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Development of a Cycling Safety Services System
and Its Deep Learning Bicycle Crash Model

I-Hsuan Peng, Pei-Chun Lee, Chen-Kang Tien, and Jyun-Sen Tong

Abstract—This research developed an Internet of things (IoT)
services system for cyclists to keep them safe when cycling –
from terminal to back end – called the cycling safety services
system. The proposed system consists of wearable devices, a
service mobile app, and back-end services, primarily providing
three categories of services: (1) The cycling team services, (2)
the physiological status services, and (3) the environmental infor-
mation service, incorporating the technologies of deep learning,
IoT end device development, mobile app programming, RESTful
API implementation, open data exploitation, etc. The proposed
system aims at protecting the cyclists from being left out when
cycling as a team, warning them when their physiological status
is going to be abnormal or when there is a possibility of a bicycle
crash, as well as proactively sending out urgent messages with
location information when a crash occurs. Moreover, to enable
the mobile app to recognize crash events, this research trained
a deep learning bicycle crash model of 87.8049% accuracy and
implemented a procedure in the mobile app based on this model
to detect bicycle crashes automatically. The proposed system also
provides a way for the cyclists to report any false crash alarm so
that the crash model can be re-trained to reduce its false alarm
ratio after the system is distributed to the consumers in the
future. This research confirmed that the proposed system works
well, and suggests that the proposed system, the crash model, the
data collection method with its associated mobile apps, and the
anonymous crash locations collected in the future can be valuable
and contribute to the cycling society and relevant researchers in
a positive way.

Index Terms—AI, artificial intelligence, bicycle crash, cycling,
cycling team, deep learning, Internet of things, IoT, off the team,
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physiological information.

I. INTRODUCTION

IT has been a while that riding a bicycle or cycling be-
comes a popular activity worldwide, with purposes such as

recreation, commuting, exercising, and competition. Though
cycling might benefit the environment as well as human beings
for it produces less pollution and – as a form of exercising
– can be good for a person’s health [1]–[3], it was found
in newspapers, blogs, research articles in addition to the
experiences of the authors’ friends and relatives that some
health or life threats hide behind cycling that could harm or
kill a cyclist. For instance, cyclists could be uncomfortable,
injured, or struck down because they continue cycling even
when their physiological status has already been abnormal
and unsuitable to exercise – such as, exceeding a certain
heart rate [4], hypohydration [5], and low oxygen satura-
tion [6] – especially when they already have cardiovascular
diseases [7]. Some cases also point out that bad air quality
could badly affect a cyclist’s health [8]. Moreover, a cyclist
might get seriously harmed or even killed due to a severe
crash [9]–[18].

In this context, intensive multidisciplinary theoretical and
practical research has been conducted especially concern-
ing cycling crashes or near misses, which have apparently
drawn great attention from governments, organizations, and
researchers worldwide [9]–[29]. Even a standardized technical
specification for the intelligent transport system (ITS) – ETSI
TS 103 300-2 V2.1.1 [19] – has been officially defined by
ETSI for so-called vulnerable road users, including cyclists, of
course. Besides various facets of analyses and investigations
performed on cycling accidents based on diverse data sources
around the world as well as solutions or suggestions regarding
road safety policies, cycling infrastructures, and cyclist’s per-
sonal cycling safety equipment, emerging advanced computer
science technologies also arouse interest of researchers and
enterprises to develop technological hardware/software ser-
vices to keep cyclists secure while also carrying out real-life
situational data collection for further study and iterative service
enhancement. For example, Ibrahim et al. [20], [21] proposed
a computer vision-based deep learning model to detect cycling
near misses. Tabei et al. [22] designed a system to detect
cycling accidents using a support vector machines (SVM)-
based algorithm with the collected magnetic, angular rate,
and gravity (MARG) sensory data. The Amazon smartcycle
project [24] developed a highly integrated system incorporat-
ing the technologies of the IoT, computer vision, cloud and
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edge computing, machine learning, etc. to detect road hazards
and localize obstacles during the ride. Williams [25] innovated
a mobile app that exploits the internal sensors of an iOS
smartphone to detect a bicycle crash using a threshold-based
detection algorithm with the assistance of Apple’s CMMo-
tionManager sensor fusion algorithms, and when a crash is
recognized, automatically invoke the virtual voice assistant
Amazon Alexa to guide the cyclist through the crash reporting
procedure. Aside from the tech-aided facilities applied to
the cyclist’s side, there are also solutions designed for other
vehicles on the road or the ITS, such as a vehicle open
door safety system proposed by Zhu et al. [26], an automatic
traffic monitoring and management system for pedestrians
and cyclists developed by Pourhomayoun [27], and a cyclist
orientation detection algorithm presented by Garcia-Venegas et
al. [28], most of which exploit the technologies of computer
vision and machine learning to identify cyclists or their
moving statuses. In [29], Alvi et al. provided us with a
thorough survey on varied IoT-based traffic accident detection
systems – though not specifically focusing on cycling – using
different kinds of sensors along with various sorts of detection
algorithms, among which the machine learning technology is
seemingly the most dominant tool used by researchers over
the past decade.

Apart from all the respectable efforts made by multidisci-
plinary researchers around the world, this preliminary research
aims at developing an integrated solution for cycling team
safety not only tackling the bicycle crash problem but also
taking care of the cyclist’s physiological statuses in addition
to informing the cyclist about the environmental conditions.
To the best of the knowledge of the authors, there were
not yet such an integrated solution – incorporating multiple
functional sets such as cycling team application, cycling
safety services, physiological statuses informing and alerting
as well as environmental conditions reporting – being proposed
in the literature. To divide and conquer the problems, this
research narrowed the scope down to provide a practical and
feasible solution to recreational, amateur road biking with a
team while only single-bicycle crashes [16]–[18] are under
consideration, where the data collected to train the bicycle
crash detection model were acquired from a series of near-
real experiments this research designed and conducted. To
be specific, this research designed and implemented a cycling
safety services system – from terminal to back end – to resolve
certain cycling threats by offering services such as pre-crash
warning, off-the-team warning, crash detection and broadcast,
abnormal physiological statues warning, and bad environmen-
tal conditions warning. The proposed system is composed
primarily of (1) wearable devices, each of which mainly
comprises a microcontroller, several physiological information
sensors, and a Bluetooth low energy (BLE) [30] module for
transmitting the physiological information to the user’s smart-
phone; (2) a service mobile app exploiting the built-in three-
axis accelerometer, GPS module, and wireless transceiver
modules of the user’s smartphone to provide three categories
of services: (a) The client side of the cycling team services,
(b) the physiological status services, and (c) the environmental
information service – taking advantage of the Taiwan gover-

mental open data platform [31]; (3) back-end services, which
operate as the server side of the cycling team services and
are responsible for all the back-end support for the whole
services. It is noteworthy that to enable the service mobile
app to automatically evaluate whether a crash occurs, this
research trained a deep learning [32] bicycle crash model – of
87.8049% accuracy – in advance and implemented the crash
detection procedure based on this model in the mobile app.
After the proposed system is commercialized and distributed to
the consumers in the future, by continually collecting the false
alarm feedback from users, the crash model can continue to be
re-trained to decrease its false alarm ratio (FAR). Besides, the
future collection and announcement of anonymous crash loca-
tions might be helpful to the cycling community because those
locations can be potentially dangerous for many other cyclists,
where “anonymous” means that no personal information will
be recorded along with those crash locations.

