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Improved Genetic Algorithm based 3-D deployment
of UAVs

Xiting Wen, Yuhan Ruan, Yongzhao Li, Hongxing Xia, Rui Zhang, Chao Wang, Wei Liu, and Xiaoyu Jiang

Abstract—Unmanned aerial vehicles (UAVs) are widely used
as aerial base stations (BSs) to provide flexible connectivity and
coverage for ground users in various scenarios such as disaster
relief, traffic offloading, and so on. Especially, UAV deployment is
an important issue that directly affects the coverage performance
of the UAV network. In this paper, we propose a novel heuristic al-
gorithm based three-dimensional (3-D) UAV deployment scheme
while guaranteeing the connectivity of the UAV network in both
static and dynamic user scenarios. For the static user scenario, we
aim to deploy the minimum number of UAVs to provide coverage
for the users from the perspective of deployment cost. To reduce
the deployment complexity, we decouple the 3-D UAV deployment
problem from the vertical and horizontal dimensions. Specifically,
we firstly determine the optimal vertical height of UAVs based on
the air-to-ground (A2G) model. Then, to alleviate the premature
convergence of standard genetic algorithm (SGA), we design
an improved genetic algorithm (IGA) to obtain the optimal
horizontal locations of UAVs. On this basis, when the users move
or increase, i.e., the dynamic user scenario, the already deployed
UAVs cannot provide effective coverage. For this scenario, we
propose a UAV redeployment scheme to maximize the number
of covered users without increasing the number of UAVs. To
further reduce the cost of redeployment, we firstly modify the
proposed IGA to obtain a feasible set of two-dimensional (2-D)
redeployed locations of the UAVs. Then, we design a backtracking
algorithm (BA) based UAV movement strategy to minimize the
total flying distance of the UAVs. The simulation results show
that the effectiveness and convergence of our proposed schemes.

Index Terms—Dynamic user scenario, improved genetic al-
gorithm (IGA), static user scenario, three-dimensional (3-D)
deployment, unmanned aerial vehicles (UAVs).
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I. INTRODUCTION

NOWADAYS, unmanned aerial vehicles (UAVs) have
attracted great attention as flying base stations (BSs)

to provide flexible connectivity and coverage for ground
users [1], [2]. Compared with terrestrial BSs, the high altitude
of UAVs enables them to establish more reliable connections
with the users due to line-of-sight (LoS) links. Furthermore,
with the agility and mobility characteristics, UAVs can provide
on-the-fly communications and adapt to the service demands
of the users. Considering these two above advantages, UAVs
have been widely deployed to restore communication services
timely in battlefields or disaster areas, as well as offloading
the traffic in hotspot areas such as sport stadiums, outdoor
event [3]–[5].

A key design challenge of a UAV-assisted communica-
tion network is how to optimally deploy UAVs to satisfy
the demands of ground users. Recently, many works have
focused on the UAV deployment in a static user scenario
where the locations of ground users are fixed. For example,
the authors in [6] studied the optimal UAV placement and
the user assignment to provide coverage for static users in
a disaster area. In [7], the authors determined the optimal
deployment of UAVs in the Internet of things infrastructure
to maximize the covered users with the minimum number
of UAVs. To serve static users in a suburban scenario, the
authors in [8] proposed a heuristic algorithm based UAV
deployment scheme to minimize the power consumption.
Nevertheless, the authors in [6]–[8] all assumed that the UAVs
are deployed in a two-dimensional (2-D) plane with a fixed
height without considering the relation between the coverage
area and the UAVs’ altitude, which may impair the quality-of-
service (QoS) of the covered users or even result in coverage
holes. Therefore, many researchers have investigated a three-
dimensional (3-D) UAV deployment problem, in which the
height and horizontal locations of UAVs are coupled. Heuristic
algorithms, which can find the optimal solution with lower
searching overhead, have been adopted in many studies to
tackle this NP-hard problem [9]–[14]. The authors in [9]
proposed a UAV-artificial bee colony algorithm to jointly
optimize the 2-D locations and flying height of UAVs. With
the goal of maximizing the coverage probability, the authors
in [10] adopted the particle swarm optimization algorithm to
find the optimal 3-D positions of UAVs. In [11], the authors
employed standard genetic algorithm (SGA) and simulated
annealing (SA) algorithms to determine the optimal number
and locations of UAVs simultaneously. The simulation results
demonstrate that for a wide coverage area, SGA converges
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faster than SA and is more likely to settle on a global optimal
value. In this regard, the authors in [12] proposed a hybrid
genetic algorithm (GA) to provide coverage for ground users
with the minimum energy consumption of UAVs. Considering
the complexity of 3-D UAV deployment, especially when
the number of UAVs is large, the authors in [13] and [14]
decoupled the UAV deployment problem from the vertical
and horizontal dimensions. Specifically, the multi-population
GA and the SGA were respectively adopted in [13] and [14]
for the 2-D deployment of UAVs. Note that most of the
above works do not take the connectivity of UAV networks
into consideration. However, when the environment becomes
complex such as uneven distribution of users over a large
area or LoS disrupted by obstacles, more UAVs need to be
deployed to provide coverage. Herein, the deployed UAVs
should keep connected to provide end-to-end communications
for far-away ground users, which enables the robustness of the
UAV network.

