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Abstract: Energy-efficiency and reliability are vital metrics of the
robustness of Wireless Sensor Networks (WSNs). Various data re-
duction techniques are used to improve them, among them com-
pressive sensing (CS) is a data reduction technique used to recover
extensive data from fewer samples in case of sparse representation
of sensor-readings. Unfortunately, energy-efficiency and accuracy
are contradictory metrics, as increased accuracy requires a large
number of measurements, and data transmissions. Therefore,, in
this paper, a CS-based algorithm is proposed for efficient data
transfer through WSNs, which uses multiple objective genetic algo-
rithms (MOGA) to optimize the number of measurements, trans-
mission range, and the sensing matrix. The algorithm aims at strik-
ing the right balance between energy-efficiency and accuracy. It
constructs a path in a multi hop manner based on the optimized
values. Numerical simulations and experiments show that Pareto-
front, which is the output of MOGA, helps the user to select the
right combination of the number of measurements and the trans-
mission range fitting the application at hand, and to strike a good
balance between energy efficiency and accuracy. The results also
demonstrate the existence of measurement matrices which lower
mutual coherency improve the accuracy of CS.

Index Terms: Compressive sensing, energy efficiency, genetic algo-
rithms, multiple objective, routing protocols, WSN.

I. INTRODUCTION

ENERGY -efficiency is a decisive issue in the wireless sen-
sor networks (WSNs) because the network consists of

miniature, cheap, and battery-operated nodes, which are de-
ployed in a harsh environment, where it is difficult to access
and recharge them. These nodes are capable of sensing different
physical quantities, manipulating data concisely, and communi-
cating with each other nodes over unreliable wireless links. The
sensed data is collected and further processed by a Base Station
(BS), with wired-power source and higher processing capabili-
ties [1].

Most of the node energies are consumed by communication,
so, the researchers developed many techniques to improve the
energy efficiency of WSNs. The proposed methods cover differ-
ent aspects of communication process such as routing, mobile
relays, and sinks, optimal deployment, sleep-wake scheduling,
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opportunistic transmission, data reduction, etc.[2], [3]. Many
data reduction schemes are used to improve energy-efficiency,
reliability, and memory usage of WSNs; they are categorized
to network-based and compression based methods. Network-
based methods include routing algorithms and network cod-
ing algorithms, where compression-based algorithms include
transform-based, conventional compression, distributed source
coding, predictive coding, and compressive sensing [4], [5]. In
the traditional Shannon/Nyquist sampling theorem in order to
recover the signal correctly, the sampling rate should be higher
than twice of the highest frequency of the original signal, which
generates a vast amount of data. Thus, data must be compressed
to reduce the cost of storage and transmission. In 2006; Donoho,
Romberg, Candès, and Tao introduced Compressive Sensing [6-
9], by CS signals can be recovered from fewer samples or mea-
surement under two conditions, the sparsity of the signal (the
signal has very few significant coefficients, and the majority are
zeros), and the Incoherency among the samples [10]. Recently,
diverse researches use CS to reduce the amount of data transmit-
ted to the (BS), which improves the energy-efficiency of WSN.
CS needs more computational power to reconstruct the signals,
but the BSs with their high processing-capabilities and energy
can recover sensed signals.

If N is the length of the sparse vector represents the
sensed data, and M is the number of samples (measurements),
the BS can recover the sparse signal x ∈ RN , despite hav-
ing only k significant coefficients from the observed vector
y ∈ RM , M << N , by solving the linear set y = Φx, where
Φ∈RM∗N is the so-called sensing matrix. Hence, The node per-
forms CS, transmits vector y and the BS receives it. The energy
utilized in the transmission of y is a function of its length de-
noted byM . AsM increases more energy is spent, thus we need
to reduce the number M to improve the energy efficiency. Un-
fortunately, the reconstruction error increases as M decreases
(for details see the next section) which require us to strike
the right balance between energy-efficiency and reconstruction-
error.

