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Abstract—We address the joint problem of learning and
scheduling in multi-hop wireless network without a prior knowl-
edge on link rates. Previous scheduling algorithms need the
link rate information, and learning algorithms often require a
centralized entity and polynomial complexity. These become a
major obstacle to develop an efficient learning-based distributed
scheme for resource allocation in large-scale multi-hop networks.
In this work, by incorporating with learning algorithm, we de-
velop provably efficient scheduling scheme under packet arrival
dynamics without a priori link rate information. We extend
the results to distributed implementation and evaluation their
performance through simulations.

Index Terms—Distributed algorithm, learning, multi-hop net-
works, provable efficiency, wireless scheduling.

I. INTRODUCTION

AS one of the key functions in wireless communication
networks, link scheduling determines which links should

be activated at what time. The problem is challenging, in
particular, in multi-hop1 networks due to non-linear interfer-
ence relationship between wireless links. The seminal work
of Tassiulas and Ephremides has shown that the maximum
weighted matching (MWM) algorithm that maximizes the
queue weighted rate sum can achieve the optimal throughput
under packet arrival dynamics [8]. Due to high computational
complexity of MWM [1], alternative low-complexity schedul-
ing solutions with comparable performance such as greedy
maximal matching (GMM) or longest queue first (LQF) have
attracted much attention [2], [3]. However, since GMM still
has linear complexity that increases with the network size, it
can be hardly used in large-size multi-hop networks.
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1In this work, we use the term ‘multi-hop’ for the arbitrary interference

relationship between wireless links, and consider only single-hop traffic flows,
i.e., a packet departs the network after a single transmission. If a scheduling
scheme is suboptimal with these single-hop flows over multi-hop network,
then clearly it is suboptimal with multi-hop flows. This approach has been
widely adopted to investigate the performance of scheduling schemes without
being affected by the functions of other layers such as routing and congestion
control [1]–[7].

There has been extensive research on developing efficient
scheduling algorithms that have sublinear complexity, yet
perform provably well in multi-hop wireless networks. An
approximation to GMM with logarithmic complexity has been
developed in [4]. Random access technique with explicit
neighborhood information exchanges has been explored at
some expense of performance [5]–[7], [9]. Several studies
have shown that the optimal throughput performance is achiev-
able, either by taking the pick-and-compare approach [10],
[11], or by exploiting the carrier-sensing functionality [12],
[13]. There have been also attempts to develop provably
efficient scheduling algorithms that work with time-varying
wireless channels [4], [14] or with complex SINR interference
model [15], [16]. The aforementioned scheduling schemes
provide performance guarantees under packet arrival dynam-
ics. However, they are limited to deterministic link rates
that are known a priori or at the time of scheduling. Their
extension to the case when the link rates are unknown is not
straightforward.

In this work, we consider the scheduling problem, where
link rates and statistics are unknown a priori. This occurs
when new applications try to operate efficiently under uncer-
tainty caused by wireless fading, interference, limited feed-
back, measurement error, system dynamics, etc [17]–[19].
We assume that an instance link rate is revealed when it is
accessed/scheduled, and it is drawn from an unknown static
distribution. Our goal is to find an appropriate sequence of
link schedules that maximize throughput under packet arrival
dynamics, while quickly learning the link rates and queue
states.

Focusing on the learning aspect, the problem can be viewed
as a variant of multi-armed bandit (MAB) problems, in which
one repetitively plays a set of arms to maximize the reward
sum [20]. The performance of a learning algorithm is often
evaluated by regret, which is the difference in the total
expected reward obtained by an optimal policy and that by the
learning algorithm. Lai and Robbins have shown that the regret
grows at least at logarithmic rate of time [21], and several
index-type learning algorithms with the order-optimal regret
have been developed [22], [23]. For a large-scale multi-hop
wireless network, it is imperative to design algorithms that
are amenable to implement in a distributed manner. In [24],
the authors have developed a distributed learning algorithm
that selects best M out of N arms, where each of M users
selects an arm taking into consideration mutual collision. By
employing a time-division selection approach, the scheme is
shown to achieve logarithmic regret. Chen et al. [20] and Gai
et al. [25] have considered more general problems of combi-
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natorial MAB (CMAB) with arbitrary constraint. They have
employed an (α, β)-approximation oracle that can achieve α
fraction of the optimal value with probability β, and developed
learning schemes that can achieve the logarithmic growth for
αβ fraction of the optimal expected regret (denoted by αβ-
regret). However, an oracle with good αβ (i.e., close to 1)
often has a high-order polynomial complexity, and thus as the
network scales, it is not clear whether the scheme is amenable
to implement in a distributed manner.

Applying learning algorithms to scheduling in wireless
networks, the works of [26], [27] have addressed the regret-
minimization problem in cognitive radio network settings, and
developed distributed schemes with logarithmic regret through
prioritized ranking and adaptive randomization. The authors
of [28] have developed fully distributed schemes that can
achieve the logarithmic regret without any information ex-
change. In [29], the authors have successfully lowered the al-
gorithmic complexity to O(1) while achieving the logarithmic
regret performance. Although these aforementioned learning
algorithms are amenable to distributed implementation, they
are limited to single-hop networks, such as wireless access
networks, and to saturated traffic scenarios (i.e., links always
have packets to send), and thus cannot accordingly respond
to packet arrival dynamics. Recently, Stahlbuhk et al. [19]
has developed a joint learning and scheduling scheme that
provides provable efficiency under packet arrival dynamics,
by incorporating GMM scheduling algorithm and UCB-based
learning algorithm. Albeit interesting, it achieves only 1/2 of
the capacity region and has linear complexity, which makes it
less attractive for large-size networks.

In this work, we consider the joint problem of learning
and scheduling in multi-hop wireless networks, and develop
low-complexity schemes that achieves near-full capacity re-
gion under packet arrival dynamics. Our contribution can be
summarized as follows:

• We develop a joint learning and scheduling scheme
with O(k) computational complexity, by successfully
incorporating a graph augmentation algorithm with the
UCB index. Parameter k is settable for a certain level
of performance, in which case the complexity becomes
O(1).

• We show that Ak-UCB is an (α, β)-approximation oracle
with α = k−1

k+1 and some small non-zero β, but can indeed
achieve the logarithmic growth for k−1

k+1 -regret, regardless
of the value of β, which is in contrast to αβ-regret shown
in [20], [25].

• By using the frame structure, we show that Ak-UCB
achieves k−1

k+1 fraction of the capacity region under packet
arrival dynamics.

• We extend our result and develop dAk-UCB scheme that
is amenable to implement in a completely distributed
manner.

The rest of paper is organized as follows. Section II
describes our system model. We propose a joint scheme
of learning and scheduling in Section III, and analytically
evaluate its performance in Section IV. We further extend our
scheme for distributed implementation in Section V. Finally,

we numerically evaluate our schemes in Section VI and
conclude our work in Section VII.

II. SYSTEM MODEL

We consider a multi-hop wireless network denoted by graph
G = (V,L) with the set V of nodes and the set L of directional
links. We assume that the connectivity is reciprocal, i.e., if
(u, v) ∈ L, then (v, u) ∈ L. A set of links that can be
scheduled at the same time is constrained by the primary
interference model, under which any node v (either transmitter
or receiver) in the network can communicate with at most one
of its neighbor nodes N (v), where N (v) = {u ∈ V | (v, u) ∈
L}. Slightly abusing the notation, we also denote the set of
links that is connected to v by N (v). The primary interference
model can represent Bluetooth or FH-CDMA networks as well
as capture the essential feature of wireless interference [2],
[19], and has been adopted in many studies on wireless
scheduling, e.g., see [2]–[7] for more detailed description.
Time is slotted, which can be achieved by being equipped
with high accuracy GPS. At each time slot, a set of links
that satisfies the interference constraints can be simultaneously
activated. Such a set of links is called a matching (or a feasible
schedule), and let S denote the set of all matchings.