On the other hand, the ground users are generally dynamic
in a practical scenario, where the number of users may
fluctuate or the locations of the users may change. In this
case, the deployed locations of UAVs need to be adjusted
to provide effective coverage. To fully reap the benefits of
the mobility of UAVs, the authors in [15] predicted the
mobile users’ locations in a disaster area and deployed an
adaptive UAV network to provide coverage for the users with
minimum energy. To improve the accuracy of prediction, a
deep Q-network based method was proposed in [16] to adjust
the locations of UAVs in response to the mobility of ground
users. Both [15] and [16] assumed that the power of UAVs
was fixed, to further reduce power consumption, the authors
in [17] investigated an adaptive UAV deployment scheme.
In this scheme, the UAVs can adaptively change transmit
power or relocate to new positions to guarantee the QoS of
ground users as the users move. However, the aforementioned
works will increase the overhead of resource-restrained UAVs
due to the real-time deployment, especially when the users
move frequently. To reduce the overhead, the authors in [18]
redeployed UAVs periodically to serve the mobile users and
proposed a UAV moving strategy to minimize the UAV flying
distance. While, the proposed strategy simply traversed all
possible flying schemes, which will increase the computation
complexity. In addition, the above studies do not consider the
connectivity of UAV networks as well.

To tackle the connectivity of the UAV network when
deploying UAVs in both static and dynamic user scenarios,
we propose an improved genetic algorithm (IGA) based 3-D
deployment scheme of UAVs in this paper. In practical UAV
deployment, the number of deployed UAVs is one of the
most important issues concerned by network suppliers and it
directly relates to the deployment cost. Hence, for the static
user scenario, we aim to deploy the minimum number of UAVs
to cover the ground users in a target area. To conduct the
UAV deployment with low complexity, we decouple the 3-D
UAV deployment problem from the vertical and horizontal
dimensions. Specifically, we firstly analyze the optimal flying
height of UAVs based on the air-to-ground (A2G) channel
model. Then, we propose an IGA to obtain the optimal UAV

locations in a 2-D plane. On this basis, when the users move or
increase, i.e., the dynamic user scenario, the already deployed
UAVs cannot provide effective coverage. In this case, how
to maximize the number of covered users by redeployment
of UAVs without increasing the number of deployed UAVs
is a difficult problem. To reduce the cost of redeployment,
we modify the proposed IGA to obtain a feasible set of
UAVs’ 2-D redeployed locations and design a backtracking
algorithm (BA) based UAV movement strategy to minimize
the total flying distance of the UAVs.The main contributions
of this paper are summarized as follows.

• We formulate the UAV deployment problem as minimiz-
ing the number of UAVs under the coverage constraint.
Moreover, we formulate the UAV redeployment problem
as maximizing the number of covered users under the
number of UAVs constraint. Especially, to maintain the
robustness of the UAV network, the connectivity of the
UAV network is guaranteed in these two problems.

• For the static user scenario, we propose a novel heuristic
algorithm, i.e., IGA to solve the decoupled 2-D UAV de-
ployment sub-problem. By introducing the checking and
modifying mechanism, the proposed IGA can improve the
evolution ability and search efficiency, which can avoid
the premature convergence of SGA.

