lemma 6(a) by setting y=0. Furthermore, it is possible to
bound ⟨ν, ℓq(t)⟩ ≥ −τΛ, which comes by construction with
∥ν∥2≤τ and ∥ℓq(t)∥2≤Λ. Hence, (46) can be rewritten as

f (n)≥d(y(n))−QτΛ− ∥y(1)∥22
2nc(n)/Q

−c(n)Q(G+ τ)2

2
− 1

n

n∑
t=1

ϵ(t).

By strong duality d∗=f∗ and d(y)≥d∗,∀y∈R+, so that the
equation above can be rewritten as

f (n) ≥ f∗−QτΛ− ∥y(1)∥22
2nc(n)/Q

− c(n)Q(G+ τ)2

2
− 1

n

n∑
t=1

ϵ(t).

In addition, from Assumption 5 1
n

∑n
t=1 ϵ

(t) ≤ ϵ(1) and
∥y(1)∥22≤Λ2 since ϵ(n) is a nondecreasing sequence (because
β(n) is an nondecreasing sequence) with ϵ(1)≥· · ·≥ϵ(n), for
n > 1. The expression above can be further rewritten as

f (n) ≥ f∗ −QτΛ− Λ2

2nc(n)/Q
− c(n)Q(G+ τ)2

2

−Q(β(1)(4G+ 2τ) + ζ)

and part (a) of the theorem is proven.
(b) Given any dual optimal solution y∗,

f (n) = f (n) +
〈∑

q
hq(n),y∗

〉
−
〈∑

q
hq(n),y∗

〉
(47)

is true. Also the first two terms on the right-hand side can be
rewritten as

f (n) +
〈∑

q
hq(n),y∗

〉
= f (n) +

〈∑
q
gq(n),y∗

〉
+Q⟨d(n)/c(n),y∗⟩

≤ f (n) +
〈∑

q
gq(t),y∗

〉
+QΛτ,

where the Cauchy-Schwarz inequality was used to bound〈
d(n)/c(n),y∗〉 ≤ ∥∥d(n)/c(n)

∥∥
2
∥y∗∥2 ≤ τΛ.

Next, from the saddle point property, i.e., L(Q(n),y∗) ≤
L(Q∗,y∗) = f∗, is used to further rewrite the bound as

f (n) +
〈∑

q
gq(n),y∗

〉
+QτΛ = L(Q(n),y∗) +QτΛ

≤ f∗ +QτΛ. (48)

Also, it is possible to upper bound −
〈
y∗,h(n)

〉
by substituting

y = 2y∗ ∈ R+ inside part (b) of Lemma 6,

−⟨h(n),y∗⟩ ≤ ∥y(n) − 2y∗∥22
2c(n)/Q

+
c(n)Q(G+ τ)2

2
+ ϵ(n)

≤ 5Λ2

2c(n)/Q
+

c(n)Q(G+ τ)2

2
+ ϵ(n), (49)

where the last inequality was obtained due to the fact that
∥y(n+1) − 2y∗∥22 ≤ ∥y(n)∥22 + ∥2y∗∥22 ≤ 5Λ2 by Assumption
5. Therefore, by putting (48) and (49) into (47), an upper bound
on f (n) can be obtained as

f (n) ≤ f∗ +QτΛ +
5Λ2

2nc(n)/Q
+

c(n)Q(G+ τ)2

2

+Q(β(1)(4G+ 2τ) + ζ),

which concludes the proof.
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