At each link i ∈ L, we assume packets arrive following
a Bernoulli process with probability λi (e.g., see [11]). Let
λ denote its vector and ai(t) ∈ {0, 1} denote the number of
arrived packets in time slot t. We have E[ai(t)] = λi. We
assume that the rate of link i is time-varying due to multi-
path fading and unknown interference as in [14], and it is
independently drawn from a (possibly different) distribution
with mean µi. Let µ denote its vector and Xi(t) ∈ [0, 1]
denote the instance rate of link i when it is activated at time
slot t, with E[Xi(t)] = µi. The extension to multiple packet
arrivals and departures is straightforward. We assume that λ
and µ are unknown.

At time slot t, if a policy activates matching St, then
each link i ∈ St accesses the medium and transmits Xi(t)
packets2 during the time slot. Each link i is associated with
an unbounded buffer that queues up packets for transmission.
Let qi(t) denote the queue length at link i at the beginning of
time slot t, which evolves as

qi(t+ 1) =

{
[qi(t)−Xi(t)]

+
+ ai(t), if i ∈ St,

qi(t) + ai(t), if i /∈ St,
(1)

where [·]+ = max{·, 0}. Let q(t) denote its vector, and let
q∗(t) = maxi∈L qi(t) denote the maximum queue length in
the network at time slot t.

We consider a frame structure where each frame has length
of T time slots. Frame n begins at time slot tn = (n−1)T+1.
During frame n, i.e., for time slots t ∈ [tn, tn+1), we define
weight Wi(t) and its mean wi of link i, respectively, as

Wi(t) =
qi(tn)
q∗(tn)

Xi(t), and wi =
qi(tn)
q∗(tn)

µi. (2)

2or transmits 1 packet with success probability Xi(t).



PARK et al.: A LEARNING-BASED DISTRIBUTED ALGORITHM FOR ... 101

For q∗(tn) = 0, we define Wi(t) = Xi(t) and wi = µi. Let w
denote its vector (w1, w2, · · ·, w|L|), where |·| is the cardinality
of the set. We denote the link weight sum of matching S by

rw(S) =
∑

i∈S wi. (3)

For convenience, we let r∗w = maxS∈S rw(S) denote the
largest weight sum over all matchings, and we also denote a
set of optimal matchings by S∗w = argmaxS∈S rw(S). For
α ∈ (0, 1], we define a set of near-optimal matchings with
respect to vector w as

Sαw = {S ∈ S | rw(S) ≥ α · r∗w}, (4)

and define its complement as S̄αw = S − Sαw.
In the CMAB framework, a link corresponds to an arm,

a matching to a super arm, and the instance link rate to
the reward of the link, respectively. We use the terms inter-
changeably. Note that the regret is defined as the accumulated
expected difference between the reward sum associated with
an optimal matching and that obtained by the MAB algorithm.
Similar to [20], we define α-regret as, for some α ∈ (0, 1],

Regα(t) = t · α · r∗w − E
[∑t

τ=1 rw(Sτ )
]
, (5)

which evaluates the performance of an CMAB task at time t.
In the viewpoint of resource allocation, achieving a high

reward sum is equivalent to achieving a larger queue-weighted
link rate sum, which implies that the links with high demands
and high service rates are scheduled first, and thus tends to
stabilize the network. A network is said to be stable if the
queues of all links are rate stable, i.e., limt→∞ qi(t)/t = 0
with probability 1 for all i ∈ L. Let Λ denote the capacity
region, which is the set of arrival rate vectors λ such that for
any λ ∈ Λ, there exists a policy that can make the network
stable. We say that a scheduling policy has the stability region
γΛ for some γ ∈ [0, 1], if it can stabilize the networks for any
arrival λ ∈ γΛ.

We aim to develop a joint scheme of learning and scheduling
that determines St to

maximize γ

subject to lim
t→∞

qi(t)
t = 0, for any λ ∈ γΛ,

Xi(t)
iid∼ Di, and (1),

where Di denotes the distribution with finite support [0, 1].
The arrival vector λ and the distributions {Di} are unknown
to the controller, and an observation on Xi(t) is available only
by scheduling link i at time t.

III. AUGMENTATION WITH UCB INDEX (Ak-UCB)

We develop a provably efficient joint scheme of learning
and scheduling, by incorporating the augmentation algorithm
presented in [11] with UCB index. We first describe the overall
algorithm, and then explain the detailed operations.

We consider each frame time as an independent learning
period, which allows us to decouple the learning from the
scheduling. In the following, we describe the operation of our
algorithm during a frame time. For the ease of exposition, we

Algorithm 1 Frame-based joint learning and scheduling
/* Repeat at each frame time */

1: Obtain queue constant qi and q∗

2: Initialize ŵi and τ̂i
3: for t = 1 to |L| do
4: Schedule arbitrary matching St that has link t
5: Update ŵi and τ̂i for each link i ∈ St

6: for t = |L|+ 1 to T do
7: Compute UCB index w̄i,t ← ŵi +

√
(|L|+1) ln t

τ̂i

8: ⟨ Select matching St using w̄ ⟩
9: Schedule St

10: Update ŵi and τ̂i for each link i ∈ St

assume that our algorithm runs for time slot [1, T ], where T
is the frame length.

We start with some notations. Let qi = qi(1) denote the
initial (i.e., at the beginning of the frame) queue length of link
(arm) i, and let q∗ = maxi qi. Let τ̂i(t) denote the number
of times that arm i is played up to time slot t, and let τ̂S(t)
denote the number of times that matching S is played. The
UCB index of arm i [22] is defined as

w̄i,t = ŵi(t− 1) +
√

(|L|+1) ln t
τ̂i(t−1) , (6)

where ŵi(t) = qi
q∗ ·

1
τ̂i(t)

∑t
n=1 Xi(n) · I{i ∈ Sn} denotes

average reward of arm i at time slot t weighted by qi
q∗ ,

and I{e} ∈ {0, 1} denotes the indicator function that equals
1 if event e occurs, and 0 otherwise. All the variables of
w̄i,t, ŵi, τ̂i, qi, q

∗ will be reset at the beginning of each frame.
Let w̄t = (w̄1,t, w̄2,t, · · ·, w̄|L|,t) denotes the UCB index
vector. Then rw̄t(S) and r∗w̄t

are the index sum over links
in matching S and its maximum value over all possible
matchings, respectively. Also, we denote S∗w̄t

and Sαw̄t
as the

set of matchings that achieve r∗w̄t
and those that achieve at

least αr∗w̄t
, respectively.

We develop our joint learning and scheduling algorithm
based on the generic UCB index, as shown in Algorithm 1,
where we omit subscript t of ŵi(t) and τ̂i(t) for brevity. At
time slot t = 1, it obtains two constant weight parameters qi
and q∗ (line 1), and schedules arbitrary matchings for |L| time
slots such that each link can be scheduled at least once (lines
3-5). Afterwards, it computes the index of each arm (line 7),
selects matching St using the indices (line 8), and schedules
it (lines 9-10).

The key part of the algorithm is about how to select
matching St in line 8 such that it achieves high performance
at low complexity. It has been shown in [20], [25] that, if we
use an (α, β)-approximation oracle in the matching selection,
the joint algorithm has αβ-regret performance, which leads
to achieving αβ fraction of the capacity region. The problem
is, that the parameter β can be very small in particular when
the network size is large. To this end, we introduce a class
of augmentation algorithms with parameter k, which is an
(α, β)-approximation oracle with α = (k − 1)/(k + 1) and
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Fig. 1. Time structure.

some small3 β > 0, and has O(k) complexity.
We overview the augmentation algorithm. For the detailed

description, we refer to [11] or our technical report [30].
We start with some definitions. Given a matching S, an
augmentation A of matching S is a path or cycle where every
alternate link is in S and has the property that if all links in
A ∩ S are removed from S and all links in A− S are added
to that S, then the resulting set of links is another matching
in G. The latter process of finding new matching is called
augmenting S with A, and the resulting matching is denoted
by S⊕A = (S−A)∪(A−S). A pair of augmentations A1 and
A2 of matching S is disjoint if no two links in A1 − S and
A2−S are adjacent, i.e., if they do not share a common node.
Let A denote a set of disjoint augmentations of matching S
where every pair in A is disjoint. Then

⋃
A∈A(S⊕A) is also

a matching in G.
The overall procedure of the augmentation algorithm at each

time slot t is as follows.
1) At the beginning of the time slot, each link i is associated

with some known weight wi(t).
2) Given a valid matching St−1 that is the schedule at

time t − 1, it randomly generates a set A of disjoint
augmentations of St−1.