• For the dynamic user scenario, considering the number of
UAVs constraint, we modify the IGA to obtain a feasible
2-D redeployment of the UAVs. Moreover, to reduce
the cost of redeployment, we model the UAV movement
problem as an optimal match between the initial deployed
and redeployed locations of the UAVs. And we design a
BA to obtain the optimal solution that can minimize the
total flying distance of the UAVs.

The rest of this paper is organized as follows. We describe
the system model in Section II. Then, we propose the IGA
based UAV deployment scheme and redeployment in Sec-
tion III and Section IV, respectively. Simulation results are
presented in Section V. Section VI concludes this paper.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a multi-UAV network,
where UAVi (i = 1, 2, · · ·, N) deployed at the same height h
provides communication services for randomly distributed
ground users uk (k = 1, 2, · · ·,K). Each UAV is mounted by
a base station (BS) module equipped with a single omnidirec-
tional antenna, and covers a circular area in ground with the
radius of R1. There are two kinds of channels in the network
including the air-to-air (A2A) channel of the UAV-to-UAV link
and the A2G channel of the UAV-to-User link.

A. A2A Channel Model

Considering the A2A channels among UAVs are mainly
dominated by the LoS component, we model the pathloss

1To be more compatible with the existing networks, in this paper we assume
that the BS module mounted on each UAV employs Long Term Evolution
technology to provide coverage for ground users.
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Fig. 1. System model of the multi-UAV network.

between UAVi and UAVj as the free space propagation loss
(FSPL), i.e.,

Li,jLoS = 20 log di,j + 20 log f0 + 20 log (4π/c) , (1)

where di,j is the distance between UAVi and UAVj , f0 is
the carrier frequency of the A2A channel and c is the light
speed.

B. A2G Channel Model

In this paper, we adopt the A2G channel model proposed
in [19], where the LoS and non-line-of-sight (NLoS) com-
ponents are jointly considered with their corresponding oc-
currence probabilities. Therefore, the pathloss between UAVi

and uk can be given by

Li,k = P (LoS, θi,k)× Li,kLoS + P (NLoS, θi,k)× Li,kNLoS. (2)

In (2), P (LoS, θi,k) denotes the probability of UAVi having
a LoS connection to uk at an elevation angle, i.e., θi,k shown
in Fig. 1, which can be expressed as

P (LoS, θi,k) =
1

1 + a exp (−b (θi,k − a))
, (3)

where a and b are S-curve parameters that depend on
the environment. Obviously, the probability of NLoS is
P (NLoS, θi,k) = 1 − P (LoS, θi,k). In addition, Li,kLoS and
Li,kNLoS are the average path loss for LoS and NLoS links,
respectively, and can be obtained as

Li,kLoS = 20 log
(

4πfdi,k
c

)
+ ηLoS,

Li,kNLoS = 20 log
(

4πfdi,k
c

)
+ ηNLoS,

(4)

where f is the carrier frequency of A2G channel, di,k is
the distance between UAVi and uk, ηLoS and ηNLoS are the
average additional pathloss for LoS and NLoS, respectively.

By substituting (3) and (4) into (2), we have

Li,k=
A

1+a exp
(
−b

(
180
π
θi,k − a

))+20 log

(
ri,k

cos (θi,k)

)
+B, (5)

where A = ηLoS − ηNLoS, B = 20 log (4πf/c) + ηNLoS,
and ri,k = di,k cos (θi,k) with ri,k representing the horizontal
distance of UAVi−uk link.

III. IGA BASED MINIMUM COST DEPLOYMENT OF UAVS
FOR A STATIC USER SCENARIO

Considering the 3-D characteristics of UAV networks, we
propose a 3-D UAV deployment scheme to determine the
optimal locations of UAVs. Due to the complexity of solving
the deployment problem, in this paper, we decouple the 3-D
UAV deployment problem into two subproblems, including the
optimal vertical height and the optimal horizontal locations of
UAVs. Moreover, we design a heuristic algorithm, i.e., IGA
to obtain the horizontal locations of the UAVs under both
coverage and connectivity constraints.

