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Joint Deployment and Trajectory Optimization in
UAV-Assisted Vehicular Edge Computing Networks

Zhiwei Wu, Zilin Yang, Chao Yang, Jixu Lin, Yi Liu, Xin Chen

Abstract—As the general mobile edge computing (MEC)
scheme cannot adequately handle the emergency communication
requirements in vehicular networks, unmanned aerial vehicle
(UAV)-assisted vehicular edge computing networks (VECNs) are
envisioned as the reliable and cost-efficient paradigm for the
mobility and flexibility of UAVs. UAVs can perform as the
temporary base stations to provide edge services for road vehicles
with heavy traffic. However, it takes a long time and huge energy
consumption for the UAV to fly from the stay charging station
to the mission areas disorderly. In this paper, we design a pre-
dispatch UAV-assisted VECNs system to cope with the demand
of vehicles in multiple traffic jams. We propose an optimal
UAV flight trajectory algorithm based on the traffic situation
awareness. The cloud computing center (CCC) server predicts
the real-time traffic conditions, and assigns UAVs to different
mission areas periodically. Then, a flight trajectory optimization
problem is formulated to minimize the cost of UAVs, while both
the UAV flying and turning energy costs are mainly considered. In
addition, we propose a deep reinforcement learning(DRL)-based
energy efficiency autonomous deployment strategy, to obtain the
optimal hovering position of UAV at each assigned mission area.
Simulation results demonstrate that our proposed method can
obtain an optimal flight path and deployment of UAV with lower
energy consumption.

Index Terms—Deep reinforcement learning, energy efficiency,
mobile edge computing, unmanned aerial vehicle relay.

I. INTRODUCTION

W ITH the rapid development of information technology,
the unprecedented popularity of smart mobile devices

provides a powerful platform for new applications and also
brings many novel challenges [1], [2]. As a typical Internet of
things (IoT), Internet of vehicles (IoV) can realize ubiquitous
information exchanging and content sharing between vehi-
cles with almost no human intervention through its installed
sensors and other smart devices [3]. With the help of LTE-
V2X and the 5G NR-V2X technologies [4], the on-board units
(OBU) installed on the vehicles connect with the roadside units
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(RSU), IoV can provide an informative travel environment
for both drivers and passengers [5]. However, compared with
cloud computing center (CCC) servers, OBUs usually have
lower computing capacity [6], [7]. The main shortcoming of
the direct connection between the vehicle and the CCC servers
is the long distance communication delay. Due to the backhaul
load during peak hours, it is difficult for CCC servers to
meet the needs of various delay-sensitive mobile programs [8].
The tension between resource constrained vehicle-mounted
terminals and computing intensive applications has become a
bottleneck for improving user satisfaction and service quality
in IoV. Vehicular edge computing networks (VECNs) are
considered as the promising paradigm to solve the above
challenges via deploying servers at the edge of the wireless
access network, for example the RSUs [9]. In VECNs, the
smart devices and users in vehicles can offload computing
tasks to the nearby vehicles or the edge servers deployed at
the RSUs, both the communication energy consumption and
the delay between edge servers and users become lower.

Normally, the moving vehicles on the road, the parked ve-
hicles at the roadside parking lots, and the RSUs can perform
as edge nodes to provide communication and computation
resources for the vehicles in VECNs [10]–[12]. However,
the dynamic topology change of vehicular network makes
the effective communication time duration of both vehicle to
vehicle (V2V) and vehicle to roadside unit (V2R) extremely
short. Moreover, the locations of the parked vehicles and RSUs
are usually fixed, the deployment of MEC servers requires a
certain amount of space and cost, which limits the capabilities
of the edge servers [13].

In recent years, unmanned aerial vehicles (UAVs) have
received extensive attention from academia and industry due
to their strong mobility and flexible deployment. In [14], the
author designed a data collection scheme based on blockchain,
that uses UAVs to obtain data from IoT devices. It helps to
improve the security of the IoT and the energy consumption
is reduced. The author also extended the above scheme to
the UAV swarm system in subsequent research [15]. In [16],
the author proposed an AI-authorized pandemic monitoring
program based on blockchain.

In cooperation with the CCC center, UAVs can operate as
a moving edge server, the vehicles on ground can offload part
of the computing tasks to the UAVs. In addition, the vehicles
can use UAVs as relays, the tasks will be offloaded to other
servers (such as cloud computing centers) to complete. For the
situation that the UAV is far away from the mission vehicles,
a huge energy and time costs exist when the UAV flies to the
mission areas directly.
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In this paper, we propose a pre-dispatch UAV-assisted
VECN system in an urban traffic environment. The UAVs
can be assigned to different mission areas with traffic jams
in advance. In detail, an optimal UAV flight trajectory al-
gorithm is proposed based on the traffic situation awareness
firstly. We formulate an optimization problem to obtain the
optimal UAV flight trajectory, while both the flying and
turning energy consumptions of UAVs are mainly considered.
Genetic algorithm (GA) is used to find the problem solution.
Then, for the UAV flight trajectory is obtained based on the
predicted values, when the UAV arrives the mission area, it
should find the optimal hovering position. We propose an
autonomous deployment and energy efficiency optimization
strategy based on deep reinforcement learning (DRL), the real
time differentiated computation requests are considered. The
main contributions are summarized as follows:
• We propose a pre-dispatch UAV-assisted VECN system.