3) It compares the weight sum of A − St−1 and A ∩ St−1

for each A ∈ A. Let B(A) be the one with the larger
weight sum among the two.

4) It takes the new schedule St as
⋃

A∈A B(A).
For the comparison of the weight sum in the 3rd step, we
define the gain of augmentation A as

Gt(A) =
∑

i∈A−St−1
wi −

∑
j∈A∩St−1

wj , (7)

and obtain new schedule St by augmenting St−1 with all A ∈
A of Gt(A) > 0.

The augmentation algorithm can accomplish the above
procedure in a distributed fashion. The algorithm has two
configuration parameters p and k, and consists of the follow-
ing four stages in each time slot: initialization, augmenting,
checking a cycle, and back-propagating/scheduling. For the
ease of exposition, we consider additional time structure of
mini-slots, as shown in Fig. 1, and all the four stages end in
4k + 2 mini-slots.

i) Initialization stage: At mini-slot τ = 1, each node v
selects itself as a seed with probability p. Once selected,
it becomes an active node. It starts an augmentation Av

and randomly selects Z̄v ∈ [1, k], which is the maximum

3It depends on the network topology and the setting of p. In general, we
have a smaller β for a larger network.

size4 of Av . Then, it adds the first link to Av from its
neighboring links N (v): if there is a link in St−1∩N (v),
then we include the link in Av , and otherwise, we
randomly choose a link from N (v). Once the first link
(v, n) is chosen, the two nodes v and n coordinate with
each other by exchanging necessary information through
request (REQ) and acknowledgement (ACK) messages.
The information (including current Av , current Gt(Av)
according to (7), Z̄v , etc) allows node n to continue
building the augmentation. At the end of the first mini-
slot, node v becomes inactive and node n becomes active.

ii) Augmenting stage: It extends Av by adding a link at
each mini-slot τ ∈ [2, 2k+1]. Current active node selects
new link that should be either a random neighboring
link outside St−1 (if the previously selected link is in
St−1) or a neighboring link in St−1 (if the previously
selected link is not in St−1). It updates Gt(Av) and Av

accordingly, and proceeds a similar coordination through
REQ and ACK messages, and at the end of mini-slot,
active node changes to the corresponding end node of
the new link. The extension continues until one of the
following conditions hold: the size of Av equals Z̄v , Av

cannot be extended any more, or the extension fails due
to message collision (see Fig. 2).

iii) Cycle-checking stage: When the augmenting stage fin-
ishes, the last node is called the terminus. The terminus
checks whether the final augmentation Av forms a cycle
or not. If it forms a cycle, the gain is updated to include
the last link (n, s).

iv) Back-propagating/scheduling stage: The last stage is
for back-propagating the final gain from the terminus to
the seed through Av , and in the meantime, constructing
S∗ either by scheduling links outside St−1 if the gain
is positive, or by scheduling links in St−1 if the gain is
negative. This takes additional 2k+1 mini-slots at most.
The final result S∗ will be used as the new schedule St

during time slot t.

Remarks: In our description, we present St−1 as if it is a global
variable, but each node v indeed requires only the local view
of it, i.e., N (v) ∩ St−1, which can be obtained during the
back-propagation in the last stage of the previous time slot.
After all the stages, a set of augmentations (one per a seed
node) will be generated. Since a size-Z̄ augmentation A can
have at most Z̄+1 links of St−1 and Z̄ new links, the number
of total links in A can be up to 2Z̄ + 1 ≤ 2k + 1.

Fig. 2 illustrates an example operation of the augmentation
algorithm during time slot t in a 3 × 4 grid topology. Nodes
are dots, and solid lines are links. The previous schedule
St−1 is marked by thick solid lines in Fig. 2(a)-(e). At the
beginning (τ = 1), each node selects itself as a seed with
probability p. In this example, three nodes are selected and
become an active as marked by (white) numbered circles in
Fig. 2(a). Active nodes 1 and 2 have to start its augmentation
with the previous scheduled link, while active node 3 selects
one of three neighboring nodes at random. The solid arrow

4The size Z of an augmentation A is defined as the number of new links
in A, i.e., Z = |A− St−1|.
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Fig. 2. Example operation of the augmentation algorithm with k = 2 in a
time slot. After the cycle-checking stage, link weights of final augmentations
are shown in (e). After back-propagation, links are accordingly augmented
with A1, and the final schedule is marked by thick solid lines in (f).

denotes the link selected by the active node. Once selected,
the nodes exchange the necessary information. In the next
mini-slot (τ = 2), active nodes change as shown in Fig. 2(b).
Narrow dotted arrows denote the augmentation up to now.
The active nodes continue to build the augmentation repeating
the procedure, until the augmentation cannot be extended
or it reaches the maximum size. In the meantime, if two
augmentations collide as shown by active nodes 2 and 3
in Fig. 2(b), both augmentations terminate. The node at the
collision point will belong to the augmentation that follows
a link in St−1, as shown in Fig. 2(c). The terminus nodes
are marked by solid (black) number circles. The result after
(2k+1)th mini-slots is shown in Fig. 2(e), where each of three
augmentations is marked by a dotted enclosure. The number
of links in the augmentations denote their weight. Then after
checking a cycle, the back-propagating stage follows. Each
terminus makes the final decision by comparing the weight
sum as in (7). The decision propagates backward through
the augmentation, and leads to new schedule St as shown
in Fig. 2(f).

By using the aforementioned augmentation algorithm in
matching selection of line 8 in Algorithm 1, we complete Ak-
UCB scheme. However, evaluating the performance of Ak-
UCB is not straightforward. Since the scheduler do not know
the true link rate µi and instead use the experience-based
UCB index w̄i,t, the previous analysis of [11] for scheduling
performance is not applicable due to inaccurate link rate
information. Also for learning performance, considering Ak-
UCB as an (α, β)-oracle is not much helpful due to the fact
that probability β can be arbitrarily small as the network scales
up.

Our main contribution is to analytically characterize the
performance of our joint learning and scheduling scheme

Ak-UCB, and to show that it can achieves the rate-optimal
logarithmic growth of k−1

k+1 -regret regardless of the network
size in the learning, and further it has the close-to-optimal
stability region that equals k−1

k+1Λ in the scheduling.

IV. PERFORMANCE EVALUATION

We first consider the regret performance of Ak-UCB in a
single frame, and then evaluate its scheduling performance
across frames.

A. Regret Performance in a Single Frame

We show that Ak-UCB has distribution-dependent upper
bound of O(log T ) on the regret in a frame of length T . We
start with the following lemma.

Lemma 1. Given any St−1, weight w̄t, and a fixed k > 0,
there exists δ > 0 such that, with probability at least
δ, the augmentation algorithm generates a set A∗ of dis-
joint augmentations that satisfies (St−1 ⊕ A∗) ∈ Sαw̄t

, i.e.,
Pr{(St−1 ⊕A∗) ∈ Sαw̄t

} ≥ δ, or equivalently,

Pr
{
rw̄t

(St−1 ⊕A∗) ≥ k−1
k+1 · r

∗
w̄t

}
≥ δ, (8)

where δ ≥ min{1, ( p
1−p )

|V|} · ( 1−p
kΣ )|V|, |V| is the number of

nodes, and Σ is the maximum node degree.