A. The Optimal Vertical Height of UAVs

As proved in [20], there exists an optimal height denoted
as hopt that corresponds to the maximum coverage region
radius denoted as Rmax and can be obtained by solving

∂R

∂h

∣∣
hopt =

∂R

∂θ

∂θ

∂h
= 0. (6)

Since ∂θ
∂h = ∂

∂h tan−1
(
h
r

)
= r

h2+r2 > 0, then we can
obtain hopt by solving ∂R

∂θ = 0, i.e.,

π

9 ln (10)
tan θopt+

abA exp
(
−b
(

180
π θopt−a

))(
a exp

(
−b
(

180
π θopt−a

))
+1
)2 = 0, (7)

where θopt is the derived optimal elevation angle for a given
a and b.

Considering the transmit power of uk is relatively small, the
communication between UAVi and uk is mainly constrained
by the uplink transmission. Thus, Rmax is determined by
the maximum allowable pathloss of the uk → UAVi uplink
denoted as Li,kmax, which can by given as

Li,kmax = Puk
+Guk

+GUAVi
− Psens − Lc − γth, (8)

where Puk
denotes the transmit power of uk,

G∆ (∆ = uk,UAVi) denotes antenna gain, and Lc represents
feeder loss. Psens and γth are receiver sensitivity and
signal-to-noise ratio (SNR) threshold of UAVs, respectively.

By substituting θopt and Lmax into (5), we can obtain the
maximum ri,k, i.e., Rmax, then the optimal vertical height of
UAVs can be derived as hopt = Rmax tan (θopt).

B. The Optimal Horizontal Locations of UAVs

Based on the obtained optimal height hopt, we further
determine the 2-D locations of the UAVs on the horizontal
plane denoted as P.

From the perspective of cost, the UAV deployment goal
considered in this paper is to find the optimal 2-D locations
of UAVs to minimize the number of UAVs on the premise of
guaranteeing both the coverage and connectivity constraints.
Specifically, the coverage constraint means that all ground
users should be covered. Note that if the user can be served
by multiple UAVs, we assume that the user chooses to access
the UAV with the best link quality. Besides, the connectivity
constraints include three folds: (i) The distance between any
two connected UAVs should be no less than a safety distance
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denoted as ds and also not exceed the maximum communica-
tion distance denoted as dmax. (ii) Each UAV needs to connect
with at least one other UAV. (iii) There exists at least one route
between any two UAVs to ensure the robustness of the UAV
network. Thus, the 2-D UAV deployment subproblem can be
formulated as

min
ui,k,ci,j

|M | , (9-a)

s.t. ui,k, ci,j ∈{0, 1} ,∀i, k, j, (9-b)∑
j

ci,j ≥ 1,∀i, j ∈M,∀i 6=j, (9-c)(
N−1∑
t=1

ct

)
i,j 6= 0,∀i, j∈M, (9-d)

(xi − xj)2
+ (yi − yj)2 ≥ d2

s , ∀i, j ∈M, (9-e)
xi∈ [Xmin,Xmax] ,yi ∈ [Ymin,Ymax],∀i ∈M, (9-f)

where M represents the deployed UAV set, especially |M |
denotes the number of deployed UAVs. ui,k and ci,j are
Boolean variables denoting the association between UAVi

and uk and the connection between UAVi and UAVj , re-
spectively. c = [ci,j ]|M |×|M | is the connection matrix. Also,
(xi, yi) and (xj , yj) denote the coordinates of UAVi and
UAVj , respectively. (Xmin, Xmax) and (Ymin, Ymax) denote
the bounds of plane P. Specifically, ui,k = 1 means that
user k associates with UAVi, i.e., (xi − xk)

2
+ (yi − yk)

2 ≤
R2

max, ∀i, k, otherwise ui,k = 0. And ci,j = 1 means
that UAVi is within communication range of UAVj , i.e.,
(xi − xj)2

+ (yi − yj)2 ≤ d2
max, ∀i, j, otherwise, ci,j = 0.

For the NP-hard UAV deployment problem shown in (9), the
SGA can provide a solution with its advantage of rapid search
ability due to the crossover and mutation procedures. However,
the SGA has the disadvantage of premature convergence,
especially when solving problems with complex constraints.
Furthermore, the efficiency of the SGA would reduce when the
solution space gets large. Therefore, in this paper, we propose
an IGA to solve the UAV deployment problem.