The rest of this paper is organized as follows. Section II
introduces system development-relevant preliminaries. Sec-
tion III explains how this research designed the proposed sys-
tem. Section IV describes the implementation of the proposed
system. Section V elaborates on how this research developed
the bicycle crash model. Finally, Section VI provides conclud-
ing remarks.

II. PRELIMINARIES

A. System Development-Related General Knowledge for Ex-
ercising and Design Decisions

Concerning the physiological statuses, it is well known
that when exercising, it is proper to maintain the target heart
rate (THR) or target heart beats per minute (bpm) between a
certain percentage range of the maximal heart rate (HRmax)
as suggested in [33]. Moreover, oxygen saturation must also
be kept at a certain level – 95% and above at sea level, and
above 92% at 1,600 meter’s altitude. If the oxygen saturation
is too low, it can be harmful or even fatal [6]. Therefore,
this research chose the MAX30100 sensor solution [34] –
which integrates the heart rate monitor and the pulse oximetry
– to detect the heart rate and oxygen saturation of a user.
Furthermore, the lack of water (hypohydration or dehydra-
tion) can also cause discomfort or even critical destructive
results to cyclists [5], [35]. One of the hints that a cyclist
is lacking water is a high body temperature (could incur
hyperthermia when getting worse). Hence, this research chose
the MLX90615 infrared thermometer [36] to detect the user’s
body temperature. This research incorporated these three kinds
of physiological information sensors with a BLE-enhanced
microcontroller board to form the wearable device so as to
automatically report the cyclist’s physiological statuses to the
mobile app for the sake of information display and abnormality
warning. What is more, bicycle crashes have also been one
of the most disastrous events when cycling [9]–[18]. The
result can range from fracture to paralysis or even death.
Consequently, this research designed and implemented pre-
crash warning and crash detecting/reporting (if unfortunately
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occurs) mechanisms mainly by taking advantage of the mount-
in three-axis accelerometer of the smartphone. Additionally,
bad environmental conditions could also be injurious to a
cyclist’s health [8]. Thus, this research exploited the Taiwan
govermental open data platform [31] to provide environmental
information to the cyclists via the mobile app.

B. System Development-Relevant Technologies

1) The Internet of things: Over the past decade, the term
“Internet of things” has become one of the popular keywords
among other emerging computer science technologies – such
as big data analysis, cloud and edge computing, and deep
learning – and these technologies usually work together to
bring people new applications and services, especially when
taking advantage of the valuable “big sensory data” collected
by the Internet of things [37], [38]. The Internet of things
extends from the buzzword “Internet” in a sense that it is
an augmentation of the Internet – while the Internet connects
people behind computers and smartphones, the Internet of
things connects “things” which are upgraded to have comput-
ing and storage powers, sensing capabilities, and the ability
to connect to the Internet. In the context of this research,
the “thing” is the wearable device – the terminal – and the
smartphone of the proposed system. The wearable device
consists primarily of a microcontroller development board –
the center of computing and storage powers, a BLE module
– to connect to the user’s smartphone, and pertinent physi-
ological information sensors – to capture necessary sensory
data the system requires. Besides, specific electrical circuits
must be designed to appropriately connect these components,
and the firmware must be programmed and written into the
development board to make the wearable device operable.
The wearable device does not connect to the Internet directly;
rather, it first connects to the user’s smartphone via BLE,
and then indirectly connects to the Internet through the user’s
smartphone via mobile communications. This is how the
proposed system can collect the physiological sensory data
at the back-end server, exploiting the user’s smartphone as
a bridge (note that this is not implemented in the current
proposed system and will be a future issue beyond the scope
of this paper). Moreover, the smartphone itself provides the
system with necessary data as well, such as the three-axis
accelerometer data, the user’s location information, and the
false alarm feedback reported by the user.

2) Deep Learning: Over the course of the evolution of
artificial intelligence (AI), researchers and scientists have
realized that the best way to imitate a human brain is simply to
make artificial intelligence operate more like a human brain –
in a sense, to achieve the goal by biomimicry. The technology
of deep learning [32] – being one form of machine learning
– might be a result of serendipity along the line with such
philosophy. A deep learning model is trained using a deep
neural network, where the term “deep” means that more than
one hidden layer is introduced in the neural network. Note that
the construction of the neural networks itself is an imitation

of the operation of a human brain, and that is where the term
“neural network” came from. It was difficult to develop in
the realm of machine learning in the past due to the lack of
enormous computing and storage powers, but the constraint
has been relieved over the past decade with the advancement
of computer hardware. Another difficulty to appropriately train
a machine learning model in the past was the lack of big data.
However, this situation has also changed thanks to the current
highly connected world, especially when the IoT technology
came on the scene, which brings us tremendous sensory data
from various sources. This research took advantage of a five-
hidden-layer deep neural network to train the proposed bicycle
crash model based on the collected data gathered by a data
collection method this research designed and conducted –
including two data collection mobile apps and two types
of data collection experiments. A simple situation is to be
detected during cycling – A crash occurs or not? – which
means that the trained bicycle crash model is to deal with
the problem of classification. With supervised learning, the
proposed model learned how to assess a crash event with a
certain accuracy (refer to Section V-C2), where accuracy is
defined as (TP+TN) / (TP + TN + FP + FN) with TP, TN,
FP, and FN represent true positive (the model predicts that a
crash has occurred and the prediction is correct), true negative
(predicting no crash and it is correct), false positive (predicting
a crash but it is wrong), and false negative (predicting no crash
but it is wrong) respectively in terms of confusion matrix [39].

III. SYSTEM OVERVIEW AND DESIGN

The proposed services system consists of three main parts:
wearable devices, a service mobile app, and back-end ser-
vices. The system architecture is illustrated in Fig. 1. First,
the wearable device consists mainly of a microcontroller
board, physiological sensors, and a BLE module. It detects
the cyclist’s physiological information, such as heart rate,
oxygen saturation, and body temperature, and then transmit the
information to the cyclist’s smartphone via BLE connection.
Second, the cyclist’s smartphone must be installed with the
service mobile app this research developed. With the aid of the
built-in three-axis accelerometer, GPS module, BLE module,
and mobile communications module of the smartphone, the
mobile app offers the following three categories of services:
(1) co-working with the back end as the client side of the
cycling team services, as in Fig. 2, which include (a) cycling
team creation, (b) off-the-team warning, (c) pre-crash warning,
and (d) crash detection/reporting; (2) the physiological status
services, which are responsible for accepting and displaying
the physiological information as well as alerting the cyclist
when his/her physiological status is going to be unsuitable for
exercising; (3) the environmental information service, which
informs the user of the current PM2.5, air quality index (AQI),
and ultraviolet (UV) index with the assistance of the Taiwan
govermental open data platform [31]. Thirdly, the back-end
services operate as the server side of the cycling team services
and cover all the back-end support for the whole services,
such as logging the crash locations (if any) of the cyclists
(without recording any personal information) and collecting
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The open data platform
- PM2.5
- AQI
- UV Index

The wearable device
 Heart rate sensing
 Oxygen saturation sensing
 Body temperature sensing

The back-end services
 Cycling team services

(server)

The service mobile app
 Cycling team services (client)
 Physiological status services
 Environmental information service

Fig. 1. The system architecture.