In this paper, we propose a CS-based chain routing algorithm,
WSN is divided into M paths, and the energy-efficiency and the
reconstruction-error are functions of the number of paths, which
represent the number the of the measurements. The energy effi-
ciency and the number of paths also depend on the transmission
ranges of the nodes (R). While the reconstruction-error also de-
pends on the quality of the sensing matrix and the number of
paths. To find the optimal number of measurements (Mopt), the
optimal transmission range of the nodes (Ropt), and the optimal
sensing matrix (Φopt) in terms of mutual coherence, that maxi-
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mize the energy-efficiency and minimizes the reconstruction er-
ror, we use multiple objective genetic algorithms (MOGA).

The contributions of this work are detailed as follows: First,
we proposed a multiple objective genetic algorithm to strike the
right balance between the energy efficiency and reconstruction
error of the compressive sensing method. Second, we introduce
a genetic algorithm to improve the characteristics of the sensing
matrix by reducing its mutual coherence. Third, we presented a
greedy algorithm to split the WSN into multiple paths in a way
conserves the balance of the payload, it consists of two sub-
algorithms, the first defines the leaf nodes of paths, the second
build the paths starting from the leaf nodes

The remainder of the paper is organized as follows:
• In Section 2, we provide an overview of related work in the

literature.
• In Section 3, we depict the compressive sensing and Multi-

objectives genetic algorithm (MOGA) concisely.
• In Section 4, we analyse the objectives and the variables of

the MOGA.
• In section 5, proposed CCS_MOGA algorithm is described.
• In Section 6, we give the numerical results of a detailed per-

formance of the algorithm under different scenarios.
• In section 7, we state some conclusions and give some com-

mentary on the future.

II. RELATED WORKS

In WSN, the nodes are typically battery operated. Therefore,
energy is considered to be a limited resource, and energy effi-
ciency is a crucial factor in designing and operating of WSN.
In Multi-hop routing, the source node uses other nodes as relay
nodes in conveying the data packets to a distention node out-
side its transmission range. Thus, multi-hop routing extends the
communication coverage of the nodes and also improves the en-
ergy efficiency of the nodes requiring only relatively short dis-
tance transmissions [11].

Many researchers used the multi-hop techniques to develop
routing protocols for WSN aiming to strike a good balance
among different QoS requirements, such as energy efficiency,
delay, and reliability. The authors of [12] proposed a multi-hop
routing protocol that improves energy efficiency by reducing the
excessive overhead, but it is not suitable for large scale WSNs.
The researchers in [13] presented balanced and energy efficient
multi-hop (BEEMH) based on the Dijkstra algorithm. They sug-
gested the residual energy and location as criteria for the selec-
tion cluster heads. It improves the performance in terms of the
energy efficiency but it has poor performance in terms of relia-
bility. In [14], the authors used Taylor series and cat salp swarm
algorithm (Taylor C-SSA) to develop a multi-hop routing proto-
col that improves the performance in terms of energy efficiency
and security. We proposed in [15] maximum of minimum resid-
ual energy protocol (MMREP), where the packet is sent to the
BS over the path of which the minimum remaining energy is
maximum subject to a predefined reliability constraint. Also,
we presented optimal residual energy based protocol (OREBP),
where the entropy is used to guarantee that the distribution of
the residual energy will remain as close to uniform as possible,
but the complexity of algorithm increases as the size of the WSN

increases.
Besides multi-hop routing, various data reduction schemes

are used to enhance the performance metrics of WSNs. E.g. net-
work coding (NC) is an example of a network-based data reduc-
tion technique, researches such as [16]–[20] use network coding
to maximize the life and the reliability of WSNs. They use com-
bined packets as redundant data to improve the E2E error rate.

Compressive sensing is an example of compression-based
data reduction techniques. Recently, several algorithms were de-
veloped to host CS into WSNs, some of them aim to reduce the
payload and the energy dissipated in data collection by shrink-
ing the amount of transmitted data. Some researchers present
algorithms to improve the reconstructions error, others aim to
reduce the complexity of the algorithms or to improve the secu-
rity of WSNs [21]. In the literature, there are two schemes of
CS, plain-CS (all the nodes perform CS) and hybrid-CS (spe-
cific nodes perform CS).