The CCC center predicts the short-time traffic conditions
periodically, and the UAV can fly to the assigned mission
areas in advance.

• We propose an optimal UAV flight trajectory algorithm
based on the traffic situation awareness, while both the
flying and turning energy consumption of the UAV are
considered.

• We propose a real time control strategy to find the optimal
hovering position of UAV in each mission area, a DQN-
based hovering algorithm is introduced for the practical
computation requests of road vehicles are considered.

The rest of this article is organized as follows. Section II
summarizes recent research on UAV-enabled MEC networks.
Section III introduces the system model including the UAV to
road vehicles’channel and task transmission and computation
energy consumption models. In Section IV, the problem for-
mulation of this work is proposed. We give the details of the
UAV flight trajectory algorithm and the optimal hovering po-
sition algorithm. In Section V, simulation results are presented
to evaluate the proposed algorithms. Finally, we conclude the
paper in Section VI.

II. RELATED WORK

In recent years, UAVs have received extensive attention
in wireless communication networks [17]–[19]. For the mo-
bility and deployment flexibility, UAVs can perform as the
temporary base stations (BSs) or relay nodes in areas with
limited communication, such as emergency rescue after natural
disasters and stadiums during sport events [20], [21]. Installed
MEC servers on UAV, the UAV-assisted MEC networks have
two advantages: 1) Compared with traditional ground base
stations, UAVs can dynamically adjust their hovering positions
in the air to provide better services, according to the actual
environment and mission requirements. 2) It can establish
better line-of-sight (LOS) communication with mobile users,
and further shorten the transmission distance. In [22], the
author analyzed the energy consumption of UAV as a relay
node, the system energy efficiency was maximized via the
joint transmission power of UAV and BS, the trajectory,
acceleration and flight speed of UAV were considered. In [23],

the author studied the joint design of computational offloading
and resource allocation, as well as the UAV trajectory opti-
mization, to minimize the UAV energy consumption and task
completion time. In [24], the UAV performed computing tasks
that the tasks had offloaded from the mobile terminal users
(TU). The movement of each TU follows the Gauss-Markov
random model. A QoS-based action selection strategy was
developed based on the dual deep Q network (DQN) algorithm
to maximize system rewards.

Thanks to the development of UAV flying and battery
storage technologies [25]–[29], modern UAVs are capable of
providing powerful computing capacity in complex environ-
ments [30]–[32]. Some research for the UAV-assist VECNs
had been proposed [33], [34]. In [33], the authors proposed a
software-defined networking(SDN)-enabled UAV-assisted ve-
hicular computation offloading optimization framework to
minimize the system cost of vehicle computing tasks. In [34],
the authors proposed an edge computing architecture for UAV
cluster service vehicles, an efficient multi-mode and multi-task
offloading scheme is achieved.

However, the aforementioned studies only considered the
energy consumption minimization, the communication and
computation resource allocation schemes of the UAV after
it reaches the mission area. A big assumption is that the
UAVs can provide edge services in the vicinity when the
computing requests of users or vehicles exist. For the situation
that the UAV is far away from the mission area, the users with
tasks need to wait for the dispatch center (i.e. CCC servers)
to assign the UAV to task requesting areas. Undoubtedly,
this will significantly affect the service quality of UAV, and
it is not enough to reflect the superiority of UAV flexible
scheduling. Specially, when there are multiple computing tasks
in more than one mission area requests for an UAV at the
same time, the UAV flight scheduling will become more
complex. In addition, in order to enable the UAV to access
all target mission areas within the minimum flight energy
consumption, most of the existing related works treat the UAV
path planning process as an approximate traveling salesman
problem (TSP) [35], the energy consumption of the UAV
flying between two nodes is usually replaced by the Euclidean
distance. However, in practical applications, the flight distance
is not the only factor that affects the flight energy consumption
of UAV. The flight speed, hovering time and flight angle of the
UAV will all affect the flight energy consumption. Especially
on the crowded urban roads, the UAVs need to fly along the
traffic roads, and the flight turning energy consumption needs
to considered mainly. [36] considered the flight turning factors
when planning the UAV flying path, however, the proposed
algorithm just reduces the number of turns simply, the in-
depth discussion of energy consumption influences caused by
the flight turning hasn’t been discussed.

Above all, few works considered the fly turning energy
consumption in UAV path planning, and both the energy and
time consumptions of UAV traveling from the control center to
the mission locations. Compared with the above research, this
paper have two innovations: 1) We propose a pre-scheduling
UAV-assisted VECN system, which can schedule UAVs to
mission locations in advance, reducing user’s waiting time;
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TABLE I
SUMMARY OF NOTATIONS AND SYMBOLS.