Cycling team 
services (server)

Cycling team
services (client)

Cycling team
services (client)

Cycling team
services (client)

The team leader

The team members

Fig. 2. The illustration of the cycling team services.

the feedback for false crash alarms from the cyclists. Note that
the Taiwan govermental open data platform [31] is a platform
other than the back-end services this research developed.

To implement the crash detection/reporting procedure in the
mobile app, this research first built a deep learning bicycle
crash model in advance for the procedure to assess whether
a crash occurs. After the proposed system is commercialized
and distributed to the consumers in the future, by continually
collecting the false alarm feedback from cyclists, the crash
model can be re-trained to lower its false alarm ratio, where
the false alarm ratio is defined as the number of false alarms
divided by the total number of alarms (including both false and
correct alarms) – which can also be viewed as (1−precision)
or [1−TP/(TP+FP)] in terms of confusion matrix [39], where
TP stands for True Positive (the model perceives that a crash
has occurred and the perception is correct) and FP indicates
False Positive (the model perceives that a crash has occurred
but the perception is wrong). It is also believed that the future
collection and announcement of anonymous crash locations
will be helpful to the cycling community because those
locations could also be threatening to many other cyclists,
where “anonymous” means that no personal information will
be recorded together with those crash locations.

IV. SYSTEM IMPLEMENTATION

This section elaborates on how this research implemented
each main part of the proposed system, respectively.

Fig. 3. The circuit diagram of the wearable device.

Fig. 4. The prototype of the wearable device.

A. The Wearable Device

This research used the LinkIt 7697 as the microcontroller
development board for prototype development, where the term
“prototype” is used from the perspective of the authors’
cooperating IoT application vendor. This board contains a
highly integrated system on a chip (SoC) – MediaTek MT7697
– designed for IoT application development, with Wi-Fi and
BLE communications modules built-in. For future commer-
cialization, other smaller and less expensive SoCs can be
considered as a replacement. As for the heart rate and oxygen
saturation sensors, this research chose the MAX30100 sensor
solution and connected it to the LinkIt 7697 via an Inter-
Integrated Circuit (I2C) bus. Regarding the body temperature
sensor, this research exploited the MLX90615 Infrared Ther-
mometer and connected it directly to the serial port of the
LinkIt 7697. The primary goal of the Arduino code written in
the LinkIt 7697 is supposed to read the data detected by the
sensors and to transmit the data via the mount-in BLE module
of the LinkIt 7697. It is required to define the universal unique
identifiers (UUIDs) for BLE services and characteristics on the
board for BLE operation, in addition to adding the characteris-
tics into related services respectively. Then the services have
to be added into the Arduino library BLEPeripheral. After
configuration, the physiological information can be placed
into pertinent characteristics and sent to the smartphone via
notifyAll( ) method. The circuit diagram is illustrated in Fig. 3
and the prototype of the wearable device is shown in Fig. 4.
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Fig. 5. The mobile app function – cycling team creation: The team leader’s
nickname and group name configuration (cropped UI).

B. The Service Mobile App

This subsection describes how this research implemented
the various functionalities of the service mobile app in respec-
tive subsubsections. It is noteworthy that the cyclists do not
need to register to the proposed system. Therefore, no personal
registration information will be stored in the proposed system,
but only a temporary self-chosen nickname will be associated
with each cycling team member. Also, to serve groups of
cycling teams, the location information of each team member
of a group will be tracked and broadcast to their own group,
but the position tracking data will not be kept in the database,
either.

1) Cycling team services (Client): Cycling team creation:
One can use the service mobile app to create a cycling team
group (this person will be viewed as the team leader), and
others who join the group afterwards will be regarded of as
the team members. To create a cycling team group and take
the responsibility of a team leader, the user needs to press
“Create a Group” button and then configure his/her nickname
(e.g., Ken) and the group name (e.g., MyTeam) as in Fig. 5
(the cropped user interface). Once the group is created, the
app will turn to the leader’s user interface (UI) as in Fig. 6
(the cropped UI), and the GPS positioning functionality will be
activated. Note that the blue droplet on the map in the leader’s
UI expresses the leader’s location. The leader can also switch
the team leader role to another member in the group. The
switch process is initiated by pressing “Change the Leader”
button in the leader’s UI.

After a group is created, each of the team members can press
“Join a Group” button and then search and choose the group
he/she wants to join as in Fig. 7 (the cropped UI). Then he/she
can configure his/her nickname (e.g., Gerry) as in Fig. 8 (the
cropped UI). Once this member joins a group, the app will turn
to the team member’s UI as in Fig. 9 (the cropped UI), and
the GPS positioning functionality will be turned on. The green
droplet (lighter in grayscale) illustrated on the map in the team
member’s UI points out this member’s own location, whereas
the leader’s location is depicted as a blue droplet (darker in

Fig. 6. The mobile app function – cycling team creation: The team leader
(Ken)’s UI (cropped).

Fig. 7. The mobile app function – cycling team creation: The (cropped) UI
for a team member to select a group.

grayscale) on the map in the team member’s UI.

2) Cycling Team Services (Client): Off-the-team warning:
The mobile app uses the great-circle distance formula [40] to
continually calculate the distance between each of the team
members and the team leader (whose location is the bench-
mark), based on their longitudes and latitudes. If the distance
is more than 25 meters, the mobile app will regard of this
situation as a possibility of “off-the-team” and start to warn
the off-the-team member (e.g., Jeff) as in Fig. 10 (the cropped
UI) and all the other members in the team as in Fig.11 (the
cropped UI). In the specific example shown in Fig. 10 and
Fig. 11, Jeff has been too far away from the leader, and both
Jeff and the team members got an off-the-team warning from
the app.

3) Cycling team services (Client): Pre-crash warning: This
function exploits the built-in three-axis accelerometer of the
user’s smartphone to infer the angle of inclination of the
bicycle’s head or the handlebar, where the reference x-axis is
the tangent line of the Earth’s surface. Note that the user’s
smartphone should be fixed head up at the middle of the
bicycle’s head.

This research used a simple evaluation rule to judge the
possibility of a crash (see Fig. 12): Define angleV as the angle
between the vertical center line of the bicycle and the reference
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Fig. 8. The mobile app function – cycling team creation: The team member’s
nickname configuration (cropped UI).

Fig. 9. The mobile app function – cycling team creation: The team member
(Gerry)’s UI (cropped).

y-axis, which is the vertical line to the Earth’s surface tangent.
Whenever angleV is more than 45◦, a crash could occur due
to an imbalance. Note that this angleV is exactly equal to
the angle, angleH , between the handlebar and the reference
x-axis. Then, whenever the angleH is growing closer to 45◦,
say, 30◦ as the threshold setting, the mobile app must alert the
cyclist. With 30◦ as the threshold, the absolute threshold value
of the smartphone’s x-axis acceleration can thus be computed
as “9.8 m/s2 (the acceleration of gravity) times cos 60◦,” which
is approximately 5 m/s2. Therefore, any time the absolute
value of the measured smartphone’s x-axis acceleration is
greater than 5 m/s2, the mobile app perceives that the angleH
is larger than the threshold 30◦ and will immediately issue the
pre-crash warning to the cyclist, as in Fig. 13 (the cropped UI).

4) Cycling team services (Client): Crash detec-
tion/reporting: The mobile app can continually evaluate
whether a crash occurs according to a pre-established bicycle
crash model (refer to Section V) with the assistance of the
mount-in three-axis accelerometer of the user’s smartphone.
Once the mobile app considers that a crash event takes place,
the services system will automatically broadcast this event
to all the other members of the team, prompting them with
an SOS text message – including the crashed member’s

Fig. 10. The mobile app function – off-the-team warning: The off-the-team
member (Jeff)’s UI (cropped) with “You are too far away from the team! (42
m away)” indicated at the bottom.