The authors of [22] suppose hybrid-CS for chain based
WSNs, some nodes forward native packets (Forwarders), others
perform CS (Aggregators). Nodes have less than K descendants
are forwarders, the nodes have aggregator descendants, or more
than K-1 descendants are considered as an aggregator where K is
the length of the compressed vector (number of measurements).
The method discussed in [23] is also a hybrid-CS algorithm,
which is based on mobile agents. There are M agents, where
M is the number of measurements, in the paper the authors de-
veloped a greedy algorithm to determine the path of the mobile
agent. The mobile agent collects the reading of interest nodes;
they are the nodes corresponding to the non-zero elements of the
row of the measurement matrix agreeing with the ID of the mo-
bile agents. The measurement matrix is a sparse random binary
matrix. When all the agents return to the BS, it uses compressive
sensing reconstruction algorithms to get the readings of nodes.
Unfortunately, the sensing matrix is random, and it may happen
that some nodes remain unvisited.

Random walk (RW) routing is used in [24], M random walks
are initiated, where M is the number of measurements, in each
round, the readings of k random nodes are collected. The au-
thors use the mixing time of the graph to determine k, the num-
ber of nodes to be visited by RW, the kth node collects the spare
measurement of round Mi, then it applies Φi of the sensing ma-
trix to produce yi, i = 1, 2, · · ·,M . The measurement vector y
is sent directly to the BS, which collects the M measurement
vectors needed for recovery process.

The algorithm proposed in [25] is a plain-CS for chain based
WSNs; all the nodes are connected like a chain. Each node cre-
ates its sensing vector based on a global seed broadcasted by the
sink. The nodes forward the summed compressed vector from
one to another until the head of the chain, which sends the re-
ceived vector directly to the sink. Energy-efficient compressive
sensing-based clustering routing protocol (EECSR) is a plain-
CS algorithm [26]; it is a cluster-based scheme. The authors
suppose a sector-shaped network, divided into k layers; all of
them have the same width. They calculate the optimal number
of the clusters for each layer, the optimal size of the clusters, and
the optimal location of the cluster heads (CHs) in terms of en-
ergy efficiency. All the calculations depend on the geometrical
specification of the network and the number of measurements.
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Members of the clusters transmit compressed to the CHs. HCs
collect the compressed data and forward it to BS.

The above mentioned algorithms are based on random mea-
surement matrices; nevertheless, the authors of [27] propose
cluster size load balancing for CS algorithm (CSLB-CS); it is
a cluster-based algorithm. Besides using a cluster load balanc-
ing technique to reduce the total number of transmissions, they
use Chicken Swarm Optimization Algorithm to improve the ac-
curacy and robustness of the reconstruction process.

Some works combine more than one data reduction tech-
nique; for example, [28] proposes a compression scheme that
combines CS, NC, and spatial-temporal compression. It sup-
poses a clustered topology; the authors formulate an optimiza-
tion model to minimize the reconstruction error; they presume
that the reconstruction error is a function of the total flow rate
and link transmission rate. The overall flow rate is measured as
the number of received measurements; a predefined reliability
probability is considered as an optimization parameter.

Some researches concentrate on improving the energy effi-
ciency [20]–[23], others concentrate on improving reconstruc-
tion error [27], [28], [34]. In this work, we balance among pay-
load, energy-efficiency, and accuracy of the reconstruction pro-
cess by minimizing reconstruction error.

III. THE SYSTEM MODEL

A. A Brief Summary of Compressive Sensing

The fundamental idea of CS is that certain signals can be re-
covered correctly from fewer samples or measurement than clas-
sical methods; the possibility of this idea depends on two prin-
ciples:
1. Sparsity: The signal has only very few significant coeffi-

cients, and the majority of the coefficients are zeros.
2. Incoherency: The coherency between two signals decreases

as the linearity between them decreases
If θ is a dense vector represents the original signal, then it can

be expanded into an orthonormal basis Ψ (such as wavelet basis,
Fourier basis, DCT, etc.) to acquire a sparse vector x as follows:

x = Ψθ,Ψ ∈ RN∗N , θ ∈ RN . (1)

x as a sparse vector with length N and with k significant el-
ement is sampled into vector y which has the sampled values of
x as follows:

y = Φx, y ∈ RM ,Φ ∈ RM∗N , (2)

where Φ is the sensing matrix (Measurement matrix) and M
is the number of measurements (samples) and N >> M .