Notation Representation of the symbol or symbol
dn,n+1 UAV flying distance
ev Energy consumption coefficient of UAV flying straight at speed v

Ev
n,n+1 UAV straight flight energy consumption parameters
Eturn Turning energy consumption of an UAV

θg,g+1,g+2 The size of the turning angle
η1 Coefficient of turning energy consumption
η2 Coefficient of turning energy consumption

Eserve
n UAV service energy consumption

Ecomm
n UAV communication energy consumption
Ecomp

n UAV computing energy consumption
N Index of intersection (or mission location)
Mn The set of vehicles at mission area
h The height of the UAV flight

PLOS The probability of LOS between UAV and vehicle
LLOS Path loss of LOS between UAV and vehicle
PNLOS The probability of NLOS between UAV and vehicle
LNLOS Path loss of NLOS between UAV and vehicle
L(h, rm) Total path loss between UAV and vehicle
dm The straight-line distance between the drone and the vehicle
Pt UAV transmission power
Pm
r The received power of the vehicle
Un Distribution of ground vehicles
st State space of DQN model
at Action space of DQN model
rt Reward function of DQN model

Fig. 1. System model.

2) We plan the UAV’s path under the premise of considering
the fly turning energy consumption, which reduces the UAV’s
non-service energy consumption.

III. SYSTEM MODEL

A. Framework of System

As shown in Fig. 1, we consider an UAV-assisted VECN
system in the urban traffic environment. It has a three-layer
network architecture, including the CCC server layer, UAV
layer, and ground layer with multiple vehicles on the road.
The CCC server acts as the central controller to coordinate
the operation of the entire system. UAVs will be charged at
the charging station and wait for the next mission instruction.
A large number of sensing devices and moving vehicles on
the road and the RSUs constitute the underlying equipment

TABLE II
TRAFFIC FLOW DATA.

Timestamp CrossroadID VehicleID CrossroadLng CrossroadLat
2019/8/1 13:28 100120 LU-U-3d1d4c9c9bc6a990 120.346987 36.090423
2019/8/1 16:56 100120 GUI-B-0ef8d356d7a038cb 120.346987 36.090423
2019/8/1 13:18 100120 JI-A-39803195c4a8785d 120.346987 36.090423
2019/8/1 13:31 100120 LU-B-d79f5f83d2133418 120.346987 36.090423
2019/8/1 11:38 100359 LU-B-1be0e79deaaeb7e2 120.409793 36.102926
2019/8/1 12:49 100359 LU-U-195fdfdc3f50b37c 120.409793 36.102926
2019/8/1 08:25 100359 LU-B-37f3d431a4f632a6 120.409793 36.102926
2019/8/1 15:46 100359 LU-B-61f561d4296cecd3 120.409793 36.102926
2019/8/1 16:48 100359 LU-B-45a27b22eb8902e6 120.409793 36.102926
2019/8/1 16:01 100349 LU-B-0e14e01825e34446 120.426224 36.173504
2019/8/1 08:40 100349 LU-B-52220194a04d0349 120.426224 36.173504
2019/8/1 18:45 100349 LU-B-b5cbdd623826f1aa 120.426224 36.173504
2019/8/1 13:07 100349 LU-B-4721537f2f0776a8 120.426224 36.173504
2019/8/1 13:17 100349 LU-B-4e0919395fa6ddf7 120.426224 36.173504

of the intelligent transportation system (ITS), the traffic in-
formation is collected in the cloud server through the air-
to-ground (A2G) and backhaul links. We consider that the
vehicles moving on the road generate kinds of computing
tasks continuously [37]. During off-peak hours, when there
are fewer vehicles on the road, the RSUs can provide suffi-
cient computing and communication services for the covered
vehicles. However, when the traffic jams occurs on the road,
especially in the road intersections, more vehicles computing
task requests exist. Combined with the RSU, the UAV can
perform as the temporary BS and provide timely computation
and communication services for the ground vehicles in differ-
ent mission areas, through the arrangement and guidance of
the CCC center.

The UAV-assisted VECN system operates in a slot-by-slot
fashion with fixed length time durations. At the beginning of
each slot, the cloud center predicts the traffic conditions of
the covered road intersections, via performing data analysis
and processing of the collected historical traffic flow data.
Historical data is collected through ITS (such as monitoring
equipment at intersections). In our work, we use historical
traffic data within 7 days to predict the traffic volume of each
intersection every 30 minutes in the next day. The data set
comes from the competition website DCLab [43], and the
specific data is shown in the Table II (the vehicle ID has been
coded to avoid leakage of owner information).

Then, the objective road intersections that may with heavy
traffic are obtained. The cloud center schedules UAVs to
different mission areas based on the flying distance and the
battery capacity. The optimal UAVs assignment scheme will
not be discussed in this paper. We focus on the scenario that
an UAV is scheduled to provide edge services for a set of road
intersections. According to the predicted traffic conditions, we
obtain the estimated computing task requests in each mission
area and an optimal UAV flying trajectory from the staying
station and the assigned road intersections is calculated. When
a UAV arrives at a new mission area, supported by the ITS,
the UAV can obtain the traffic information, such as the number
of ground vehicles, and fly to the optimal position to hover to
provide communication and computation services for ground
vehicles. After completing the task of the current intersection,
the UAV will fly to the next task mission area according to the
proposed path plan. When the tasks of all road intersections
are completed, the UAV flies back to the staying station and
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Fig. 2. The specific definition of θg,g+1,g+2.

waits for the next task assignment.