Lemma 1 means that the augmentation algorithm is an (α, β)-
approximation oracle with α = k−1

k+1 and β > 0, where β can
be arbitrarily small according to the network size. The proof
follows the same line of analysis of [11] and thus omitted. For
the completeness, we provide the proof in [30].

Next, we need a generalized version of the decomposition
inequality for α-regret. From (5), we have

Regα(t) = t · α · r∗w − E
[∑t

τ=1 rw(Sτ )
]

=
∑t

τ=1

∑
S∈S E [I{Sτ = S} · (αr∗w − rw(S))]

≤
∑

S∈S E[τ̂S(t)] ·∆α
max,

(9)

where ∆α
max = α·r∗w−minS∈S̄α rw(S) is the maximum near-

optimal gap. Similarly we define the minimum near-optimal
gap ∆α

min = α · r∗w −maxS∈S̄α rw(S).
The following lemma ensures that, if a non-near-optimal

matching in S̄αw is played many times, then its index sum is
smaller than that of any near-optimal matching in Sαw.

Lemma 2. Given a frame of length T , if a non-near-optimal
matching S ∈ S̄αw is played more than lT = ⌈ 4|L|2(|L|+1) lnT

∆α
min

⌉
times by t-th time slot in the frame, then the probability that
the total sum of UCB indices over S at time slot t is greater
than that over any near-optimal matching S′ ∈ Sαw is bounded
by

Pr {rw̄t
(S) ≥ rw̄t

(S′)} ≤ 2|L|t−2, (10)

for all t ≤ T such that τ̂S(t) ≥ lT .

We emphasize that Sαw and S̄αw are defined with true weight
w, while the matching comparison is based on UCB index
w̄t. The lemma shows that the augmentation algorithm may
still work well, even when the true weight is replaced with the
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UCB index. The proof of the lemma is analogous to Lemma
A.1 of [29] but has some differences due to ’near-optimality’.
It can be found in [30].

One of our main results, the regret bound of Ak-UCB, can
be obtained as follows.

Proposition 1. For a network graph G = (V,L), Ak-UCB
achieves the regret performance bound of

Regα(t) ≤ ∆α
max

[
D1 · log t

(∆α
min)

2 +D2

]
,

for all t ∈ {1, · · ·, T}, where D1 =
(
1 + 1

δ

)
· 4|L|2(|L|+ 1) ·

(|S| − 1), D2 = |S|−1
δ (1 + |L|δπ2

3 + |L|(|S|−2)π2

6 ) + 1−δ
δ +

2|L|π2

3δ , α = k−1
k+1 , and δ = min{1, ( p

1−p )
|V|} · ( 1−p

kΣ )|V|.

It shows that Ak-UCB achieves the logarithmic growth
O(log T ) of α-regret. Note that although the result is some-
what similar to those in [20], [25], their proof techniques are
not applicable. Suppose that at time slot t, Ak-UCB randomly
generates a set At of augmentations based on the previous
schedule St−1, and At consists of a single augmentation for
the ease of exposition. It is possible that both the matchings,
previous schedule St−1 and schedule St−1 ⊕ At generated
by the augmentation algorithm, are non-near-optimal. This
implies that we cannot ensure that the index sum of the
chosen schedule (i.e., either St−1 or St−1 ⊕ At) is greater
than αr∗w̄t

, because the index-sum comparison is done only
between the two non-near-optimal matchings. This, the lack
of comparison with the optimal matching (or near-optimal
matching in our case) at every time slot, makes the previous
regret analysis technique non-applicable. We successfully
address the difficulties by grouping the plays of non-near-
optimal matchings.

Overall, we show that the number of explorations to non-
near-optimal matchings is bounded. To this end, we consider
a sequence of time points where a non-near-optimal matching
is sufficiently played at each point. They serve as a foothold to
count the total number of plays of non-near-optimal matchings.

To begin with, for an arbitrary fixed time h > 0, let lh =

⌈ 4|L|2(|L|+1) lnh
(∆α

min)
2 ⌉, and let t̂h denote the first time when all

non-near-optimal matchings are sufficiently (i.e., more than lh
times) explored, i.e.,

t̂h = min
{
t
∣∣ τ̂S(t) ≥ lh for all S ∈ S̄αw

}
.

(1) When t̂h ≤ h : Let S̄αw = {S1, S2, · · ·, SM} with M =
|S̄αw|. Further we define S(t) = {S ∈ S̄αw | τ̂S(t) ≥ lh}, which
is the set of non-near-optimal matchings that are scheduled
sufficiently many times by time t, and S(t) = S̄αw − S(t)
denotes the set of not-yet-sufficiently-scheduled non-near-
optimal matchings. Also, let tn denote the time when matching
Sn is sufficiently scheduled, i.e., τ̂Sn(tn) = lh. Without loss
of generality, we assume t1 < t2 < · · · < tM = t̂h.

To apply the decomposition inequality (9), we need to
estimate the expected value of

∑
S∈S̄α

w
τ̂S(t̂h), which can be

written as∑
S∈S̄α

w
τ̂S(t̂h) =

∑
S∈S̄α

w

∑t̂h
t=1 I{St = S}

= lhM +
∑M−1

n=1

∑tn+1

t=tn+1

∑
S∈S(tn) I{St = S}.

(11)

Hence, we need to estimate
∑

S∈S(tn) Pr{St = S} for t ∈
(tn, tn+1], which can be obtained as in the following lemma.

Lemma 3. For each t ∈ (tn, tn+1], we have∑
S∈S(tn) Pr{St = S}
≤ (1− δ) ·

∑
S∈S(tn) Pr{St−1 = S}

+ Pr{St−1 ∈ S(tn)}+
(
|S(tn)|+ δ

)
· 2|L|t−2.

(12)

Proof. We first divide the case into three exclusive sub-cases
based on the previous schedule St−1: events A = {St−1 ∈
Sαw}, B = {St−1 ∈ S(tn)}, and C = {St−1 ∈ S(tn)}. Then
we have ∑

S∈S(tn) Pr{St = S}
=

∑
S∈S(tn) Pr{St = S | A} · Pr{A} (13)

+
∑

S∈S(tn) Pr{St = S | B} · Pr{B} (14)

+
∑

S∈S(tn) Pr{St = S | C} · Pr{C}. (15)

Let At denote the set of augmentations chosen under our
algorithm at time t. We can obtain a bound on (13) as∑

S∈S(tn) Pr{St = S | A} · Pr{A}
≤

∑
S∈S(tn) Pr{rw̄t(S) ≥ rw̄t(St−1) | A} · Pr{A}

≤ |S(tn)| · 2|L|t−2, (16)

where the last inequality comes from Lemma 2. The result
holds for all t ∈ (tn, tn+1]. For the second term (14), we have∑

S∈S(tn) Pr{St = S | B} · Pr{B} ≤ Pr{B}. (17)

Finally, the third term (15) denotes the probability to transit
from a sufficiently-played non-near-optimal matching to a
sufficiently-played non-near-optimal matching, and thus we
have∑

S∈S(tn) Pr{St = S | C} · Pr{C}
=

∑
S∈S(tn) Pr{St ∈ S(tn)|St−1 = S} · Pr{St−1 = S}.