SinceN >> M , There are infinitely many possible solutions,
each solution represents a possible signal reconstruction, if the
RIP holds, l0-norm and l1-norm can be used to reconstruct the
signal if x̂ is the reconstructed vector:

x̂ = arg min
y=Φx

‖ x ‖l0 , (3)

x̂ = arg min
y=Φx

‖ x ‖l1 . (4)
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Fig. 1. Pareto-front.

Reconstruction by l0-norm is accurate, but it is slow because it is
an NP-complete algorithm, where l1-norm is correct, efficient,
and linear programming problem [29].

B. Multi-Objectives Genetic Algorithm

To optimize the parameters, we will use multiple objective
genetic agorithms (MOGAs). MOGA is a nature-inspired meta-
heuristic algorithm which is widely used in WSNs to achieve
the optimum of multiple contradictory objectives [30,31]. These
objectives are adjusted simultaneously subject to a set of restric-
tions. In case multi-objective optimization there is not a spe-
cific definition of the optimal solution, so, instead of a single
solution yielded by traditional genetic algorithm (GA), MOGA
finds a set of multiple non-dominated solutions, all of them are
accepted, the best solution is subjective based on the needs of
the designer [32].

MOGA uses a vector of fitness functions F(x) =
[f1(x), f2(x), · · ·, fn(x)]T to find a vector of decision variables
which satisfy a set of inequality and equality constraints, these
constraints define the viable domain contains all the acceptable
solutions.

MOGA is based on Pareto-Optimality; it uses the fitness func-
tions vector to find Pareto-optimal solutions. As shown in Fig. 1,
Pareto-optimal solutions are the vector X = [x1, x2, · · ·, xn]T

that contains all the feasible solutions that minimize at least
one objective without causing a simultaneous increase in any
of the other objectives. Pareto-optimal set or Pareto-front X̂ =
[x̂1, x̂2, · · ·, x̂n]T is the vector of solutions that are not domi-
nated by any other solution in solution space, X̂ is not dominated
by X if and only if [32]:

∀i ∈ i = 1, 2, · · ·, n, fi(x) ≤ fi(x̂), (5)

and

∃i ∈ i = 1, 2, · · ·, n, fi (x) < fi(x̂). (6)
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C. Network Model

We model the network as a graph G(V,E,d), where V is the
vertices that represent the nodes, e is the set of edges that con-
nect the vertices, and dij , (i, j = 1, · · ·, N) is the Euclidian dis-
tance between node i and j. There is a connection between
node i and node j if dij is less than the transmission range of
the nodes; e = {(i, j)|∀i, j ∈ V, dij ≤ R}. The nodes use each
other as relays to forward the packets to the BS in multi-hop
transmission manner. We assume the N nodes are randomly de-
ployed onto a square sensing field with an edge of D, agreeing
to a 2D normal distribution; the BS is allocated in the center of
the sensing field.

We deal with two types of rounds (as they are introduced in
[33]: Transmission rounds and construction rounds, which is
used in dynamic topology WSN, re-construction round appears
in case of mobile sink, mobile nodes, or in case of energy holes
problem.

In our proposed model, transmission rounds appear determin-
istically when nodes have to collect data. Construction rounds
appear in the initialization stage, and when a predefined per-
centage of the nodes die, transmission rounds appear determin-
istically when nodes have to collect data. At the beginning of
each construction round, the BS uses the multi-objective ge-
netic algorithm to calculate the optimal number of the measure-
ment Mopt; the optimal transmission range Ropt, and the opti-
mal sensing matrix Φopt ∈ RM∗N . BS constructs Mopt paths
using the algorithms in the next section, and broadcasts Φopt
over the network. Each node has a copy of the row number m
of Φopt(φm).

IV. OPTIMIZATION METHODS

We developed a multi-objective genetic algorithm that seeks
the optimal Number of measurements, the optimal transmission
range, and the optimal measurement matrix. The goal is mini-
mizing the consumed energy as well as the reconstruction error.