B. Energy Model of UAV

In this work, we consider the UAV flying trajectory and
hovering position optimization problem, the energy consump-
tion becomes a key factor affecting the QoS of UAV, in
which the flight energy consumption accounts for the highest
proportion. In order to analyze the flight energy consumption
of UAV, it can be further divided into horizontal flight, vertical
flight and turning energy consumption. In the existing UAV-
assisted MEC system, the flight energy optimization of the
UAV only considers the horizontal flight and the vertical flight
energy consumption, and does not take into consideration
the turning energy consumption. Actually, when the UAV
flies over a corner, the additional turning energy consumption
occurs. In the urban road environment, the UAV flies between
the mission areas along the urban roads. Since frequency
lifting and lowering operations cause a lot of energy loss, it
is reasonable and necessary to consider the turning energy
consumption mainly.

In our work, we set that the UAV is flying at a constant
speed at a fixed height h. The energy consumption of the
UAV flying in a straight line at a fixed speed is denoted as

Evn,n+1(d) = evdn,n+1, (1)

where dn,n+1 is the distance of the UAV flying from mission
area n to area n + 1, n ∈ {1, 2, · · ·, N}. and ev is the unit
energy consumption per meter when UAV is flying in a straight
line at a constant speed v m/s. In addition, the turning energy
consumption is denoted as [38]

Eturn
g,g+1,g+2(θ) = η1θ

2
g,g+1,g+2 + η2θg,g+1,g+2, (2)

where θg,g+1,g+2 is the angle of the UAV when it turns, the
specific definition is shown as the Fig. 2. η1 and η2 are the
fitting parameters obtained from experiments [38].

Hovering energy consumption is related to the computing
task requirements in the mission area. Since we consider a pre-
dispatch UAV-assisted VECN system, the edge service energy
consumption of the mission areas are estimated in advance
to facilitate the optimal route planning. In the forecasting
stage, we set that the task demands of vehicles in a traffic
intersection is related to its historical communication and
calculation demands. Set Eserver

n as the energy consumption
when the UAV is hovering at the mission area n and provides
edge services to the road vehicles. Ecomm

n and Ecomp
n denote

the energy consumptions of processing the historical com-
munication demand and the historical computation demand,
Ehover
n is the hovering energy consumption, we have:

Eserver
n = Ecomm

n + Ecomp
n + Ehover

n . (3)

C. Channel Model of UAV

After the UAV arrives the mission area, it provides edge ser-
vices for the covered vehicles on the road. The communication
channel model between the UAV and the ground vehicles is
considered. We define Mn as the set of vehicles at mission
area n,Mn = {1, 2, · · ·,m, · · ·,Mn}. Since the hovering UAV
is regarded as a temporary aerial BS, according to the A2G
model in [39], the probability of the LOS link between the
m-th vehicle and the UAV is denoted as

PLOS(rm, h) =
1

1 + α exp

{
−β
(
arctan

(
h
rm

)
− α

)} , (4)

where α and β are constants related to the operation envi-
ronment, h represents the height of the UAV, and rm is the
horizontal distance between the m-th vehicle and the UAV.
The calculation of rm is denoted as

rm =
√
(mx − ux)2 + (my − uy)2, (5)

where (mx,my) represents the position of the m-th vehicle
on the horizontal, and (ux, uy) is the position of the UAV on
the horizontal. In addition, the probability of non-line-of-sight
(NLOS) communication link is

PNLOS = 1− PLOS , (6)

Taking into account the long-term changes of the channel
and the average path loss, the path loss models of LOS and
NLOS in the UAV [39] are denoted as

LLOS = 20 log

(
4πfcdm

c

)
+ ηLOS , (7)

LNLOS = 20 log

(
4πfcdm

c

)
+ ηNLOS , (8)

dm =
√
h2 + r2m, (9)

where fc is the transmission carrier frequency, dm is the
straight-line distance between the UAV and the m-th vehicle.
Under both the LOS and NLOS models, the average path loss
of A2G link can be denoted as

L(h, rm) = LLOSPLOS + LNLOSPNLOS . (10)

For a given UAV transmit power Pt, the received power of
the m-th vehicle depends on the path loss experienced by its
communication link [39], which is denoted as

Pmr = Pt − L(h, rm). (11)

According to (4) and (10), we analyse the probability of
LOS and path loss between UAV and vehicles in different
environments (i.e., suburbs, cities, dense cities, and highly
dense cities) with the elevation angle of the vehicle to the UAV,
based on the public data sets [39], [40]. The simulation results
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Fig. 3. Probability of LoS in different environments.