Fig. 11. The mobile app function – off-the-team warning: other members’
UI (cropped) with “Jeff is off the team!” indicated at the bottom.

nickname (e.g., Michael) – as well as a marked red droplet
on the map to pinpoint the crashed member’s location, as
in Fig. 14 (the cropped UI). As for the crashed member,
his/her app will pop up a dialog as in Fig. 15 (the cropped
UI). If there is actually no crash occurring this time, the user
can click “MISJUDGMENT” to stop announcing the SOS
message and report this false alarm to the back end. After
the proposed system is commercialized and distributed to the
consumers in the future, the crash model can be re-trained
based on all the false alarm reports gathered in the database.
Otherwise, any person who comes to rescue the crashed
member can click “YES” to stop the SOS announcement, or
“NO” to switch off the dialog but let the SOS announcement
keep running.

5) Physiological Status Services: This bunch of services
displays the user’s physiological information, including his/her
body temperature, oxygen saturation, and heart rate, which
are received from the user’s wearable device via the internal
BLE module of the user’s smartphone. If any of the data is
considered to be abnormal (refer to Section II), this bunch
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Fig. 12. An illustration of the evaluation rule to judge the possibility of a
crash.

Fig. 13. The mobile app function – pre-crash warning (cropped UI): with
“Please stay balanced!” indicated at the bottom.

of services will immediately alert the user. The physiological
information is exhibited as in Fig. 16 (the cropped UI).

6) Environmental Information Service: This service takes
advantage of the Taiwan govermental open data plat-
form [31] to display several environmental indexes such as
UV Index, PM2.5, and AQI for the user. The mobile app
communicates with the platform via HttpURLConnection. The
indexes are demonstrated as in Fig. 16 (the cropped UI), too.

C. The Back-End Services

The back-end services cooperate with the service mobile
app to provide the following functions: (1) Cycling team cre-
ation, (2) member location information collection and broad-
casting, (3) member off-the-team broadcasting, (4) member
crash event broadcasting, (5) crash location recording, and (6)
false crash alarm report collection. As in Fig. 17, the prototype
was implemented on a Linux-based NGINX web server with
MariaDB as the database and PHP to access MariaDB, and
the service mobile app interacted with the back-end services
via HTTP, where the requests and responses were formatted
in JSON data format.

V. THE BICYCLE CRASH MODEL

A. Introduction and Data Collection

Before the service mobile app can detect a crash event
automatically, a bicycle crash model must first be built and
then a detection procedure based on this crash model must be
implemented in the mobile app. To build up this crash model,
this research first designed a data collection method and
implemented two data collection mobile apps to conduct data
collection experiments. Then this research exploited statistical
analysis and deep learning approaches respectively to build the
model using the collected data. Finally, this research compared

Fig. 14. The mobile app function – crash detection/reporting: other members’
UI (cropped) with “Michael sends an SOS! Michael needs your help!”
indicated at the top.

Fig. 15. The mobile app function – crash detection/reporting: The crashed
member’s UI (cropped).

the results of the two approaches and decided to use the deep
learning crash model to implement in the service mobile app.

The goal of the data collection experiments was to col-
lect the three-axis accelerometer data with relevant metadata
corresponding to “bicycle crash events” and “sudden bicycle
motions without crashing” respectively. First, the two data
collection mobile apps were installed on two smartphones
respectively, where one smartphone was mounted at the middle
of the handlebar with its head up to be the collector as in
Fig. 18, and another smartphone – as the one held by the
person in Fig. 19 – was exploited by the research as the
controller to remotely control the collector app. Note that the
repetitive data collection experiments were not conducted by
simulation but carried out by actual bicycle moving, where
at least two experimenters participated in the experiments –
one was responsible for making the bicycle move, producing
bicycle crashes, or causing the bicycle to perform certain kinds
of motions (experimenter M) whereas another was responsible
for remotely observe, control the collector app, and record nec-
essary metadata (experimenter R). Since this preliminary re-
search focused primarily on “recreational, amateur road biking
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TABLE I
DATA COLLECTION EXPERIMENT Types AND Subtypes.

Type Description Subtype Description

1 Bicycle crash events (The bicycle crashes during each Type 1 experiment). 1-1 Left crash
1-2 Right crash

2 Sudden bicycle motions without crashing (The bicycle does not crash but just
performs one of the five sudden motions during each Type 2 experiment).

2-1 Speed-up
2-2 Emergency brake
2-3 Left turn
2-4 Right turn
2-5 U turn

Fig. 16. The mobile app function – the physiological status services and the
environmental information service (cropped UI).

(JSON)

(JSON)

Linux
- NGINX
- MariaDB
- PHP

HTTP request

HTTP response

Fig. 17. The prototype of the back-end services.

with a team” and “single-bicycle crashes” [16]–[18] only, not
yet including racing, mountain biking, etc., the experiments
were all carried out on flat, clement rooftops in the campus.
Other crash scenarios – such as flip-over or collision with
other road users – can be future research topics. Moreover,
because this research did not have enough funds to create a
fully safe environment for experimenter M to cause bicycle
crashes by actually riding a bicycle during experiments without
any possibility for experimenter M getting hurt, this research
designed an alternative way for experimenter M to cause
bicycle crashes which were only near-real crash experiments
(refer to the following explanation). If in the future it is
possible for the research to build a fully secure experimental
environment, then real-crash experiments can be conducted
using the same data collection mobile apps developed by this
research and real-crash data can be collected to improve the
bicycle crash model.

The main interfaces of the data collection mobile apps
are shown in Figs. 20 and 21 (the cropped UIs). At first,
experimenter R must press the “BLE Connect” button as in
Fig. 20 at the controller side to connect the two smartphones
via BLE. Then the collector app will automatically show the
status page as in Fig. 21. From then on, this research conducted
the data collection experiments – categorized in two types as

Fig. 18. The collector and the controller: The collector mounted at the middle
of the handlebar, head up.

(Mounted at the
middle of the
handlebar)

The collector

The
controller

Fig. 19. The collector and the controller: The collector and the controller
which is held by the person.

in Table I – for multiple times.
Type 1 experiment – during which experimenter M must

purposely produce a bicycle crash – was designed as Table II
and is described in detail as follows, too.1

• Step 1. At the controller side, experimenter R must press
“Start Collecting Data” button to notify the collector app
to start gathering data when he sees that the bicycle
begins to move. At the moment, the collector app starts
collecting the three-axis accelerometer data with time and
a status digit “0” every 100 ms. As for the status digit,
this research defines the bicycle status in this phase as
“Not Crashing (0)” for the bicycle is normally moving,
so every record of the (x, y, z)-axes acceleration data
collected before the next phase is marked with this status
(i.e., 0).

1Note that to protect experimenter M’s safety, bicycle crashes during
Type 1 experiments are not produced by actually riding the bicycle but by an
alternative way as described in Steps 1 and 2.
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TABLE II
TYPE 1 EXPERIMENT DESIGN.

Step Experimenter M / The bicycle Experimenter R using the controller app The collector mounted on the handlebar
1 Use a rope to drag the bicycle to

move.
Press “Start Collecting Data” button when seeing that
the bicycle begins to move.