The procedures of the proposed IGA are summarized in Al-
gorithm 1, where our improvements are described as follows.
It is worth mentioning that our proposed IGA can converge to
the global optimum since the best individual in each iteration
has been preserved at step 6 of Algorithm 1 [21].

Firstly, we need to construct chromosomes that can capture
the 2-D location of each UAV. Considering the deployed
locations of UAVs are continuous in practical scenarios, these
locations cannot be coded by chromosomes. Hence, we adopt
a high-density grid to discretize P, where the center of the
grid is the candidate deployed location set of UAVs denoted
as S. Moreover, we code the chromosome genes by binary
symbols, where 1 and 0 represent whether or not deploying
UAV at the corresponding location. Herein, the length of the
chromosome is equal to |S|.

Next, the initial population of the SGA is generated by a
random generation process, which may increase the probability
of unqualified chromosomes in evolution. To cope with this
problem, we design a checking and modifying mechanism for
each chromosome of the initial population to guarantee the

Algorithm 1: IGA for 2-D UAV deployment subprob-
lem

Input: candidate deployed location set of UAVs S,
locations of ground users

Output: 2-D locations of the deployed UAVs
1 Initialize Iteration = 1, MaxIteration
2 Initialize the population
3 Check and modify the initial population
4 while Iteration <= MaxIteration do
5 Calculate the fitness value: fit = |S| − |M |
6 Store the individual with the highest fitness value
7 Select the parents for next generation by

tournament selection methodology
8 for all pairs of parents in the poll do
9 Generate offspring through crossover operator

for all generated offsprings do
10 if mutation probability holds then
11 Mutate current offspring
12 end
13 end
14 end
15 Check and modify the next generation
16 Calculate the fitness and leave the best individuals
17 Iteration = Iteration+ 1
18 end

generated initial population satisfying the connectivity con-
straints in (9). Specifically, we establish an association matrix
between S and uk denoted as a = [as,k]|S|×K , where as,k = 1
means that the UAV deployed at location s can associate
with uk, otherwise as,k = 0. Based on the established
associated matrix, we randomly select an associated UAV for
each user when constructing each chromosome so that all users
can be covered. Then, to ensure the connectivity of the UAV
network, we check whether there exists a route between any
two deployed UAVs. If not, we randomly deploy one UAV in
the remaining candidate deployed locations from S for each
isolated UAV and construct a route between them by deploying
other necessary UAVs around them. Herein, this procedure
can be implemented by setting the corresponding genes of the
newly added UAVs to 1.

Finally, we introduce the checking and modifying mech-
anism for the next generation in each iteration. For the
connectivity constraints, the difference between the initial
population and the generated population is that we should
check whether the generated chromosomes satisfy the safety
distance constraint (9-e). If not, we randomly delete one of
the two unsatisfied UAVs and set the corresponding gene to 0.
For the coverage constraints, we check deployed UAVs of
each chromosome and then can obtain the uncovered user set
according to the association matrix a. If the set is nonempty,
we randomly add UAVs which can serve these uncovered users
based on a and set the corresponding genes to 1. The designed
checking and modifying mechanism turns the chromosomes
that do not satisfy the constraints in (9) into the qualified ones.
In this way, we can avoid the unqualified chromosomes being
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eliminated by selection operation so that the diversity of the
next generation is improved.

IV. MAXIMUM COVERAGE REDEPLOYMENT OF UAVS FOR
A DYNAMIC USER SCENARIO

Based on the 3-D UAV deployment in Section III, we can
obtain the optimal vertical height and the horizontal locations
of the UAVs that can provide coverage for all static users in
the given target area P. However, the already deployed UAVs
cannot guarantee effective coverage when the users move
or increase. Meanwhile, considering the limited deployment
cost, i.e., the number of UAVs, we aim to redeploy the
existing UAVs to maximize the covered users while ensuring
the connectivity of the UAV network. Specifically, we firstly
modify the proposed IGA to determine a feasible set of
redeployed 2-D locations of the UAVs. Then, we formulate
the UAV movement problem as an optimal match to minimize
the total flying distance of the UAVs and design a BA to obtain
the optimal solution.