Letting S′ = S ⊕ At and using Lemma 1, the conditional
probability can be derived as

Pr{St ∈ S(tn)|St−1 = S}
≤ Pr{St ∈ S(tn)|St−1 = S, S′ ∈ Sαw} · δ + (1− δ)

= Pr{rw̄t(S) ≥ rw̄t(S
′)} · δ + (1− δ)

≤ 2|L|t−2 · δ + (1− δ).

where the equality holds since St should be S (otherwise,
St = (S ⊕ At) /∈ S(tn)) and thus S should have the larger
weight sum to be chosen by the augmentation algorithm, and
the last inequality comes from Lemma 2. Hence, the third term
(15) can be upper bounded by∑

S∈S(tn) Pr{St−1 = S} ·
(
2δ|L|t−2 + 1− δ

)
≤ 2δ|L|t−2 + (1− δ)

∑
S∈S(tn) Pr{St−1 = S},

(18)

for all t ∈ (tn, tn+1].
The result can be obtained by combining (16), (17), and

(18).

In order to apply Lemma 3 to (11), we rewrite it in a
recursive form. Let η = 1 − δ, Gn =

(
|S(tn)|+ δ

)
· 2|L| =
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(n+ δ) · 2|L|, and Θn(t) =
∑

S∈S(tn) Pr{St = S}. We have
a recursive form of (12) as

Θn(t) ≤ Pr{St−1 ∈ S(tn)}+Gn · t−2 + ηΘn(t− 1),

for t ∈ (tn, tn+1]. Extending the right side further down to tn,
we can obtain that

Θn(t) ≤ ηt−tnΘn(t
n) (19)

+Gn

∑t
i=tn+1 η

t−i · i−2 (20)

+
∑t

i=tn+1 η
t−i · Pr{Si−1 ∈ S(tn)}. (21)

By summing it over t ∈ (tn, tn+1] on the both sides, we obtain
the following lemma.

Lemma 4. The total number of times that sufficiently played
non-near-optimal matchings are selected during (tn, tn+1] is
bounded by∑tn+1

t=tn+1 Θn(t) ≤ 1
δ (1+

π2

6 Gn+E[
∑

S∈S(tn) τS,n+1]), (22)

where τS,n+1 denote the number of time slots that S is
scheduled in (tn, tn+1].

The proof of Lemma 4 is omitted and can be found in [30].
Now, by taking expectation on (11), we can obtain the ex-

pected total number of times that non-near optimal matchings
are selected up to time t̂h(≤ h) as∑

S∈S̄α
w
E
[
τ̂S(t̂h)

]
= lhM +

∑M−1
n=1

∑tn+1

t=tn+1 Θn(t)

≤ lhM + 1
δ

∑M−1
n=1

(
1 +Gn

π2

6 + E
[∑

S∈S(tn) τS,n+1

])
,

≤ lhM + M
δ

(
1 + |L|δπ2

3 + |L|(M−1)π2

6 + lh

)
.

The last inequality holds since (i)
∑M−1

n=1 Gn =
∑M−1

n=1 (n +
δ) · 2|L| ≤M · |L| · (2δ+(M − 1)), and (ii)

∑
S∈S(tn) τS,n+1

is the total number that the matchings that have been chosen
less than lh up to tn are chosen during (tn, tn+1] and thus
results in

∑M−1
n=1

∑
S∈S(tn) τS,n+1 ≤

∑M
k=2 lh ≤ lhM . From

M ≤ |S| − 1, we have∑
S∈S̄α

w
E
[
τ̂S(t̂h)

]
≤ D1 · lnh

(∆α
min)

2

+ |S|−1
δ (1 + |L|δπ2

3 + |L|(|S|−2)π2

6 ). (23)

This provides a bound on the number of times that non-
near-optimal matchings are selected up to t̂h. For the rest time
t ∈ (t̂h, h], we need to compute

∑h
t=t̂h+1 Pr{St ∈ S̄αw}. Let

S′ = St−1⊕At. Since next schedule St is either St−1 and S′

under the algorithm, we divide the event {St ∈ S̄αw} into three
sub-cases based on St−1 and S′, and compute the probability
as

Pr{St ∈ S̄αw} = Pr{S′ ∈ S̄αw,St−1 ∈ S̄αw}
+ Pr{S′ ∈ S̄αw, St−1 ∈ Sαw, rw(S′) ≥ rw(St−1)}
+ Pr{S′ ∈ Sαw, St−1 ∈ S̄αw, rw(S′) ≤ rw(St−1)}.

This leads to

Pr{St ∈ S̄αw} ≤ Pr{S′ ∈ S̄αw | St−1 ∈ S̄αw} · Pr{St−1 ∈ S̄αw}
+ Pr{rw(S′) ≥ rw(St−1) | S′ ∈ S̄αw, St−1 ∈ Sαw}
+ Pr{rw(S′) ≤ rw(St−1) | S′ ∈ Sαw, St−1 ∈ S̄αw}.

From Lemma 1, we have Pr{S′ ∈ S̄αw | St−1 ∈ S̄αw} =
1−Pr{S′ ∈ Sαw | St−1 ∈ S̄αw} ≤ 1− δ = η. Since τ̂S(t) ≥ lh
for all S and t ∈ (t̂h, h], Lemma 2 provides an upper bound
2|L|t−2 on each conditional probability in the second and the
third terms. As a result, we can obtain

Pr{St ∈ S̄αw} ≤ η · Pr{St−1 ∈ S̄αw}+ 4|L|t−2.

By extending the inequality in a recursive manner down to t̂h,
we obtain that

Pr{St ∈ S̄αw} ≤ ηt−t̂h · Pr{St̂h
∈ S̄αw}

+ 4|L|
∑t

i=t̂h+1 η
t−ii−2

= ηt−t̂h + 4|L|
∑t

i=t̂h+1 η
t−ii−2,

where the last equality holds since Pr{St̂h
∈ S̄αw} = 1 from

the definition of t̂h. Summing over t ∈ (t̂h, h] on the both
sides, and from η = 1− δ, we have∑h

t=t̂h+1 Pr{St ∈ S̄αw} ≤ 1−δ
δ + 2|L|π2

3δ . (24)

Combining (23) and (24), we obtain∑
S∈S̄α

w
E[τ̂S(h)]

=
∑

S∈S̄α
w
E
[
τ̂S(t̂h)

]
+
∑h

t=t̂h+1 Pr{St ∈ S̄αw}
≤ D1 · lnh

(∆α
min)

2 +D2,

(25)

where D1 =
(
1 + 1

δ

)
· 4|L|2(|L| + 1) · (|S| − 1), and D2 =

|S|−1
δ (1 + |L|δπ2

3 + |L|(|S|−2)π2

6 ) + 1−δ
δ + 2|L|π2

3δ .
(2) When t̂h > h (i.e,. ∃S such that τ̂S(h) < lh) :

With the same definitions of lh, S(t), and S(t), let |S| =
|S(h)| and |S| = |S(h)|. At this time, we define S(h) =

{S1, S2, · · ·, S|S|} and let tn denote the time at which match-
ing Sn is sufficiently scheduled, i.e., τ̂Sn(tn) = lh. Without
loss of generality, we assume t1 < t2 < · · · < t|S|. By time
slot h, S(h) is non-empty (since t̂h > h), and it is clear that∑

S∈S(h) τ̂S(h) ≤ lh|S|.
Similar to the case when t̂h ≤ h, we can obtain∑

S∈S̄α
w
E [τ̂S(h)]

=
∑

S∈S(h) E[τ̂S(h)] +
∑h

t=1

∑
S∈S(h) Pr{St = S}

≤ lh|S|+ lh|S|+
∑|S|

n=1

∑tn+1

t=tn+1 Θn(t)

≤ lhM +
∑|S|

n=1
1
δ (1 +

π2

6 Gn + E[
∑

S∈S(tn)

τx,n+1]),

where the last inequality comes from Lemma 4. As in (23),
we can obtain∑

S∈S̄α
w
E [τ̂S(h)]

≤ lhM + |S|
δ

(
1 + |L|π2δ

3 + |L|(|S|+1)π2

6 + lh

)
≤ D1

lnh
(∆α

min)
2 +D2,

(26)

where the last inequality holds due to |S| ≤ M − 1. Propo-
sition 1 can be obtained by applying (25) and (26) to the
decomposition inequality (9).