Record the three-axis accelerometer data
with time and a status digit “0” every 100
ms.

2 Let the bicycle naturally fall down
to left or right due to any imbal-
ance.

Press “Bicycle Starts to Crash” button when seeing
that the bicycle begins to crash.

Continue to record the three-axis accelerom-
eter data with time and a status digit “1”
every 100 ms.

3 (The bicycle hits the ground.) Press “Bicycle Completes Crashing” button when
seeing that the bicycle hits the ground.

Continue to record the three-axis accelerom-
eter data with time and a status digit “0”
every 100 ms.

4 – (1). Press “Stop Collecting Data” button. (2). Manu-
ally record Type and Subtype – whether the bicycle
crashes to left or right – for this round of experiment.

Stop collecting data.

Fig. 20. The data collection mobile apps: The controller app UI (cropped).

• Step 2. When experimenter R sees that the bicycle begins
to crash, he must immediately press “Bicycle Starts to
Crash” button at the controller side to inform the colletor
app to mark the subsequent collected data with status “1”
because this research defines the bicycle status in this
phase as “Crashing (1)” for the bicycle starts the crashing
motion.

• Step 3. When experimenter R sees that the bicycle hits
the ground, he must press “Bicycle Completes Crashing”
button at the controller side to instruct the collector app to
mark the following recorded data with status “0” because
the bicycle status is also defined as “Not Crashing (0)”
when the crash is over.

• Step 4. Finally, experimenter R must press “Stop Col-
lecting Data” button and now a discrete-time Type 1
data series is obtained. Note that experimenter R must
also manually record Type and Subtype (see Table I) –

Fig. 21. The data collection mobile apps: The collector app UI (cropped).

whether the bicycle crashed to left (subtype 1-1: Left
crash) or to right (subtype 1-2: Right crash) – by visual
observation for this round of Type 1 experiment.

Note that Type 1 experiment is meant to be conducted
multiple times. After conducting Type 1 experiments over and
over again, many sets of Type 1 discrete-time data series were
gained for crash analysis afterwards. The related metadata
included the timestamp and the bicycle status which were
recorded along with the (x, y, z)-axes acceleration data. That
is, each set of Type 1 data series contained a series of “(x, y,
z)-axes accelerations, timestamp, and bicycle status” data, as
illustrated in Fig. 22.

Now Type 2 experiment is explained – during which ex-
perimenter M must make the bicycle move in one of the
five sudden ways without inducing crashes – as designed in
Table III and the details are described as follows as well. Note
that for the sake of convenience, when conducting Type 2
experiments, though the bicycle was not to crash but only
to move in a certain sudden way (see Table I), this research
used the same controller app UI to notify the collector app to
mark data with status “1” from the beginning to the end of
the sudden motion. Therefore, please do not be confused by
the wording of the buttons pressed in Steps 2 and 3 of Type 2
experiment.
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x-axis 
acceleration 1

y-axis 
acceleration 1

z-axis 
acceleration 1

The time when this set of
(x, y, z)-axes accelerations
is captured

The bicycle status corresponding to this set of
(x, y, z)-axes accelerations:

• 0 – Not Crashing (normally moving or
already hit the ground)

• 1 – Crashing (being in the crashing motion)

x-axis 
acceleration 2

y-axis 
acceleration 2

z-axis 
acceleration 2

The time when this set of
(x, y, z)-axes accelerations
is captured

The bicycle status corresponding to this set of
(x, y, z)-axes accelerations:

• 0 – Not Crashing (normally moving or
already hit the ground)

• 1 – Crashing (being in the crashing motion)

.

.

.

x-axis 
acceleration ρ

y-axis 
acceleration ρ

z-axis 
acceleration ρ

The time when this set of
(x, y, z)-axes accelerations
is captured

The bicycle status corresponding to this set of
(x, y, z)-axes accelerations:

• 0 – Not Crashing (normally moving or
already hit the ground)

• 1 – Crashing (being in the crashing motion)

A series of ρ records of Type 1
“(x, y, z)-axes accelerations, 
timestamp, and bicycle status” 
data

Fig. 22. One set of Type 1 discrete-time data series – which contains a series of “(x, y, z)-axes accelerations, timestamp, and bicycle status” data – obtained
from one round of Type 1 experiment conduction.

TABLE III
TYPE 2 EXPERIMENT DESIGN.

Step Experimenter M / The bicycle Experimenter R using the controller app The collector mounted on the handlebar
1 Ride the bicycle. Press “Start Collecting Data” button when seeing that

the bicycle begins to move.
Record the three-axis accelerometer data
with time and a status digit “0” every 100
ms.

2 Perform one of the five sudden
motions.

Press “Bicycle Starts to Crash” button when seeing
that the bicycle begins one of the five sudden mo-
tions.

Continue to record the three-axis accelerom-
eter data with time and a status digit “1”
every 100 ms.

3 (The bicycle completes the sudden
motion.)

Press “Bicycle Completes Crashing” button when
seeing that the bicycle completes the sudden motion.

Continue to record the three-axis accelerom-
eter data with time and a status digit “0”
every 100 ms.

4 Stop riding. (1). Press “Stop Collecting Data” button. (2). Manu-
ally record Type and Subtype of the bicycle sudden
motion for this round of experiment.

Stop collecting data.

• Step 1. This step is the same as Step 1 in Type 1
experiment. At the controller side, experimenter R must
press “Start Collecting Data” button to notify the col-
lector app to start capturing data when he sees that the
bicycle begins to move. At the moment, the collector app
starts storing the three-axis accelerometer data with time
and a status digit every 100 ms. Because this research
defines the bicycle status in this phase as “Not During
Sudden Motion (0),” the status digit of every record of
the collected data is set as “0.”

• Step 2. When experimenter R sees that the bicycle starts
to move in one of the five sudden ways defined in Table I,
he must press “Bicycle Starts to Crash” button2 at once at
the controller side to instruct the colletor app to mark the
successive collected data with status “1” for this research

2Note that for the sake of convenience, when conducting Type 2 exper-
iments, though the bicycle was not to crash but only to move in a certain
sudden way (see Table I), this research used the same controller app UI to
notify the collector app to mark data with status “1” from the beginning to
the end of the sudden motion. Therefore, please do not be confused by the
wording of the buttons pressed in Steps 2 and 3 of Type 2 experiment.

defines the bicycle status in this phase as “During Sudden
Motion (1).”

• Step 3. When experimenter R sees that the bicycle finishes
the sudden motion, he must press “Bicycle Completes
Crashing” button at the controller side to inform the
collector app to mark the succeeding collected data with
status “0” for the bicycle status goes back to “Not During
Sudden Motion (0)” again.

• Step 4. Finally, experimenter R must press “Stop Col-
lecting Data” button and now a discrete-time data series
is acquired. Note that experimenter R must also man-
ually record Type and Subtype (see Table I) – which
subtype the bicycle performed: Speed-up (subtype 2-1),
emergency brake (subtype 2-2), left turn (subtype 2-3),
right turn (subtype 2-4), or U turn (subtype 2-5) – by
visual observation for this round of Type 2 experiment.