A. Energy Efficiency

In WSN, consumed energy is proportional to dα where d is
the transmission distance, and α is the path-loss exponent. Sta-
tistically, if R is the transmission range of the nodes, then the
mean square of communication distances E[r2] = R2/2 [24].
For M paths with nc is the average path length, the consumed
energy of nodes in the path is:

Ech = M ∗ nc ∗ (R2/2)α. (7)

If the average distance between the M path leaders and the
BS is dav; then the total energy consumed by the path leaders to
transmit a unit of compressed data is:

ELBS =

M∑
i=1

dαav, (8)

so, if the sensing field is a square with an edge of length D and
the BS is allocated in the centre, the average distance between
the chain leaders and the base [24]:

dav =

∫ D

0

∫ D

0

[(
x− D

2

)2

+

(
y − D

2

)2
]
f(x, y)dxdy,

(9)
where f(x, y) is the joint probability function (pdf), which is
equal to 1/D2.

The total energy consumed by the nodes in the path and the
path leaders is E = Ech+ELBS from (10)–(12), the consumed
energy in the network is:

E = M

(
nc

(
R2

2

)α/2
+

(
D2

6

)α/2)
. (10)

Equation (10) shows that as M increases, the consumed energy
increases.

B. Reconstruction Error

CS paradigm has three types of reconstruction errors, original
dense data error(eθ), sparse data error(ex), and observed data
error (ey). They are defined as follows [34]:

eθ =
1

N

∥∥∥θ − θ̂∥∥∥2

2
, (11)

ex =
1

N
‖x− x̂‖22, (12)

stations
ey =

1

M
‖y − ŷ‖22, (13)

where θ, x, and 4 are the sensed vectors, and θ̂, x̂, and ŷ are the
reconstructed vectors. Authors of [34] prove that the three errors
are harmonious, and minimizing one minimizes the others.

In this study, we minimize(ey), in the same manner as (2),
ŷ = Φx̂, from (1), x̂ = Ψθ̂, if Ω = ΦΨ , then (13) becomes:

ey =
1

M
‖y − Ωx̂‖22. (14)

(14) Shows that asM increase ey decreases, the fact that con-
tradicts the statement of (10).

C. Transmission Range

To guarantee graph connectivity [35], transmission range R
should satisfy R =

√
A(logN + ε log n)/πN where A is the

area of sensing field, n is the number of nodes, and ε is a con-
stant depends on structural properties of the graph. The trans-
mission range R and required transmission power P are expo-
nentially proportional [35],

P =
Rα(1 + k ∗ α)

C
, (15)

where R is the transmission range, k size of data unit in the
bet, and C is a constant depends on antenna gain, wavelength,
and transmission rate and noise level. Using small transmission
ranges improves energy efficiency, but more paths are needed to
guarantee connectivity, which means a larger M .

Each sensor node standard supports several levels of trans-
mission levels. For example, MICA2 has 26 transmission power
levels from 0.01 mW (corresponds to 28 m transmission range)
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to 3.1623 mW (corresponds to 118.1.3 m transmission range)
[36].

Each node uses two transmission ranges:
• Rc: It is a narrow range; the nodes use this range to communi-

cate with its neighbors of the same path; it is small because it
covers just the average distance between two nodes. We have
to ensure that the degree of each node ≥2, one for receiving,
and the other for transmission.

• RBS : It is broader than Rc; the path leader nodes use this
range to send the compressed data to the BS directly.

D. Sensing Matrix

To reconstruct x correctly from y, Φ should obey these two
conditions:
• The coherence (µ) between Ψ and Φ should be as minimum

as possible where:

µ(Φ,Ψ) =
√
N max

1 ≤ j ≤M
1 ≤ i ≤ N

|< ϕj , ψi > |. (16)

The upper bound of µ is one, where the lower bound is a
function of M and N :

√
N−M
M(N−1)

• It satisfies the restricted isometry property (RIP) of order K,
which is achieved if the restricted isometry constant (RIC)δk
is not close to one, where:

(1− δk) ||x ||2l2 ≤ ||Φ ||
2
l2 ≤ (1 + δk) ||x ||2l2 . (17)

Both properties are related to each other

δk = (k − 1)µ. (18)

As µ decreases, δk decreases, small δk means a higher prob-
ability that the sensing matrix satisfies the RIP. The probability
of successful data construction depends on the number of mea-
surements M .M is determined based on δk and µ [29]:

M ≥ Cµ2(Φ,Ψ)K log(N/δ). (19)

This equation indicates that:
• As the coherence decreases, fewer measurements are needed
• As the sparsity increases K decreases, fewer measurements

are needed
• Smaller δ means a higher number of measurements is needed.