Remarks: Despite the logarithmic bound, the algorithm may
suffer from slow convergence due to large values of constant
D1 and D2. On the other hand, the bound is quite loose
because we consider each matching separately. In practice,
a link belongs to multiple matchings, and thus it can learn
much faster.
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B. Scheduling Efficiency

We now consider the throughput performance of Ak-UCB
across multiple frames. It can be obtained through the Lya-
punov technique with time unit of frame length.

Proposition 2. For a sufficiently large frame length T , Ak-
UCB is rate-stable for any arrival rate strictly inside k−1

k+1Λ.

Proof. Given any λ strictly inside αΛ with α = k−1
k+1 , we

consider the Lyapunov function L(tn) =
1
2

∑
i∈L (qi(tn))

2 at
the start time tn of the n-th frame. If the Lyapunov function
has a negative drift for sufficiently large queue lengths, then
all the queues will remain finite.

From the queue evolution (1), we have

qi(tn+1) ≤
(
qi(tn)−

∑tn+T−1
t=tn

Xi(t) · I{i ∈ St}
)+

+
∑tn+T−1

t=tn
ai(t),

where {St} denotes the sequence of matchings chosen by Ak-
UCB. Let D(tn) = L(tn+1)−L(tn). The drift during a frame
time can be written as

E [D(tn) |q(tn)] ≤ 1
2

∑
i∈L E[(

∑tn+T−1
t=tn

ai(t))
2|q(tn)]

+ 1
2

∑
i∈L E[(

∑tn+T−1
t=tn

Xi(t) · I{i ∈ St})2|q(tn)]
+
∑tn+T−1

t=tn
E[
∑

i∈L qi(tn)ai(t)

−
∑
i∈St

qi(tn)Xi(t)) |q(tn)],

where the first two terms can be bounded by CT for some con-
stant C, because ai(t), Xi(t), and |L| are bounded. Suppose
that we have weight vector w at time tn. Let S∗ denote an
optimal matchings during the corresponding frame time, i.e.,
S∗ ∈ S∗w = argmaxS∈S

∑
i∈S wi, and let r∗w =

∑
i∈S∗ wi.

Since λ strictly inside αΛ, there exists ϵ > 0 such that
λ + ϵ1 ∈ αΛ, where 1 is the vector of all ones. Then from
wi =

qi(tn)
q∗(tn)

µi, we can obtain

E [D(tn) |q(tn)]
≤ CT +

∑tn+T−1
t=tn

(E[
∑

i∈L qi(tn)ai(t) |q(tn)]
− E[

∑
i∈St

qi(tn)Xi(t) |q(tn)])

= CT + q∗(tn)
∑tn+T−1

t=tn

(∑
i∈L

qi(tn)
q∗(tn)

λi − αr∗w

)
+ q∗(tn)

∑tn+T−1
t=tn

(
αr∗w − E [rw(St) |q(tn)]

)
≤ CT − ϵT

∑
i∈L qi(tn) + q∗(tn) ·Regα(T ),

where the equality holds due to the independence of link rates,
and the last inequality holds since λ + ϵ1 ∈ αΛ and thus∑

i∈L
qi(tn)
q∗(tn)

(λi + ϵ) < αr∗w. Dividing both sides by T , we
have
1
T E [D(tn) |q(tn)] ≤ C − ϵ

∑
i∈L qi(tn) + q∗(tn) · Regα(T )

T .

Since Proposition 1 implies that Regα(T )
T < ϵ for sufficiently

large T , we have a negative drift for sufficiently large queue
lengths.

Proposition 2 means that Ak-UCB can stabilize the queue
lengths under packet arrival dynamics for any λ ∈ k−1

k+1Λ.

V. DISTRIBUTED IMPLEMENTATION (dAk-UCB)

Although the augmentation algorithm has O(k) complexity
and amenable to implement in a distributed fashion, the link
index w̄t of Ak-UCB includes global information q∗(tn) –
the largest queue length in the network at the start of each
frame n. This normalization is due to Hoeffding inequality
and essential for the provable regret performance bound.

We pay attention to the fact that Ak-UCB indeed learns
the expected value of the queue weighted link rate, i.e.,
qi(tn)µi, and the global information q∗(tn) takes the role of
normalizing the weight in the range of [0, 1]. This implies that
it may be able to separate the normalizing parameter from the
learning. To this end, we develop a distributed version of Ak-
UCB, denoted by dAk-UCB, and describe it with two key
differences. For the ease of exposition, we assume that At

consists of a single augmentation.
1) Local normalizer: Each node v maintains a local nor-

malizer q̃v , which is initialized to maxu∈N (v) q(u,v)(tn)
at the beginning of each frame n. At each time slot t,
node v in an augmentation updates its local normalizer
twice as follows. 1) In each initialization stage or path
augmenting stage, the REQ message from u to v includes
additional information of q̃u. The receiving node v sets
q̃v ← max{q̃u, q̃v}. This repeats while building the aug-
mentation. After the cycle-checking stage, the terminus
w has q̃w = q̃∗ that is the largest local normalizer in
the augmentation. 2) In the back-propagating stage, this
value q̃∗ is back-propagated together and each node v in
the augmentation sets q̃v ← q̃∗. Hence, at the end of the
time slot, all the nodes in the augmentation have the same
local normalizer q̃∗.

2) Separate gain computation: In the meantime, we change
the way to compute the gain. To elaborate, let G′

u denote
the new gain normalized by q̃u. At each mini-slot in the
path augmenting stage, whenever node u transmits an
REQ message to node v, we divide G′

u into G′
u,1+G′

u,2,
where G′

u,1 is for average reward (normalized by factor
q̃u) and G′

u,2 for confidence interval. They are included
in the REQ message, separately. Then, after the re-
ceiving node v updates the local normalizer q̃v , it re-
normalizes the received reward gain as G′

u,1 · q̃u/q̃v .
Once the next link is decided as i = (v, n), it computes
G′

v,1 accordingly by either adding or subtracting its
average reward normalized by q̃v , i.e., ŵ′

i(t) = qi(tn)
q̃v
·

1
τ̂i(t)

∑t
j=tn+1 Xi(j) · I{i ∈ Sj}. G′

u,2 can be obtained
simply by adding the confidence interval. Let A′ is the
augmentation up to node v, and let A′

1 = A′ −St−1 and
let A′

2 = A′ ∩ St−1. Then the gains

G′
v,1 =

∑
i∈A′

1
ŵ′

i −
∑

j∈A′
2
ŵ′

j

= q̃u
q̃v
G′

u,1 + (I{v ∈ A′
1} − I{v ∈ A′

2}) · ŵ′
v,

G′
v,2 =

∑
i∈A′

1

√
(|L|+1) ln t

τ̂i
−

∑
j∈A′

2

√
(|L|+1) ln t

τ̂j

= G′
u,2 + (I{v ∈ A′

1} − I{v ∈ A′
2}) ·

√
(|L|+1) ln t

τ̂v
,

can be computed given the value of q̃u and the gains
G′

u,1, G
′
u,2. By repeating this during the augmenting
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(a) Ak-UCB (b) Ak-UCB (α-regret) (c) dAk-UCB

Fig. 3. Regret traces for learning performance. For comparison across frames, the regret is reset to 0 at each frame boundary (T = 106 time slots), and
normalized by the maximum expected reward r∗w .

(a) Ak-UCB (k = 3) with different T ’s (b) Ak-UCB (zoom-in) (c) dAk-UCB (zoom-in)

Fig. 4. Queue lengths for scheduling efficiency. Given a scheduler, if the arrival rate gets closer to the boundary of its stability region, the queue length soars
quickly.

stage, we can obtain the gain normalized by q̃∗ at the
terminus.