Fig. 4. Path loss in different environments.

are shown as Fig. 3 and Fig. 4. As the density of ground equip-
ment increases, the LOS communication probability between
vehicles and UAVs is decreasing gradually. However, when
the UAV is flying directly above the vehicle, it can maintain
LOS communication, which also reflects the advantage of
UAV as a dynamic temporal edge node. On the other hand, as
the elevation angle increases, the probability of line-of-sight
communication between the UAV and vehicle also increases,
and gradually converges to 1. For the communication path loss
between the vehicle and UAV. When the horizontal distance
between the UAV and vehicle increases, the path loss becomes
higher. It is necessary to find the suitable and optimal hovering
position of the UAV to provide edge computing servers.

IV. PROBLEM FORMULATION AND SOLUTION

In the proposed UAV-assisted VECN system, under the
guidance of the CCC servers, the UAVs can provide temporary
edge services for vehicles on congestion road intersections.
We consider a scenario that an UAV is assigned to a set of
mission areas. An optimal UAV flight trajectory strategy is
proposed based on the traffic situational awareness. When the
UAV arrives the mission area, an optimal hovering position
selection algorithm is proposed for the UAV. In detail, the
system operation includes three main problems: The traffic

Start

Collect historical traffic flow data

Data cleaning

Feature engineering

Use the LIGHT-GBM algorithm 

to train the model

Forecast the traffic flow at the 

upcoming intersection

End

Fig. 5. Traffic flow prediction flow chart.

flow forecasting in the CCC servers, the UAV flight trajectory
optimization and the UAV hovering position optimization
problems.

A. Traffic Flow Forecasting

The traffic flow prediction flow chart is shown as Fig. 5, the
stpdf of traffic flow prediction are mainly divided into three
aspects: Data cleaning, feature engineering, and model training
and prediction.

Data cleaning is mainly to clean the raw data, such as
duplicate data generated by data collection, abnormal data,
etc. Feature engineering is mainly to aggregate data, calculate
the traffic volume of each intersection every 30 minutes, and
carry out relevant feature extraction and combination, such as
the extraction of time information (year, month, day, whether
it is a working day, etc). Then, we train the model and test
the prediction results.

We use the light-GBM algorithm to predict traffic flow,
which is an excellent algorithm proposed by Microsoft in
2017 to quickly process large-scale data [41]. The model
utilizes the root mean square error (RMSE) as the evaluation
standard. RMSE is the square root of the ratio of the square of
the deviation between the predicted value and the true value
to the number of observations. In actual measurement, the
number of observations is always limited, and the true obtained
value can only be replaced by a reliable value. The RMSE is
highly sensitive to the huge large or small errors in a group
of measurements, so it can well reflect the precision of the
measurement. The calculation formula of RMSE is

RSME =

√∑K
k=1(zpred − ztrue)2

K
, (12)

where zpred represents the predicted value, ztrue represents the
true value, and m represents the number of observations.

After the prediction, we obtain the traffic flow of multiple
different road intersections, including the number of vehicles
passing through the intersection in a unit time. We consider
that the computing task requests of vehicles are generated
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continuously, the whole task demands are related to the flow
of vehicles. For a given threshold of the traffic volume, when
the traffic volume at an intersection reaches this threshold, we
consider the intersection is in the communication congestion
state and mark it as a mission area.

B. UAV Flight Trajectory Optimization

When the CCC assigns a set of mission areas for the
UAV, an optimal UAV flight trajectory algorithm is proposed
to guide the UAV. Although the battery capacity has been
improved, in order to enable UAVs to provide higher-quality
computing or offloading services with less energy consump-
tion, the energy consumption of UAVs is worth considering. In
our work, we focus on the urban traffic environment, the UAV
flies along the urban roads at a fixed altitude, and needs to turn
multiple corners. Thus, in the designed algorithm, not only the
regular straight flying energy consumption but also the turning
energy consumption also be considered. The quality of service
(QoS) function of UAV can be defined as

η =

∑N
n=1E

serve
n

EQ +
∑N
n=1E

serve
n +

∑N
n=1E

hover
n

, (13)

where Q is the UAV flight trajectory, EQ represents the flight
energy consumption of the UAV under trajectory Q, Since the
estimated service demands are obtained through traffic flow
prediction, the optimization problem becomes to maximize the
QoS of UAV via optimizing the trajectory energy consumption
EQ, is described the following problem P1.

max .
EQ

η,

subject to

EQ +

N∑
n=1

Eserve
n ≤ E, (14)

where in (14), E is the battery storage of the UAV. It is
necessary to ensure that the total service energy consumption
and flight energy consumption are less than the energy stored
by the battery E. And we have

EQ = ES + ET , (15)

ES = EvN,0(d) +

N−1∑
n=1

Evn,n+1(d), (16)

ET = Eturn
N−1,N,0 +

N−2∑
n=1

∑
j∈J

Eturn
j,j+1,j+2, (17)

where ES denotes the energy consumption of UAV straight
fight, that is associated with the flying distance. ET denotes
the UAV turning energy consumption. The formulations of
Evn,n+1(d) and Eturn

j,j+1,j+2 are shown as (9) and (10). J
denotes the set of UAV flying pass corners. Moreover, EvN,0(d)
and Eturn

N−1,N,0 denote the energy consumption when the UAV
completes its mission and returns to the staying station.