Fortunately, it is an N-complete problem; however, for-
tunately, any random matrix drawn from Gaussian, +1/-1,
Bernoulli distributions, has a high probability of possessing
these properties.

V. CCS-MOGA

In this section, we elaborate on the simulation results of the
path based CS algorithm, optimized by MOGA (CCS-MOGA);
it consists of three stages; (i) seekingMopt, Ropt, and Φopt ; (ii):
Construction the network based on optimal values of the MOGA
variables; (iii) the accomplishment of CS. The aim is to improve
the clashed objectives energy-efficiency and reconstruction error
simultaneously.
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Fig. 2. Pareto-optimal front.

A. Seeking Mopt , Ropt, and Φopt

The objective functions of MOGA are shown in (10) and (13),
subject to the constraints shown in (16), (18) and the specifi-
cation of MICA2 mentioned in Section 6.3. The output of the
multiple-objective genetic algorithm is an optimal measuring
matrix with minimum mutual coherency and a Pareto front as
shown in the Fig. 1. The figure shows that as the energy in-
creases the reconstruction error decreases and vice versa. Table
1 shows these optimal values of the energy and the reconstruc-
tion error, it also shows the corresponding values of M and R

The optimal point of Pareto front is the knee point of the curve
in Fig. 2, but the user can use another point up to his/her con-
cerns, in the direction of energy efficiency or accuracy.

Table 1. Pareto-optimal objevtives and variables.
Energy Error M R

947916.18 0.00 117.00 36.65
1489596.81 0.00 124.00 72.82

87843.64 0.20 5.00 20.88
836503.57 0.01 108.00 30.53
116910.65 0.14 9.00 21.34
243995.40 0.04 27.00 22.63
670631.02 0.01 90.00 23.77
893440.23 0.01 123.00 24.24
602962.65 0.01 82.00 21.22
186960.36 0.06 19.00 21.96
720303.64 0.01 98.00 23.15
127977.69 0.11 11.00 20.91
536020.04 0.01 67.00 26.74
144284.48 0.08 13.00 21.47
418571.96 0.02 52.00 23.98
101220.86 0.15 7.00 20.89
317849.99 0.03 37.00 23.86
172654.17 0.07 17.00 21.78

In first stage, BesidesMopt,Ropt, the algorithm optimizes the
sensing matrix by minimizing µ; it starts with a random pattern
follows i.i.d. Gaussian distribution, then it is improved until
the value of the fitness function for the best point in the current
population is less than or equal to fitness limit. We define the
fitness limit as the lower boundary of the µ.
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Fig. 3. Distribution of leaf-nodes.

B. 5.2 Network Construction

Based on calculated M the WSN is divided into M paths, to
guarantee maximum coverage and minimum isolated node, M
leaf nodes (cl) should satisfy:

m ∈ cl ≡ max
∀m∈N

{min
∀i∈cl

dis(m, i)}. (20)

Where dis (m, i) is the distance between leaf node m and
node i, which means that the leaf nodes are the farthest nodes
from the BS and the farthest from each other.

Algorithm 1 Selection of leaf nodes
Ensure: cl← vector of path leaves
N ← Number of node
M ← Number of paths
d← Distances matrix
cl(1)← BS
cl(2)← max{dBS,:}
for i = 3 to M + 1 do
for j = 1 to N do
if i /∈ cl then
for k = 1 to length ofj do
tds(k)← di,cl(k)

end for
td(i)← min{tds}
end if
end for
cl(j)← max(td)
end for

M paths are constructed; as shown in algorithm (2), each of
them starts with a leaf node as a header, then in turn, each leaf
node select the closest node to be a member of it’s path, the new
members be the new header, and so on. But the arrangement of
the nodes in the path is not optimal, the shortest path is spathi =
{cli , cli + 1, . . . , BS } where:

spathi = min
pathi

j=nc−1∑
j=1

dis(j, j + 1). (21)

Algorithm 3 is used to optimize the arrangement of the nodes to
achieve the shortest paths as shown in Fig. 4.