Remarks: During a frame time, the local normalizer of a node
is non-decreasing over time slots. In addition, at the same time
slot, two nodes in the network may have a different normalizer
value. Hence, our previous analysis results for Ak-UCB cannot
be directly applied to dAk-UCB. However, we highlight that,
given a time slot, all the nodes in the same augmentation
have the same value of the (local) normalizer, which is of
importance, since the gain comparison for making a decision
occurs only within an augmentation. On the other hand, as
the time slot t increases, the value of the global normalizer
q∗(tn) is disseminated throughout the network and all the local
normalizers will converge to this value. Considering that, it is
not difficult to show that there exists some T ′ such that all
nodes v have q̃v = q∗(tn) with probability close to 1 for all
t > T ′, we believe that dAk-UCB also achieves O(log T )
regret performance and k−1

k+1Λ capacity, if the frame length T
is sufficiently large. Rigorous proof remains as future work.

VI. NUMERICAL RESULTS

We evaluate the performance of our proposed schemes
through simulations. We first consider a 4x4 grid network
topology with the primary interference model, and then con-
duct extend simulations with a randomly generated network.
Time is slotted. At each time slot, a packet arrives at link
i with probability λi, and for a scheduled link j, a packet
successfully departs the link with probability µj . Both λ and µ

are unknown to the controller. The arrivals and the departures
are independent across the links and time slots.
Regret performance: We first investigate the regret perfor-
mance of Ak-UCB and dAk-UCB. We set the seed probability
p = 0.2 for the schemes. We consider a large frame length of
T = 106 time slots to observe their regret growth. An identical
arrival rate λi = 0.08 is set for all links i, and the departure
rate µi is set uniformly at random in range [0.25, 0.75]5. We
simulate the two schemes with different k’s and measure their
regret performance. For the comparison across frames, the
regret value is set to 0 at each frame start, and normalized
with respect to the maximum expected reward sum r∗w within
the frame.

Fig. 3(a) illustrates the regret traces of Ak-UCB, which
is an average of 10 simulation runs. We can observe the
logarithmic regret growth in both cases. Recall that our regret
analysis in Proposition 1 is for α-regret with α = k−1

k+1 .
Thus empirical performance of the proposed schemes are
much better than the analytical bound. The performance in
terms of α-regret is shown in Fig. 3(b), where the gap from
0 can be interpreted as the level of practical difficulty in
achieving analytic performance bound: as k increases, it harder
to achieve k−1

k+1 -regret. Fig. 3(c) shows the regret values of
dAk-UCB. Comparing with those of Ak-UCB, they achieve
similar learning performance in terms of regret, and thus we
can conclude that the performance loss due to local normalizer

5Due to randomized µi, each link has different traffic load despite the
identical arrival rate. Setting a different arrival rate for each link leads to
similar results.
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(a) A randomly generated network (b) Performance in the random network (c) Performance in a ring network

Fig. 5. Stability in different network topologies. dAk-UCB achieves high performance in a larger randomly-generated network, and GMM with UCB may
suffer from low performance in a specific ring network.

in dAk-UCB is negligible in practice.
Scheduling efficiency: We evaluate scheduling efficiency of
the proposed schemes in the grid network. We use the same
simulation settings, but change frame length T and arrival
rate λ (λi = λ for all i). By increasing λ, the arrival
rate gets closer to the boundary of its stability region, and
when this occurs, the queue length will soar quickly. We
conduct each simulation for 106 time slots and measure queue
lengths when the simulations end. For each λ, we average
the queue length of 10 simulation runs. By observing the
arrival rate where the queue length starts increasing quickly,
we can indirectly compare the achievable stability region γΛ
for different scheduling policies [7]. A policy with larger γ is
better.

Fig. 4(a) demonstrates how the bound changes according
to the frame length. From the results, we can observe that
the critical point of λ, around which the queue length starts
soaring, is increasing for T ≤ 106 and then decreasing for T ≥
2·106. This is somewhat expected, since too small frame length
will lead to incomplete learning, and a larger frame length
results in a relatively slower response to the queue dynamics.

We now evaluate the performance of Ak-UCB in com-
parison with two schemes of MWM and UCB-based GMM.
MWM is a well-known optimal scheduler [8], and it is a
centralized algorithm that not only requires the knowledge
about the weight qi(t)µi at each time slot t, but also has a high-
order computational complexity. In our simulations, we use its
performance as a reference value. The UCB-based GMM [19])
finds a matching by including the link with the highest UCB
index first. It is known to achieves 1

2Λ and has the linear
computational complexity.

Fig. 4(b) demonstrate the queue lengths of MWM, UCB-
based GMM, and Ak-UCB. MWM operates at each time slot,
and for UCB-based GMM and Ak-UCB, we use T = 5000.
Each simulation runs for 106 time slots (i.e., 200 frames)
and we measure the queue lengths after the simulations. For
MWM, the queue length quickly increases at around λ = 0.09,
which can be considered as the boundary of the capacity region
Λ. Under Ak-UCB with k = 2, 3, 4, the queue lengths increase
quickly around λ = 0.084 for all k, which exceeds their
theoretic bound k−1

k+1 · 0.09 = 0.03, 0.045, 0.054, respectively.
Interestingly, the impact of k on throughput is not significant,
which seems to be due to the small network size – we can

observe that a larger k leads to lower queue lengths in all
arrival rates and thus achieves better delay performance. The
UCB-based GMM achieves the performance closet to that
of MWM, which is also far beyond its theoretic bound 1

2 .
Fig. 4(c) shows that dAk-UCB achieves almost the same
performance as Ak-UCB.
Performance in randomly generated networks: We now
evaluate the performance of the proposed schemes in a larger,
irregular-shaped network. To this end, we randomly generate
a network of 50 nodes and 200 links as shown in Fig. 5(a),
and run simulations for 1000 frame times with T = 500
(i.e., total 5 · 105 time slots). For each link i, we set the
successful transmission rate µi uniformly at random in range
[0.25, 0.75], and set the arrival rate as λi = λ · ρi, where ρi is
chosen uniformly at random in range [0.4, 0.7]. Due to high
computational complexity of MWM, we simulate only UCB-
based GMM, Ak-UCB, and dAk−UCB in this experiment, and
use the performance of UCB-based GMM as a reference value.
It has been observed that GMM algorithm often achieves the
optimal scheduling performance in this randomized network
environment [7].

Fig. 5(b) demonstrates the queue lengths of UCB-based
GMM and dAk-UCB with k = 3, 6, 9. All 4 schemes achieve
almost-identical performance, and the setting of k is not
sensitive to the performance. The results of Ak-UCB are
almost identical to that of dAk-UCB, and thus omitted.
Low performance of UCB-based GMM: So far, UCB-based
GMM achieves close-to-optimal performance despite its low
performance guarantee of 1

2Λ. It is an interesting question
whether the performance bound is not tight due to technical
difficulties and its true performance is close to the optimal.
Unfortunately, however, we shows in the next experiment
that this is not the case, and UCB-based GMM may suffer
from low performance in a certain scenario. We consider a
6-link ring topology, where the links are numbered from 1
to 6 in a clockwise direction. The service rate of each link
follows a Bernoulli distribution with mean 1

2 and the packet
arrival on each link is also a Bernoulli process with mean6

1
6 + ϵ where ϵ = 0.08. We set the frame length T = 6000.
Other environment settings are the same as before, except that

6This implies that λ ∈ ( 2
3
+ 4ϵ)Λ since an optimal scheduler can support

arrival rate of up to 1
4

on each link.
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the initial queue length is { 3T6 , 2T
6 , T

6 ,
3T
6 , 2T

6 , T
6 }. Fig. 5(c)

shows the queue length traces for UCB-based GMM and
our proposed schemes. We can observe that while the queue
lengths of Ak-UCB and dAk-UCB are stabilized, those of the
UCB-based GMM keep increasing. This is because, the greedy
algorithm tends select a matching with the two links of the
largest queue at the beginning of each frame. In contrast, Ak-
UCB and dAk-UCB select a matching with three links by
considering their weight sum. This result implies that in a
certain circumstance, UCB-based GMM may suffer from low
scheduling efficiency.