In the problem P1, the UAV traverses along the road in-
tersections (including the mission road intersections) and then
flies back to the staying station, it is a typical TSP problem.

Algorithm 1 UAV FT-GA
Input: Crossover probability Pc, Mutation probability Pm,

Population size S, Number of iterations G.
1: Initialize each parameter and coding;
2: create the initial population pop;
3: repeat
4: Calculate fitness function according (18);
5: repeat
6: Select ttwo individuals from the population pop ac-

cording to the fitness ratio selection algorithm;
7: if random (0, 1) ≤ Pc then
8: Perform crossover operation on two individuals;
9: end if

10: if random (0, 1) ≤ Pm then
11: Perform mutation operation on two individuals;
12: end if
13: Add two new individuals to the population newpop;
14: until S children are created
15: until The number of iterations exceeds G
Output: The optimal UAV flight trajectory and corresponding

energy consumption EQ .

In order to solve this problem, we propose an optimal UAV
Flight Trajectory based on the traditional Genetic Algorithm,
named as “UAV FT-GA". The description of the UAV FT-GA
structure is given in Algorithm 1.

The fitness function of the UAV FT-GA algorithm in this
article is related to the energy consumption of the UAV route.
In order to minimize the flight energy consumption, we design
the following fitness function,

fitness =
1

EQ +
∑N
n=1E

serve
n

, (18)

where EQ is the straight-line flight energy consumption in the
UAV flight path and the corner energy consumption, Ehover

n is
the hovering energy consumption, Ehover

n is the service energy
consumption, and n is the task location number.

In Algorithm 1, we define and initialize each parameter,
such as crossover probability Pc, mutation probability Pm,
population size S, number of iterations G. Then we create the
initial population. Lines 3 to 15 are the main loop part of the
genetic algorithm, including selection, crossover, and mutation
operations. First, the fitness value of the individual needs to be
calculated, then the individual with the higher fitness value is
selected as the parent. Parents need to perform crossover and
mutation operations to obtain individual offspring. Crossover
is the partial exchange of the gene sequences of the two parents
according to different crossover operators, and mutation is
the replacement operation of partial values of the parent gene
sequence. Repeat the above steps until the iteration stops, and
output the UAV flying path with the least energy consumption.

C. UAV Hovering Position Optimization

When the UAV arrives at the n-th road intersection, n ∈
{1, 2, · · ·, N}, it needs to find the best hovering position
according to the actual traffic volume and mission require-
ments. Inspired by the maze game on the OpenAI website,
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Fig. 6. The cover of UAV for a mission area.
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Fig. 7. DQN-based hovering algorithm framework.

we modeled the optimization problem of the UAV’s optimal
hovering position into an optimization model similar to the
maze problem [42]. The maze game is a treasure hunting
game. The explorer needs to continuously explore in an
unknown maze until he finds the treasure. In this article, we
assume that the UAV is a treasure hunter, and the best hovering
position is the treasure that the UAV needs to find. The nth
mission area is divided into I × J units, and the UAV is
deployed above the unit and can cover the entire unit, as shown
in the Fig. 6. Then, the best position deployment problem of
the UAV can be modeled as a maze problem, and the existing
maze solving method can be used.

Given the location of a ground vehicle, we use Un =
{u11, u12, · · ·, ui,j} to represent the set of indicator variables
for the distribution of ground vehicles. When there are k
vehicles in the unit {i, j}, the indicator variable ui,j = k,
otherwise it is 0.

According to the above analysis and the proposed environ-
ment, we use the deep reinforcement learning method (i.e.
DQN) to find the optimal hovering position of the UAV. The
core idea is to use the Q function value network as the evalua-
tion module. Based on the value network, we traverse various
actions in the current observation state, and the environment
interacts in real time. The state, action, reward and punishment
values are stored in the playback memory unit, the Q-learning
algorithm is used to repeatedly train the value network, and
finally the action that can obtain the best value is selected
to deploy the UAV. Fig. 7 shows the framework of DQN-
based UAV optimal hovering algorithm. Among them, the
DQN model is represented as a set.

Under the DQN framework, we define the following vari-

North:0

Northeast:1

East:2

Southeast:3

South:4

Southwest:5

West:6

Northwest:7

Fig. 8. UAV horizontal movement direction diagram.

ables: State space, action space and reward function.
1) State Space: The status st consists of four parts, namely:

location and distribution of ground vehiclesMn,Un,the posi-
tion of the UAV at the initial time (u0x, u

0
y, h) and the position

at time t (utx, u
t
y, h).

st = {Mn,Un, (u0x, u0y, h), (utx, uty, h)},

Through the defined state, the DRL agent can make deci-
sions based on the current distribution of ground terminals,
the location of the UAV, the calculation power and energy
consumption.