Algorithm 2 Construction of the paths
Ensure: paths←Matrix of the paths.
cl← vector of leaf-nodes
N ← vector of nodes
M ← Number of paths
d← Distances matrix
cc← 1 path counter vector
Headers← cl
cc = 1
for i = 1 to M do
paths(i, cc) = headers(i)
for j = 1 to length(N) do
ds(j)← d(headers(i), N(j)
sort ds
Headers(i+ 1)← N(min(ds))
N ← N − (Headers(i))
end for
end for

Algorithm 3 Construction of the shortest paths
Ensure: spaths← matrix of the shortest paths.
nc ← path vector
sc ← shortest path vector
paths← array of possible paths
for i = 1 to length(paths) do
ds(i)← 0
for j = 1 to length(nc) do
ds(i)← ds(i) + d(paths(i, j),paths(i, j + 1))
end for
end for
spath = paths(min(ds(i))
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Fig. 4. Shortest paths.

Fig. 5. Compressive sensing model.

C. 5.3 Compressive Sensing

At the beginning of a transmission round, each path selects
a path leader based on the ratio of residual energy and distance
from the sink. Each node receives the data from the preceding
node and add it to its data, and pass the summation to the next
node in the path, xi =

∑
i=1,2,···,nc

xi , i = {1, 2, · · ·, nc} ,
and nc is the length of the path.
CL arranges the received data into Xm ∈ R1∗N ; it includes

the readings of each node into its corresponding element of Xm
, Xm is a sparse vector, all its elements are zeros, just the ele-
ments corresponding to members of path m, The sparsity level
K is determined by the number of measurements, fewer num-
ber of measurements mean longer paths and lower level of spar-
sity. CL calculates ym = φmXm , m = {1, 2, · · ·,Mopt}
and transmits it directly to the BS. BS concatenates ym,m =
{1, 2, · · ·,Mopt} to obtain Y∈ R1∗M which reconstructed to
recover X,X=

⋃M
m=1Xm .

VI. SIMULATION AND NUMERICAL RESULTS

We used MATLAB R2018 to simulate the algorithm. We
compared the non-compression, proposed plain compression
and some other plain compression algorithms with each other.
Also we evaluated the impact of optimization on the system per-
formance with respect to energy efficiency and accuracy of con-
struction.

We assumed different numbers of sensors ( 25-500 nodes ) de-
ployed in a grid of 100x100 m, the nodes are deployed according
to a 2D normal distribution. We presume MICA2, where ETx
is 3.12 µJ/bit and ERx is 2.34 µJ/bit [36] , the energy spent by
the electronics is neglected and α is 2.5 for both short and long
transmissions.

In the first experiment, we explored the impact of the opti-
mization of sensing matrix, Fig. 6 shows the mutual coherency
µ for both random and optimized matrices for different sizes
ofM , it shows that the optimized sensing matrix always has
lower µ, which means lower probability of reconstruction er-
ror as shown illuminated by (16)–(18).
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Fig. 7 emphasizes that the optimization of sensing matrix in
terms of mutual coherency affords mostly lower reconstruction
error regardless of the number of measurements. In some rare
case, random matrix may show low coherence, by the nature of
randomness, but we still need a systematic optimization and our
systems should not be controlled by coincidences.

In the second experiment, we investigated the relations among
objectives and variables of optimization system; Fig. 8 shows
the reconstruction error, Fig. 9 shows the average consumed en-
ergy per a round of data collection, we simulates WSNs with
different number of sensors. The figures compare the minimum,
the optimal and the maximum values of these two objectives as
reported by the Pareto front of the optimization system, the op-
timal values always found in between minimum and maximum
values. We also noted an uneven relation between the number
of nodes and the average energy. This occurs because we sup-
pose random distribution of nodes for each case, but in general,
there is an increasing tendency of average energy as the num-
ber of nodes increases, and the reconstruction error drops as the
number of nodes increases.