VII. CONCLUSION

In this work, we addressed the joint problem of learning and
scheduling in multi-hop wireless networks. Without a priori
knowledge on link rates, we aim to find a sequence of sched-
ules such that all the queue lengths remain finite under packet
arrival dynamics. By incorporating the augmentation algorithm
into a learning procedure, we develop provably efficient low-
complexity schemes that i) achieve logarithmic regret growth
in learning, and ii) have the throughput performance that can
be arbitrarily close to the optimal. We extend the result to
a distributed scheme that is amenable to implement in large-
scale networks. We also verify our results through simulations.

REFERENCES

[1] C. Joo, G. Sharma, N. B. Shroff, and R. R. Mazumdar, “On the
complexity of scheduling in wireless networks,” EURASIP J. Wireless
Commun. Netw., Oct. 2010.

[2] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-
layer congestion control in wireless networks,” IEEE/ACM Trans. Netw.,
vol. 14, no. 2, pp. 302–315, Apr. 2006.

[3] C. Joo, X. Lin, and N. B. Shroff, “Greedy maximal matching: Per-
formance limits for arbitrary network graphs under the node-exclusive
interference model,” IEEE Trans. Autom. Control, vol. 54, no. 12, pp.
2734–2744, Dec. 2009.

[4] C. Joo and N. B. Shroff, “Local greedy approximation for scheduling
in multi-hop wireless networks,” IEEE Trans. Mobile Comput., vol. 11,
no. 3, pp. 414–426, Mar. 2012.

[5] X. Wu, R. Srikant, and J. R. Perkins, “Scheduling efficiency of
distributed greedy scheduling algorithms in wireless networks,” IEEE
Trans. Mobile Comput., vol. 6, no. 6, pp. 595–605, 2007.

[6] X. Lin and S. B. Rasool, “Distributed and provably efficient algorithms
for joint channel-assignment, scheduling, and routing in multichannel
Ad hoc wireless networks,” IEEE/ACM Trans. Netw., vol. 17, no. 6, pp.
1874–1887, 2009.

[7] C. Joo and N. B. Shroff, “Performance of random access scheduling
schemes in multi-hop wireless networks,” IEEE/ACM Trans. Netw.,
vol. 17, no. 5, Oct. 2009.

[8] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximal throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[9] J. Choi, “On improving throughput of multichannel ALOHA using
preamble-based exploration,” J. Commun. Netw., vol. 22, no. 5, pp. 380–
389, 2020.

[10] B. Hajek and G. Sasaki, “Link scheduling in polynominal time,” IEEE
Trans. Inf. Theory, vol. 34, no. 5, Sept. 1988.

[11] L. Bui, S. Sanghavi, and R. Srikant, “Distributed link scheduling with
constant overhead,” IEEE/ACM Trans. Netw., vol. 17, no. 5, pp. 1467–
1480, Oct. 2009.

[12] L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput
and utility maximization in wireless networks,” IEEE/ACM Trans. Netw.,
vol. 18, no. 13, pp. 960–972, June 2010.

[13] J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length based CSMA/CA
algorithms for achieving maximum throughput and low delay in wireless
networks,” IEEE/ACM Trans. Netw., vol. 20, no. 3, June 2012.

[14] C. Joo, “On random access scheduling for multimedia traffic in multi-
hop wireless networks,” IEEE Trans. Mobile Comput., vol. 12, no. 4,
pp. 647–656, Apr. 2013.

[15] S. A. Borbash and A. Ephremides, “Wireless link scheduling with power
control and SINR constraints,” IEEE Trans. Inf. Theory, vol. 52, no. 11,
pp. 5106–5111, Nov. 2006.

[16] J.-G. Choi, C. Joo, J. Zhang, and N. B. Shroff, “Distributed link schedul-
ing under SINR model in multihop wireless networks,” IEEE/ACM
Trans. Netw., vol. 22, no. 4, pp. 1204–1217, Aug. 2014.

[17] F. Li, D. Yu, H. Yang, J. Yu, H. Karl, and X. Cheng, “Multi-amed-
bandit-based spectrum scheduling algorithms in wireless networks: A
survey,” IEEE Wireless Commun., vol. 27, no. 1, pp. 24–30, 2020.

[18] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive
MAC for opportunistic spectrum access in Ad hoc networks: A POMDP
framework,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 589–600,
Apr. 2007.

[19] T. Stahlbuhk, B. Shrader, and E. Modiano, “Learning algorithms for
scheduling in wireless networks with unknown channel statistics,” Ad
Hoc Netw., vol. 85, pp. 131–144, 2019.

[20] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in Proc. ICML, 2013.

[21] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4–22, Mar. 1985.

[22] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2, pp. 235–
256, May 2002.

[23] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient
allocation rules for the multiarmed bandit problem with multiple plays-
part I: I.I.D. rewards,” IEEE Trans. Autom. Control, vol. 32, no. 11, pp.
968–976, Nov. 1987.

[24] K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit with
multiple players,” IEEE Trans. Signal Processing, vol. 58, no. 11, pp.
5667–5681, Nov. 2010.

[25] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network op-
timization with unknown variables: Multi-armed bandits with linear
rewards and individual observations,” IEEE/ACM Trans. Netw., vol. 20,
no. 5, pp. 1466–1478, Oct. 2012.

[26] Y. Gai and B. Krishnamachari, “Decentralized online learning algorithms
for opportunistic spectrum access,” in Proc. IEEE GLOBECOM, Dec.
2011.

[27] A. Anandkumar, N. Michael, A. K. Tang, and A. Swami, “Distributed
algorithms for learning and cognitive medium access with logarithmic
regret,” IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp. 731–745, Apr.
2011.

[28] H. Tibrewal, S. Patchala, M. K. Hanawal, and S. J. Darak, “Dis-
tributed learning and optimal assignment in multiplayer heterogeneous
networks,” in Proc. IEEE INFOCOM, 2019.

[29] S. Kang and C. Joo, “Low-complexity learning for dynamic spectrum
access in multi-user multi-channel networks,” IEEE Trans. Mobile
Comput., 2021.

[30] D. Park, S. Kang, and C. Joo, “Distributed link scheduling with unknown
link rates in multi-hop wireless networks,” https://www.dropbox.com/s/
uh07dc2xbj55dgm/tech report.pdf?dl=0, 2021.

Daehyun Park received his M.S. degree from the
school of ECE at Ulsan National Institute of Science
and Technology (UNIST) in 2020. His research
interests include multi-armed bandits.



110 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 1, FEBRUARY 2022

Sunjung Kang received her M.S. degree from the
school of ECE at Ulsan National Institute of Science
and Technology (UNIST) in 2018. She is currently
a Ph.D. student in the department of ECE at The
Ohio State University. Her research interests include
the age of information, remote estimation and multi-
armed bandits.

Changhee Joo received the Ph.D. degree from Seoul
National University in 2005. He was with Purdue
University and The Ohio State University, and then
worked at Korea University of Technology and Ed-
ucation (KoreaTech), and Ulsan National Institute
of Science and Technology (UNIST). Since 2019,
he has been with Korea University. His research
interests are in the broad areas networking, learning,
modeling, and optimization. He was a recipient of
the IEEE INFOCOM 2008 Best Paper Award, the
KICS Haedong Young Scholar Award (2014), the

ICTC 2015 Best Paper Award, and the GAMENETS 2018 Best Paper Award.
He was an Associate Editor of the IEEE/ACM Transactions on Networking,
and currently an Editor of the IEEE Transactions Vehicular Technology,
a Division Editor of the Journal of Communications and Networks, and
has served several primary conferences as a technical program committee
member, including IEEE INFOCOM, ACM MOBIHOC, IEEE WiOpt, and
IEEE GLOBECOM.