To maximize the covered users, we redeploy the obtained
UAVs in Section III on the premise of ensuring the connec-
tivity of the UAV network. Therefore, we can formulate the
optimal 2-D UAV redeployment problem as

max
ui,k,ci,j

∑
i,k

ui,k, (10-a)

s.t. ui,k, ci,j ∈{0, 1} ,∀i, j ∈Mopt,∀k, (10-b)
(9−c) , (9−d) , (9−e) , (9−f) , (10-c)

where Mopt represents the optimal deployed UAV set in
Section III. Note that for a given new distribution of users,
the optimization problem (10) has several feasible solutions,
i.e., several feasible sets of UAVs’ redeployed locations. In this
paper, we aim to determine a feasible solution of problem (10).

Similar to the deployment problem in (9), the redeployment
problem in (10) is also NP-hard, which can be solved by
modifying the proposed IGA. The differences between the
modified IGA and the initial IGA in Section III are:

In the procedure of initializing the population, the number
of redeployed UAVs is limited to |Mopt| obtained by the
optimal deployment in Section III, which means that the
number of genes “1” on each chromosome is |Mopt|. For
each chromosome, we firstly deploy a UAV at an arbitrary
location in S and set the corresponding gene to 1. Then, based
on the connection metric c, we deploy another UAV at the
location that can connect to the deployed UAV and set the
corresponding gene to 1. Repeating the above steps until the
number of genes “1” on each chromosome reaches |Mopt|.

Considering that the goal of UAV redeployment is to maxi-
mize the covered users, the fitness value in Algorithm 1 should
be replaced by fit =

∑
i,k

ui,k. Furthermore, we establish a new

association matrix between S and the corresponding covered
users to directly demonstrate the number of covered users for
each chromosome.

Finally, in the process of checking and modifying the next
generation in each iteration, the constraints needed to be
checked and modified are number and connectivity constraints.

TABLE I
SYSTEM PARAMETERS

Receiver sensitivity of UAV Psens
2 −85 dBm

SNR threshold of UAV γth 10 dB
Transmit power of UAV PUAV 30 dBm

Transmit power of user Pu 21 dBm
Antenna gain of UAV GUAV 11 dBi

Antenna gain of user Gu 0 dBi
Feeder loss Lc 1.5 dB

Carrier frequency of A2A channel f0 8 GHz
Carrier frequency of A2G channel f 2 GHz
S-curve parameters of A2G channel

(a, b)
(9.61, 0.28)

Additional pathloss under LoS ηLoS 1 dB
Additional pathloss under LoS ηNLoS 20 dB

The safety distance ds 3.2 km
The maximum available number of UAVs N 900

Maximum iteration MaxIteration 100

For the number constraint, we need to check whether the
generated chromosomes satisfy the number constraint (10-b).
If the number of UAVs exceeds |Mopt|, we should randomly
discard the excess UAVs and set the corresponding genes to
0. Otherwise, we should add UAVs and set the corresponding
genes to 1. For the connectivity constraint, the difference from
Algorithm 1 is that we should count the deployed UAVs of
each chromosome in modifying process. Once the number
of deployed UAVs exceeds |Mopt|, we should discard the
remaining UAVs and set the corresponding genes to 0.

Through the modified IGA based UAV redeployment
scheme, we can obtain one feasible redeployed UAV set
denoted as M̂opt. To further improve the efficiency of UAV
movement, we aim to minimize the total flying distance of the
UAVs. The optimization problem is formulated as

min
∑
i,j

Di,j ,∀i ∈Mopt, j ∈ M̂opt, (11)

where Di,j represents the updating distance between UAVi

in Mopt and UAVj in M̂opt, which can be calculated as

Di,j =

√
(xi − x̂j)2

+ (yi − ŷj)2
, (12)

where (xi, yi) and (x̂j , ŷj) denote the coordinates of UAVi

and UAVj , respectively.
Essentially, the optimization problem in (11) is to find the

optimal match between the initial deployed UAV set Mopt

and the redeployed UAV set M̂opt that can minimize the
total flying distance. Considering the solution space of (11)
is relatively small, we design a BA to solve this problem.
Specifically, we firstly establish a matching matrix L= [li,j ]