2) Action Space: Corresponding to eight directions, we
discretize the UAV movement and define eight horizontal
movement directions, as shown in Fig. 8. Assuming that the
UAV moves a fixed distance for each action, according to the
feedback information of the environment, if the UAV does not
reach the optimal position after performing the action, the UAV
will continue to take corresponding actions until it arrives the
optimal position and completes autonomy deployment. The
overall action space is

at ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

3) Reward Function: The reward function rt is defined as

rt =
P tr
sp
− etu
se
,

where P tr is the total received power of the vehicles covered by
the UAV at time t, etu denotes the flight energy consumption
of the UAV from the starting point to the selected location
at time t. sp, se are used to standardize the vehicle received
power and the UAV flight energy consumption related super
parameter. When the reward rt becomes larger, the vehicles on
the road can get better communication services. At the same
time, in order to prevent the UAV flying out of the mission
area during the service process, a penalty value −rt is given
and the current exploration is stopped.

The choice of action is related to the instant reward, but our
goal is to obtain the largest future reward, so we define the
Q function, the initial value of the Q function is 0, and the
update process is as follows

Qnew(st, at) =Qnow(st, at) + λ[rt + γ max
at+1

Q(st+1, at+1)

−Qnow(st, at)], (19)
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Algorithm 2 DQN-based hovering algorithm for autonomous
deployment position of UAV

1: Initialize Q-network with weights µ and experience re-
play memory;

2: for time frames t = 0, 1, · · ·, T do
3: observe the initialize state s0;
4: Select a random action at with probability ε, otherwise

choose action at = argmax
a

Q(st, a, µt);

5: Perform action at, get reward rt and new state st+1;
6: Store the experience (st, at, rt, st+1) into the experi-

ence replay memory;
7: Get a batch of samples from the replay memory, and

calculate loss function Loss(µt) according (21);
8: update µt according (23);
9: end for

where Qnow(st, at) represents the Q value of current state,
Q(st+1, at+1) represents the Q value of the next state, λ
represents the learning rate, and γ represents the decay rate of
the reward. The status update process is as follows

st
at−→ rt, st+1. (20)

Due to the large state space and action space, directly
defining the Q table to solve the problems is not effective.
We use a neural network to approximate the Q function
as Q(st, at) ≈ Q(st, at, µ). Among them, µ is a network
parameter. To minimize the gap between the two values, a
loss function is defined for optimization, as

Loss(µt) = E[(yt −Q(s, a;µt))
2], (21)

where yt is the Q value of the target network, and the
calculation method is as follows:

yt = rt + γ max
at+1

Q(st+1, at+1;µ
−
t ). (22)

After that, we use the gradient descent method to update
the µ as follows:

µt+1 = µt + λ[yt −Q(s, a;µt)]Oµt
Q(s, a;µt). (23)

DQN uses two neural networks: the target network and
the main network. The target network is used to generate yt,
which is the evaluation benchmark for the loss function of the
main network. At regular intervals, the parameters of the main
network are assigned to the target network. After introducing
the target network, in a certain period of training, the target
Q value is kept unchanged, which reduces the correlation
between the current and the target Q value to a certain extent,
and improves the stability of the algorithm.

In order to avoid reaching the local optimal point, we
adopt the ε − greedy policy, which is to choose random
actions with probability ε. Moreover, in order to speed up
the DQN algorithm convergence, a step penalty mechanism
is also introduced. The DQN also introduces an experience
replay memory, which stores the data obtained from the

TABLE III
SIMULATION PARAMETERS.

Parameter Defifinition Value
h The flying height of the UAV 50 m

dunit Cell side length 20 m
Pt UAV transmission power 1 W
fc UAV launch frequency 2.4 GHz

ηLOS Additional path loss under LOS 1.6
ηNLOS Additional path loss under NLOS 23
α Environmental parameters 12.08
β Environmental parameters 0.11
sp Power standardized parameters 1.26× 10−7

se enenry standardized parameters 0.33
η1 UAV corner energy consumption parameters 4.426× 10−6

η2 UAV corner energy consumption parameters 1.7738× 10−4

ev UAV straight flight energy consumption parameters 0.006

system exploration environment, the problems of correlation
and non-static distribution are solved. It stores the transferred
samples obtained from the interaction between the agent and
the environment at each time step and stores them in the
playback memory network. For a part of the data (minibatch)
is randomly taken out with training, the correlation in the
samples is disrupted and the stability of the algorithm is
improved.

The description of the DQN-based hovering algorithm
structure is given in Algorithm 2. Lines 2 to 9 are the
iterative process of DQN. From line 4, UAV explores the
environment according to the greedy strategy. When the
random number is less than the greedy rate, it chooses a
direction to explore randomly. Otherwise, it chooses the action
at = argmax

a
Q(st, a, µt). Line 6 is to store the explored

data in the experience replay memory. Lines 7 to 8 are to
update network parameters. According to the proposed DQN
algorithm, the UAV can find the optimal hovering position
automatically.

V. NUMERICAL RESULT

In this section, we validate the effectiveness and conver-
gence of the proposed algorithms through numerical simula-
tion. We use python3.7 and TensorFlow2.0 to build a DQL
environment, the experimental running system is window10,
the CPU used is AMD R5-3600, and the GPU is NVIDA
GTX1660Super. We select the real traffic data set from the
competition public dataset [43] for simulation experiments.
Other relevant parameter settings are shown in Table III.