Note that Type 2 experiment is also supposed to be carried
out multiple times. After carrying out Type 2 experiments
again and again, multiple sets of Type 2 discrete-time data
series were ready for analysis later. The related metadata also
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x-axis 
acceleration 1

y-axis 
acceleration 1

z-axis 
acceleration 1

The time when this set of
(x, y, z)-axes accelerations
is captured

The bicycle status corresponding to this set of
(x, y, z)-axes accelerations:

• 0 – Not During Sudden Motion
• 1 – During Sudden Motion

x-axis 
acceleration 2

y-axis
acceleration 2

z-axis 
acceleration 2

The time when this set of
(x, y, z)-axes accelerations
is captured

The bicycle status corresponding to this set of
(x, y, z)-axes accelerations:

• 0 – Not During Sudden Motion
• 1 – During Sudden Motion

.
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x-axis 
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y-axis 
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z-axis 
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The time when this set of
(x, y, z)-axes accelerations
is captured

The bicycle status corresponding to this set of
(x, y, z)-axes accelerations:

• 0 – Not During Sudden Motion
• 1 – During Sudden Motion

A series of ε records of Type 2
“(x, y, z)-axes accelerations, 
timestamp, and bicycle status” 
data

Fig. 23. One set of Type 2 discrete-time data series – which contains a series of “(x, y, z)-axes accelerations, timestamp, and bicycle status” data – obtained
from one round of Type 2 experiment conduction.

included the timestamp and the bicycle status recorded along
with the (x, y, z)-axes acceleration data, which means that
each set of Type 2 data series contained a series of “(x, y, z)-
axes accelerations, timestamp, and bicycle status” data, too.
Fig. 23 depicts one set of Type 2 data series acquired from
one round of Type 2 experiment conduction.

The data analysis and model evaluation process was planned
as in Fig. 24. After collecting all the experimental data
series, this research preprocessed them by first calculating the
magnitude of the net acceleration, netAcc, of every (x, y, z)-
axes acceleration using (1):

netAcc =
√
Acc2x +Acc2y +Acc2z, (1)

where Accx, Accy , and Accz represent the x-axis, y-axis, and
z-axis accelerations respectively, and then selecting effective
data for analysis. After data preprocessing, 133 valid and ef-
fective preprocessed data sequences, where each data sequence
represented either “a crash occurred during bicycle movement
(drawn from one set of Type 1 data series)” or “no crash
occurred during bicycle movement (drawn from one set of
Type 2 data series)” (refer to Section V-B for details). The 133
data sequences were divided into two parts: 92 data sequences
were used as the training data, and 41 as the test data.
As mentioned in the first paragraph of this subsection, this
research analyzed the data in two ways: (1) Statistical analysis
approach: This approach was exploited to find the threshold
value right before a crash occurs. The implementation was
done by Python programming and the data graphs were plotted
using the matplotlib library. (2) Deep learning approach: This
research fitted a bicycle crash model to the training data by
Python programming with TensorFlow [41]. As a final step,
this research used the test data to evaluate and compare the
accuracies of the statistical analysis and deep learning crash
models, where the accuracy is defined as (TP+TN) / (TP +
TN + FP + FN) with TP, TN, FP, and FN represent true
positive (the model perceives that a crash has occurred and
the perception is correct), true negative (perceiving no crash
and it is correct), false positive (perceiving a crash but it

Loading 
raw data

Computing
net accelerations

Selecting valid 
and effective 
training data 
and test data

Data preprocessing

Developing a statistical 
analysis-based bicycle 

crash model

Training a deep 
learning-based bicycle 

crash model

Evaluation Evaluation

Accuracy 
comparison

Fig. 24. Data analysis and model evaluation process.

is wrong), and false negative (perceiving no crash but it is
wrong) respectively in terms of confusion matrix [39]. The
analysis and evaluation details are elaborated in the following
subsections.

B. Data Preprocessing

As mentioned in Subsection V-A, the collector app recorded
multiple sets of Type 1 and Type 2 discrete-time series of “(x,
y, z)-axes accelerations, timestamp, and bicycle status” data.
Each set of these experimental data series – as illustrated in
Figs. 22 and 23 – was recorded as in Fig. 25 (a partial snapshot
of the raw data stored in an Excel file), where the fields
“Acc_X, “Acc_Y,” and “Acc_Z” recorded the x-axis, y-axis,
and z-axis accelerations respectively, and the fields “time”
and “status” recorded the timestamp and the bicycle status.



12 JOURNAL OF COMMUNICATIONS AND NETWORKS

Fig. 25. Part of the collected data (raw data) in one set of discrete-time data
series.

Fig. 26. Part of the data (undergoing preprocessing) corresponding to Fig. 25,
where the net accelerations (netAcc’s) were already computed and appended.

Recall that the statuses 0 and 1 represent “Not Crashing”
and “Crashing” respectively for Type 1 data, and “Not During
Sudden Motion” and “During Sudden Motion” respectively for
Type 2 data. The magnitude of the net acceleration, netAcc,
was then computed by calculating the square root of (Acc_X2

+ Acc_Y2 + Acc_Z2) as equation (1) and appended into the
table as in Fig. 26 (a partial snapshot of the data undergoing
preprocessing).

Because the lengths of the discrete-time data series were
not all the same, further effective data selection had to be
done from these data series to make all the lengths equal so
as to keep fairness and consistency. To do this, this research
exploited data visualization to investigate these data series, for
example, two of the data series plotted in Fig. 27. The data
graphs were drawn according to data series like Fig. 26, where
the data points with status “0” were marked in blue (darker in
grayscale) whereas the data points with status “1” were marked
in red (lighter in grayscale). The data visualization gave us the
insight that 50 records of net accelerations within each data
series were enough to evaluate a crash or a sudden motion.
Based on this insight, this research selected 133 valid data
series out of all, where each of the 133 data series contained
only 50 records of net accelerations along with the metadata
(time and status). Note that this research purposely selected
these 133 data series so that each one of the data series
represents either “a crash occurred during bicycle movement”
or “no crash occurred during bicycle movement.” That is, the
133 data series are a mixture of Type 1 and Type 2 data
series. The 50 records of net accelerations within each of
the “a crash occurred during bicycle movement” data series
were specifically extracted out of Type 1 data series during a
bicycle crash according to the “status” field – data with status
“1” indicate that they were collected exactly during a crash;
those within “no crash occurred during bicycle movement”
data series were specifically extracted from Type 2 data series
during a sudden motion according to the “status” field, too –
data with status “1” tell us that they were gathered precisely
during a sudden motion. By doing so, it took less time to
proceed with the succeeding data analysis as well.

Finally, this research (1) copied the 133 chosen data series,

(2) removed the Acc_X, Acc_Y, Acc_Z, time, and status fields,
(3) merged the 133 pruned sequences (each containing only
50 net accelerations) into one table, (4) labeled each sequence
based on the experiment type of each sequence (see Table I)
– recall that the Type was manually recorded by experimenter
R at Step 4 in each round of experiment conductions (see
Tables II and III) – label “1” indicates that the sequence
was drawn from Type 1 data series and represents “a crash
occurred during bicycle movement”; label “0” points out that
the sequence originated from Type 2 data series and stands
for “no crash occurred during bicycle movement.” The result
is partially exhibited in Fig. 28 (a partial snapshot of the
table of the preprocessed data stored in an Excel file). To
be specific, each row in the table in Fig. 28 represents one
of the 133 sequences, so each row in the table contains 50
net accelerations and one label. Fig. 29 is a conceptualization
of the preprocessed data. This table of 133 preprocessed data
sequences was used in both the statistical analysis and deep
learning approaches later.