2The receiver sensitivity of UAVs can achieve −70 dBm ∼ −90 dBm [23]–
[25]. Hence, in this paper, we take −85 dBm receiver sensitivity as an example
to investigate our proposed IGA based UAV deployment and redeployment
schemes.
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Fig. 2. The deployment of UAVs based on IGA (K = 150).

where li,j = 1 denotes that UAVi in Mopt is paired with
UAVj in M̂opt. Then, we find all forms of L that only one
element in any row or column is 1, which means that each
UAV in Mopt is only paired with one UAV in M̂opt and cannot
be paired repeatedly. It is obvious that each L corresponds to a
feasible movement scheme, especially the optimal movement
scheme minimizing the total flying distance.

The computation complexity of our proposed UAV re-
deployment can be divided into two parts, i.e., the com-
putation complexity of the modified IGA and that of the
BA. Specifically, the computation complexity of the modified
IGA mainly lies in the checking and modifying at step 3
and the evolution process from step 4 to step 18, which
need O (P ) and O (3IP ) operations, respectively. Herein, P
denotes the population size and I denotes the maximum itera-
tions. Moreover, the BA needs O (|M |!) operations. Hence, the
computation complexity of our proposed UAV redeployment
is O (P + 3IP+ |M |!).

V. RESULTS AND ANALYSIS

In this Section, we evaluate the proposed IGA based UAV
deployment and redeployment schemes in static and dynamic
user scenarios, respectively. Moreover, for the dynamic user
scenario, the designed BA based UAV movement strategy
is also studied. In the simulations, the predetermined sys-
tem parameters are listed in Table I [22]. From the above
analysis in Section II, we can derive the optimal flying
height and the corresponding coverage region radius of UAVs
are (hopt, Rmax) = (1.8 km, 2.5 km). And the maximum
communication distance of the UAV network is derived
as dmax = 6.4 km.

We firstly conduct simulations to investigate the proposed
IGA based UAV deployment scheme in Fig. 2, where the
ground users are randomly distributed in a 10 km × 10 km
covered area. Fig. 2 shows the initial candidate UAV locations
and the final deployed UAV locations, where the associations
between each UAV and the corresponding covered users are
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Fig. 3. Comparison of IGA based deployment scheme, SGA based deploy-
ment scheme, and best random deployment scheme.

shown in red lines and the connections among the deployed
UAVs are shown in green lines. From this figure, we can see
that all the ground users can be covered by 7 UAVs and the
connectivity of the UAV network is guaranteed.

In Fig. 3, we further compare our proposed IGA based
deployment scheme with the SGA based deployment scheme
and the best random deployment scheme, where the target area
is 10 km × 10 km. Specifically, the SGA based deployment
scheme does not include the best individual’s preservation
and the checking and modifying mechanism proposed in
this paper. Moreover, the best random deployment scheme
selects the best deployment scheme corresponding to the least
number of UAVs among 1000 random deployment trials. From
this figure, we can see that both the SGA based and our
proposed IGA based deployment schemes outperform the best
random deployment scheme. Moreover, our proposed IGA
based deployment scheme deploys fewer UAVs than that of
the SGA based deployment scheme. This is because that
the IGA based deployment scheme introduces the checking
and modifying mechanism for the next generation in each
iteration to guarantee the safety distance and connectivity
constraints of the UAV network. In this way, large overlapping
in coverage of the deployed UAVs can be avoided. In addition,
we can observe that the number of UAVs deployed by the
SGA based deployment scheme dramatically increases when
the number of users reaches 250 indicating that the SGA
converges to a local optimum. While our proposed IGA can
avoid this premature convergence problem by the introduced
best individual’s preservation and checking and modifying
mechanism. Whereas, due to the limited coverage area, the
number of deployed UAVs will no longer increase as the
number of users increases to 350 and above. This is because
that the deployed UAVs already can provide seamless coverage
for the target area. Moreover, the computation complexity of
SGA based and IGA based deployment schemes are O (2IP )
and O (P + 3IP ), respectively, with I = 100 and P = 1200.
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Fig. 4. The redeployment and movement strategy of the UAVs when the users
move slightly and K increases to 300.
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Fig. 5. The redeployment and movement strategy of the UAVs when the users
move dramatically and K increases to 500.