A. Traffic Flow Forecasting

Fig. 9 is the visualization of the LightGBM training process.
In the figure, the horizontal axis is the number of iterations,
and the vertical axis is the evaluation function (i.e., RSME).
The red curve named valid_score is the RMSE change of
the valid set. We can find that the LightGBM algorithm has a
good training effect and convergence performance. After about
350 iterations, the proposed LightGBM becomes convergence,
the values of RMSE stabilize at around 2.3. Therefore, the
LightGBM can be used to perform the traffic flow forecasting
effectively, and the predictions of the traffic computing task
requests in road intersections are obtained.
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Fig. 9. LightGBM training process.

Fig. 10. Comparison of energy consumption for the proposed UAV FT-GA
scheme and the shortness path scheme.

B. UAV FT-GA

Fig. 10 is a comparison diagram of actual energy con-
sumption of the two schemes to obtain the best path by
considering the turning energy consumption or not. In the
latter comparison scheme, the UAV flies with the shortest
path, and the turning energy consumption is not considered. In
this simulation example, the coordinate points are randomly
generated on the 1000 × 1000 terrain. GA is used to solve
the problem P1, and the optimal flight path is obtained. In
Fig. 10, the abscissa is the number of road intersections.
From the figure, we can find that compared with the scheme
without considering the turning energy consumption, the path
planning of the UAV can significantly reduce the flight energy
consumption in the proposed UAV GA-FT algorithm. The
reason is that we consider the UAV flies along the urban roads,
and much more corners should be passed. Considering the
turning energy consumption, the proposed flight path planning
scheme can be consistent with the actual traffic road situations.
Fig. 11 is a schematic diagram of the GA iterative process
considering the turning energy consumption. As shown in the
figure, when the number of iterations reaches about 600, the
proposed UAV FT-GA scheme becomes converge, indicating
that the scheme has a good convergence performance.

Fig. 11. Iteration of FT-GA.

Fig. 12. DQN iterative process.

C. DQN-based Hovering Algorithm

When the UAV arrives the mission area, a DQN algorithm
for autonomous deployment position of UAV is proposed
to find the optimal hovering position of UAV. In order to
validate the effectiveness of the proposed DQN-based hovering
algorithm, we compare it with other existing algorithms:
• Theoretical maximum: In the simulation experiment, we

know the environmental data in advance, so we can obtain
the theoretical best hovering position in the current map
and the theoretical maximum reward value corresponding
to the location through detailed calculations.

• Center layout method: In this method, the UAV is
deployed at the center of the map.

• Q-Learning: Q-Learning is a value-based learning algo-
rithm in RL, which is used to find the optimal hovering
position of UAV.

• Sarsa: SARSA (State-Action-Reward-State-Action) is an
algorithm for learning Markov decision process strate-
gies, which is used to find the optimal hovering position
of UAV.

Fig. 12 is a simulation diagram of proposed DQN-based
hovering algorithm. From the simulation results, we can find
that the UAV reward value presents an oscillating changing
at the initial moment. When the number of iterations reaches
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Fig. 13. Rewards of different height schemes.

Fig. 14. Rewards of different transmission power schemes.

around 600, the reward value tends to stabilize. This is because
the UAV needs to constantly explore the surrounding environ-
ment in the early stage. When the enough corresponding data
is collected, the UAV can find the optimal hovering position,
complete its autonomous deployment, and provide services for
the vehicles on the road.

Before the comparison experiment, we used the parameters
in Table III to simulate, and the running time of the simulation
program is shown in Table IV. Fig. 13 is the comparison of
the reward value of our proposed DQN algorithm and other
algorithms under different UAV flight heights. We can find
that the proposed DQN algorithm can always obtain higher
reward values than others, and be close to the theoretical
maximum reward value. Q-Learning and Sarsa algorithms can
also obtain the same value as DQN, but they are not stable
enough compared with DQN.

Fig. 14 is the comparison of the reward value of our
proposed DQN algorithm and other algorithms at different
UAV transmission powers. Similar to Fig. 13, we can find
that the DQN algorithm we proposed has always been able to
obtain higher reward values than others , and be close to the
theoretical maximum reward value. The main reason is that
the proposed DQN algorithm uses two neural network fitting
functions. The experience pools are used to store the explored
data is also an important reason for improving stability and

TABLE IV
ALGORITHM RUNNING TIME.

Algorithm Iterations Running time(s)
UAV FT-GA 1000 71.2595

DQN 1000 18.8437

better rewards compared to other algorithms.

VI. CONCLUSION

Taking into account the impact of the UAV flying distance
between the staying station to the mission areas, we propose
a pre-scheduled UAV-assisted VECN system in urban traffic
environment. The CCC uses the powerful data processing
capabilities to predict traffic conditions of the covered road
intersections, and assign UAVs to different predicted mission
areas in advance. An optimal UAV flight trajectory strategy is
proposed based on the traffic situational awareness. We design
an UAV FT-GA algorithm to find the optimal flight trajectory,
while the turning and flying energy consumption is considered.
Then, when the UAV arrives the mission area, an optimal
DQN-based UAV hovering position selection algorithm is
proposed. Simulation results show that our proposed method
can help the UAV obtain better service quality.
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