We assume a WSN containing 500 nodes for the third exper-
iment. The nodes are deployed in a grid of 100x100 m agreeing
to a 2D normal distribution. Fig. 10 shows the relations between
the number of measurements as an optimization variable on one
side, and the objectives of the optimization from the other side.
The left y-axis shows the energy as an objective, where the right
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Fig. 8. The reconstruction error per transmission round.
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WSN consists of 500 nodes.

y-axis shows the reconstruction error as the second objective.
The result coincides the theoretical depiction mentioned above;
as the number of measurements increases more energy is con-
sumed, but less error probability transpires. The crossing point
between the two curves matches the knee point of the Pareto
front shown in Fig. 2.

Fig. 11 shows the relations among the objectives and the
transmission range as a variable. Lower transmission range im-
proves the energy efficiency, exactly as (4) tells, but it increases
the reconstruction error because, with low transmission range,
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less paths are needed to guarantee the connectivity of the WSN,
which means fewer number of measurements and longer paths
that means lower level of sparsity as explained in Section 5.3.

In the last experiments, we explore the energy efficiency of
CCS-MOGA as a compressive sensing algorithm. We compare
it with two other scenarios:
• the first is the Non-CS algorithm, which represents the tra-

ditional multiple path PEGASIS algorithm, where each node
fuse the received packet into its packets, then it forwards the
fused packets to the closest neighbor, when it arrives at CL, it
aggregates the packets together in a predefined packet length
(we assume it 100), then sends them directly to the BS with-
out any type of compression [37].

• the second scenario, we suppose a T-CS algorithm, it is ac-
complished in many researches such as [24], [25], each CL
compresses its data using its own measurements matrix and
then sends the samples vector with length of M to the BS.
Fig. 12 shows the energy efficiency characterized by the av-

erage of consumed energy per node after 1000 of transmission
rounds. We assume WSNs with different numbers of nodes (50-
500) in the same sensing field of previous experiments. The fig-
ure shows much lower energy consumption of CCS-MOGA, it
is a reasonable result, because each CL sends just one element
of vector y as shown in Fig. 5, where in case of non-CS, each
CL sends a vector of 100 element. We note that the average of
consumed energy per node in case of T-CS changes linearly with
the size of the network, because the length of vector sent by CL
depends onM , asM increases the length of the vector increases
and the spent energy increases too.

Energy efficiency is not only measured by reducing the
amount of consumed energy, The distribution of the consumed
energy is also vital. A uniform distribution of consumed energy
among the nodes means the lack of bottleneck nodes and defi-
ciency of overloaded nodes, which may prolong the life span of
WSN [15]. Fig. 13 shows the variance of the consumed energy
of the nodes. Low variance means more uniformity of distribu-
tion of consumed energy. WSNs use CS-MOGA show a very
low variance, so they tend to have longer life span than the other
two scenarios.

In general, CCS-MOGA is a heuristical optimization algo-
rithm, in which the performance of MOGA depends on its pa-
rameters (the population size, the maximum number of gener-

Fig. 12. The average consumed energy per node.
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Fig. 13. The variance of the consumed energy.

ation, etc.). To achieve a better performance requires a higher
level of parameters, which increases the complexity of the al-
gorithm. Hence, future works are needed to investigate other
optimization techniques that improve the performance in terms
of optimality and complexity.

VII. CONCLUSIONS

In this paper, we developed an algorithm based on multiple
objective genetic algorithm to find the optimal values of the
variables of compressive sensing paradigm. We optimized the
number of measurements, transmission range and the mutual co-
herence of sensing matrix. We found that the optimizing these
variables will indeed maximize the energy efficiency and min-
imize the probability of reconstruction error. The proposed al-
gorithm provides a good trade-off between these two objectives.
We also proposed a compressive sensing procedure that reduces
the length of sensing vector to save on energy. The algorithm
provides a dynamic construction of WSN based on the values of
optimization variables and objectives. The performance of the
proposed algorithms were compared to the performance of mul-
tiple paths PEGASIS and traditional CS algorithms and a higher
energy efficiency has been achieved.
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