It can be seen that compared with SGA, the proposed IGA
has higher computation complexity but can achieve better de-
ployment performance. This is because that our proposed IGA
introduces the checking and modifying mechanism. While,
the computation complexity of the best random deployment
scheme is related to its search space. When the search space
is small, e.g., 1000 set in our simulation, its computation
complexity is relatively low, but the deployment result is not
optimal. However, it is difficult to determine the best search
space of the best random deployment scheme to obtain the
optimal deployment result due to its inherent randomness.
Hence, considering the non-optimal deployment result of the
best random deployment scheme, it is meaningless to compare
its computation complexity with that of SGA and IGA based
deployment schemes.

Then, we plot feasible IGA based UAV redeployment
schemes and the corresponding BA based movement strategies
for the UAVs when users change in Figs. 4 and 5. In Fig. 4,
the locations of the users change slightly and the number of

0 50 100 150 200 250 300

Number of iteration

390

391

392

393

394

395

F
it

n
es

s 
v

al
u

e 
o

f 
d

ep
lo

y
m

en
t

250

300

350

400

450

500

F
it

n
es

s 
v

al
u

e 
o

f 
re

d
ep

lo
y

m
en

t

Fig. 6. Fitness function behavior for deployment and redeployment schemes.

the users increases to 300. Note that the coverage of each
initial deployed and redeployed UAV is depicted in black
and red circles, respectively. We can observe that the initial
deployed UAVs cannot provide coverage for all users. While
our designed redeployment scheme can cover all the users.
Moreover, the optimal movement strategy of the UAVs is
shown in gray lines with the corresponding minimum total
flying distance and the longest flying distance being 3.8 km
and 1.1 km, respectively.

As shown in Fig. 5, the target area expands to 12 km ×
12 km as the users move dramatically and the number of the
users increases to 500. From this figure, we can see that there
still exist uncovered users after redeployment. In this situation,
the maximum number of covered users increases from 399
to 448 and the coverage rate increases from 79.8% to 89.6%.
It is obvious that more UAVs should be deployed to serve
uncovered users. Similarly, the optimal movement strategy
for the UAVs is shown in gray lines with the corresponding
minimum total flying distance is 8.5 km and the longest flying
distance being 3.8 km and 2.1 km, respectively.

To verify the effectiveness of our proposed IGA, we plot
the fitness values for both deployment and redeployment
schemes versus the number of iterations in Fig. 6. Note that
the fitness value depends on the number of UAVs and the
number of covered users for the deployment scheme and
the redeployment scheme, respectively. We can observe that
the curves of the fitness values for both these two schemes
converge after several iterations. This phenomenon indicates
that after the evolution process, both the number of deployed
UAVs for the deployment scheme and the number of covered
users for the redeployment scheme eventually reach stability,
which means that these two schemes converge to the optimum.
Moreover, as the number of users increases, the search space
of IGA becomes larger resulting in a slower convergence.

VI. CONCLUSIONS

In this paper, we have investigated the UAV deployment and
redeployment problems in static and dynamic user scenarios,
respectively. In both problems, the connectivity of the UAV
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network is guaranteed for robustness. Specifically, for the static
user scenario, we have decoupled the UAV 3-D deployment
problem into optimal vertical height and 2-D deployment sub-
problems. In view of deployment cost, we have formulated
the UAV 2-D deployment to minimize the number of UAVs
and propose a heuristic algorithm, i.e., IGA to solve this NP-
hard problem. Compared with the SGA, our proposed IGA can
effectively improve the evolution ability and search efficiency
by introducing the checking and modifying mechanism. For
the dynamic user scenario, taking the limited deployment
cost into account, we have modified the proposed IGA to
determine a feasible set of 2-D redeployed locations of the
UAVs that can maximize the covered users while guaranteeing
the connectivity of the UAV network. Moreover, to reduce the
cost of redeployment, we design a BA based UAV movement
strategy to minimize the total flying distance of the UAVs.
Simulation results have validated the effectiveness of our
proposed UAV deployment and redeployment schemes.
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