C. Data Analysis

This research tried to gain more insights by the following
exploratory data analysis and visualization. First, this research
investigated the Type 1 graphs of the (x, y, z)-axes accel-
erations by time respectively, for instance, the three graphs
corresponding to one of the raw data series (narrowed down to
50 records of data during a crash each) as in Fig. 30. Also, this
research looked into the Type 1 graphs of the net accelerations
by time, for example, the graphs shown in Fig. 31. Note again
that the data with status “Crashing (1)” were all marked as red
data points (lighter in gray scale), and those with status “Not
Crashing (0)” were all marked as blue data points (darker in
gray scale).

Moreover, this research studied the graphs corresponding to
subtypes 1-1 (left crash) and 1-2 (right crash) respectively, for
instance, the two graphs illustrated in Fig. 32. Furthermore,
this research examined the graphs corresponding to subtypes
2-1 through 2-5, for instance, the five graphs shown in Fig. 33,
where the blue (darker in grayscale) data points indicate that
they were marked with status “Not During Sudden Motion
(0)” and the red (lighter in grayscale) data points hint that
they were marked with status “During Sudden Motion (1).”

Taking advantage of data visualization on Fig. 27 and
Fig. 30 to Fig. 33 – specifically, noticing and comparing the
scales and the maximum numbers on the y-axis of Type 1
graphs with those of Type 2 graphs, this research obtained the
insight that Type 1 variations of accelerations were generally
larger than Type 2 variations of accelerations. According to
this knowledge, this research tried to use statistical analysis to
find a certain threshold value right before a bicycle crash based
on the different acceleration variations of Type 1 and Type 2
preprocessed data (see Section V-C1). Also, this research
exploited the preprocessed data to train a bicycle crash model
with a deep neural network classifier (see Section V-C2). The
comparison of the results of these two approaches will be
discussed in Section V-C3.
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Fig. 27. Two Type 1 instances of the net accelerations by time.

Fig. 28. Part of the preprocessed data.

1) Statistical Analysis Approach: To verify the insight that
statistical analysis could be used to find a certain bicycle crash
threshold value by using the distinction between Type 1 and
Type 2 acceleration variations, this research first separated the
training data (92 data sequences out of the 133 preprocessed
ones) into two groups according to the label field (a crash
occurred during bicycle movement – “1” vs. no crash occurred
during bicycle movement – “0”), and then calculated label 1
and label 0 average differences – µ1 and µ0 – between
the maximum and minimum net accelerations respectively,
as depicted in Fig. 34. This research observed that label 1
average difference – µ1, was 48.65986 m/s2, whereas label 0
average difference – µ0, was 7.937981 m/s2. The distinction
between label 1 and label 0 average differences was quite
obvious (just like the insight this research have gained about
Type 1 and Type 2 net acceleration variations) and could be
exploited to assess whether a bicycle crash occurs. Hence,
this research further calculated label 1 and label 0 standard
deviations (S.D.s) – σ1 and σ0 – of the differences between
the maximum and minimum net accelerations respectively,
as illustrated in Fig. 35. This research had the result that
label 1 and label 0 standard deviations of the net acceleration
differences – σ1 and σ0 – were 22.91112 m/s2 and 5.581405
m/s2 respectively. Therefore, it was concluded that (1) most of
label 1 net acceleration differences were distributed within the
range between (µ1 ± σ1) = (48.65986± 22.91112) m/s2, and
(2) most of label 0 net acceleration differences were distributed
within the range between (µ0±σ0) = (7.937981±5.581405)
m/s2. Based on this result, this research considered to use the
middle value, 19.63406 m/s2, between label 1 lower bound
(µ1 − σ1) = (48.65986 − 22.91112) m/s2 and label 0 upper
bound (µ0 + σ0) = (7.937981 + 5.581405) m/s2 to be
the threshold value for evaluating a bicycle crash. To verify
whether 19.63406 m/s2 was a reasonable threshold value, this
research tested different threshold values (7 m/s2 to 49 m/s2)
on the training data to observe the accuracies as in Fig. 36,

TABLE IV
THE CONFIGURATIONS OF OTHER HYPERPARAMETERS OF THE DEEP

LEARNING MODEL.

Item Configuration
Learning rate 0.1
Optimizer Adagrad optimizer
Activation function ReLU
Loss function binary_crossentropy

where the accuracy is defined as (TP+TN) / (TP + TN + FP
+ FN) in terms of confusion matrix [39].

From Fig. 36, this research recognized that the maximum
accuracies fell at threshold values 18 m/s2 and 19 m/s2, which
confirmed that 19.63406 m/s2 could be a reasonable threshold
value and this crash assessment approach could be feasible
and effective. Consequently, this research used this threshold
value (19.63406 m/s2) to build a statistical analysis bicycle
crash model, where the model is supposed to continuously
calculate the difference between the maximum and minimum
net accelerations within every 10 records of data consecutively
(i.e., net acceleration data 1–10, then data 2–11, then data
3–12, etc.). If any difference is larger than the threshold
value, the model will perceive that a crash occurs; otherwise,
the model will identify that no crash occurs. This research
evaluated this model on the test data (41 data sequences out
of the 133 preprocessed data sequences) and had an accuracy
of 87.8048%.

2) Deep learning approach: In addition to the statistical
analysis crash model, this research also fitted a deep learning
crash model to the training data using the deep neural network
as in Fig. 37, where there were 50 input neurons, five hidden
layers, and one output neuron. Within each hidden layer, there
were 20, 50, 50, 20, and 10 neurons respectively. All the initial
weights of the neural network were kept the same. The training
process was conducted by DNNClassifier [42] in TensorFlow,
where the iteration was set to 1500. Other pertinent hyper-
parameters are listed as in Table IV. This research evaluated
the trained model on the test data and had an accuracy of
87.8049%.



14 JOURNAL OF COMMUNICATIONS AND NETWORKS
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Fig. 29. The conceptualization of the preprocessed data.

Fig. 30. A Type 1 instance of the (x, y, z)-axes accelerations by time respectively which have been narrowed down to 50 records of data during a crash
each.

Fig. 31. Two Type 1 instances of the net accelerations by time which have been narrowed down to 50 records of data during a crash each.

3) Comparison between the statistical analysis and deep
learning crash models: Compared the accuracy of the deep
learning crash model – 87.8049% – with that of the statistical
analysis crash model – 87.8048% – resulted from the test data,
where the accuracy is defined as (TP+TN) / (TP + TN +
FP + FN) in terms of confusion matrix [39], this research
found that the difference was marginal. However, because
the statistical analysis crash model using a threshold value
is not as flexible as the deep learning approach whereas the
deep learning model can keep improving by learning from
more data and being fine-tuned on its hyperparameters and
parameters after the proposed system is commercialized and
distributed to the consumers in the future, it is believed that
in the long run, the deep learning crash model could serve
and perform better than the statistical analysis crash model.
Consequently, this research decided to use the deep learning
crash model in the service mobile app to detect a bicycle crash.

D. How the Deep Learning Crash Model Is Applied to Crash
Detection

This research used the deep learning crash model to im-
plement the crash detection/reporting procedure in the service
mobile app. The crash detection/reporting procedure of the
mobile app will continually collect the values of the three-axis
accelerometer of the cyclist’s smartphone and calculate the
magnitude of the net acceleration. Every time the procedure
obtains 50 records of the net acceleration (data 1–50, data
2–51, data 3–52, etc.), it will predict whether a crash occurs
according to the deep learning crash model. Once a crash
is regarded to occur by prediction, the service mobile app
will send an urgent SOS message with the crashed member’s
location information to the back-end services, and the back-
end services will broadcast an SOS message with this location
information to the whole cycling team and pause crash assess-
ment (the crash location will be recorded in the database as
well). If this crash assessment is incorrect and the bicycle does
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Left crash Right crash

Fig. 32. A left crash and a right crash instances of the net accelerations by time which have been narrowed down to 50 records of data during a crash each.

Speed-up Emergency brake Left turn

Right turn U turn

Fig. 33. Five Type 2 instances – each for a subtype defined in Table I – of the net accelerations by time which have been narrowed down to 50 records of
data during a sudden motion each.

not crash actually, the cyclist can click “MISJUDGMENT”
to report this false crash alarm to the back end and stop
the SOS broadcast (see Fig. 15). After the proposed system
is commercialized and distributed to the consumers in the
future, the false alarm feedback (including the pertinent 50
records of data which caused this wrong prediction) from
the cyclists can be exploited to re-train the deep learning
crash model and keep lessening its false alarm ratio. Note
that there may be intentional or unintentional false reports
of “MISJUDGMENT”; therefore, if the accuracy of the re-fit
model becomes worse, the re-fit model can just be abandoned
and the previous version can continue to be in charge.

VI. CONCLUSION

Cycling has been popular for years around the world,
especially in Taiwan in recent years, because it helps people
improve their health condition. Even so, there are still certain
potential dangers threating cyclists’ safety. This research de-
veloped an IoT services system for cyclists (especially when

they are cycling as a team) to resolve the threats – from termi-
nal to back end – consisting of wearable devices, a service mo-
bile app, and back-end services. With the aid of technologies
such as deep learning model training and evaluation, IoT end
device development (including circuit design to interconnect
the BLE-embedded microcontroller board and the physiolog-
ical information sensors as well as firmware programming),
mobile app programming, RESTful API implementation, and
open data utilization, this research developed the proposed
cycling safety services system to provide the cycling team ser-
vices, the physiological status services, and the environmental
information service. The cycling team services – incorporating
both the app side and the back end – primarily provide the
functionalities of cycling team creation, off-the-team warning,
pre-crash warning, and crash detection/reporting. Moreover,
the back end is also to continually collect two sets of data:
(1) The crash locations (if any) of the cyclists (not including
any personal information) and (2) the feedback for false crash
alarms reported by the cyclists after the system is actually
distributed to the consumers.

To enable the service mobile app to automatically detect
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1 2 3 … 50 label

netAccα_1 netAccα_2 netAccα_3 … netAccα_50 1 Data sequence α

minimum maximum Diffα = netAccα_3 − netAccα_1

1 2 3 … 50 label

netAccβ_1 netAccβ_2 netAccβ_3 … netAccβ_50 1 Data sequence β

maximum minimum Diffβ = netAccβ_2 − netAccβ_3

.

.

.

A total of m
training
data sequences

∴ Label 1 average difference 𝜇𝜇1 =
Diff𝛼𝛼 + Diff𝛽𝛽 + ⋯

𝑚𝑚
= 48.65986 m/s2

1 2 3 … 50 label

netAcc γ_1 netAcc γ_2 netAcc γ_3 … netAcc γ_50 0 Data sequence γ

maximum minimum Diff γ = netAcc γ_1 − netAcc γ_2

1 2 3 … 50 label

netAccδ_1 netAccδ_2 netAccδ_3 … netAccδ_50 0 Data sequence δ

minimum maximum Diffδ = netAccδ_50 − netAccδ_1

.

.

.

A total of n
training
data sequences,
where n = 92 - m

∴ Label 0 average difference 𝜇𝜇0 = Diff𝛾𝛾 +Diff𝛿𝛿 +⋯
𝑛𝑛

= 7.937981 m/s2

Fig. 34. The label 1 and label 0 average differences between the maximum and minimum net accelerations respectively.
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netAccα_1 netAccα_2 netAccα_3 … netAccα_50 1 Data sequence α

minimum maximum Diffα = netAccα_3 − netAccα_1

1 2 3 … 50 label

netAccβ_1 netAccβ_2 netAccβ_3 … netAccβ_50 1 Data sequence β

maximum minimum Diffβ = netAccβ_2 − netAccβ_3

.

.

.

A total of m
training
data sequences

∴ Label 1 S. D. of the difference 𝜎𝜎1 =
Diff𝛼𝛼 − 𝜇𝜇1

2
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2
+⋯

𝑚𝑚
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+⋯

𝑛𝑛
= 5.581405 m/s2

1 2 3 … 50 label

netAcc γ_1 netAcc γ_2 netAcc γ_3 … netAcc γ_50 0 Data sequence γ

maximum minimum Diff γ = netAcc γ_1 − netAcc γ_2

1 2 3 … 50 label

netAccδ_1 netAccδ_2 netAccδ_3 … netAccδ_50 0 Data sequence δ

minimum maximum Diffδ = netAccδ_50 − netAccδ_1

.

.

.

A total of n
training
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where n = 92 - m

Fig. 35. The label 1 and label 0 S.D.s of the differences between the maximum and minimum net accelerations respectively.
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Fig. 36. The accuracies by different threshold values.
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Fig. 37. The employed deep neural network architecture.

a bicycle crash, this research first conducted experiments to
collect bicycle normal-motion/crash/sudden-motion data and
then exploited these data to build two bicycle crash models in
two approaches respectively: One was built based on statistical

analysis and the other was fit using the deep learning approach.
Curiously enough, the accuracies of the crash prediction based
on these two models are almost the same: The statistical
model achieves 87.8048% whereas the deep learning model
reaches 87.8049%. Nonetheless, because the deep learning
approach is supposed to be more flexible and can continue to
improve by learning from more data and be fine-tuned on its
hyperparameters and parameters, this research chose the deep
learning model and implemented the crash detection/reporting
procedure in the service mobile app based on the deep learning
crash model.

Regarding the future works, first, the false alarm feedback
gathered in the database after the system is distributed to
the consumers can be utilized to re-train and enhance the
crash model. Also, currently the re-training process is planned
to be done manually and can be augmented later to be
achieved automatically. In addition, the logged anonymous
crash locations collected in the future can also be released
to the cycling community to help raise an alert of risky
regions. Furthermore, the future collection of the physiological
information of the cyclists will be valuable for incubating new
ideas and innovating new services, especially when the data
amount grows big.3 What is more, the prototype of the back-
end services was implemented on a web server constructed by
this research. To commercialize the proposed system in the
future, the authors’ cooperating IoT application vendor can

3Note that the personal data and privacy shall be seriously protected with
every-aspect authorization, authentication, and accounting as well as data
encryption and following national (and international, if distributed to the
foreign markets) Computer-Processed Personal Data Protection Laws when
being exploited by the authors’ cooperating IoT application vendor after
the proposed system is commercialized and distributed to the consumers.
However, this topic is beyond the scope of this research, so it will not be
discussed in this paper.
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replace this web server with the commercial cloud solutions,
such as Amazon AWS, Google Cloud Platform, Microsoft
Azure, etc. To conclude, this research confirmed that the
proposed system operates properly, and suggested that the
proposed system, the deep learning bicycle crash model, the
data collection method with its associated mobile apps, and
the data collected during the experiments and in the future be
beneficial to the cycling society as well as the researchers who
conduct relevant research.
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