
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

116 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 2, APRIL 2021

Dynamic Video Delivery using Deep Reinforcement
Learning for Device-to-Device Underlaid

Cache-Enabled Internet-of-vehicle Networks
Minseok Choi, Myungjae Shin, and Joongheon Kim

Abstract: This paper addresses an Internet-of-vehicle network
that utilizes a device-to-device (D2D) underlaid cellular system,
where distributed caching at each vehicle is available and the video
streaming service is provided via D2D links. Given the spectrum
reuse policy, three decisions having different timescales in such a
D2D underlaid cache-enabled vehicular network were investigated:
1) The decision on the cache-enabled vehicles for providing con-
tents, 2) power allocation for D2D users, and 3) power allocation for
cellular vehicles. Since wireless link activation for video delivery
could introduce delays, node association is determined in a larger
timescale compared to power allocations. We jointly optimize these
delivery decisions by maximizing the average video quality under
the constraints on the playback delays of streaming users and the
data rate guarantees for cellular vehicles. Depending on the chan-
nel and queue states of users, the decision on the cache-enabled
vehicle for video delivery is adaptively made based on the frame-
based Lyapunov optimization theory by comparing the expected
costs of vehicles. For each cache-enabled vehicle, the expected cost
is obtained from the stochastic shortest path problem that is solved
by deep reinforcement learning without the knowledge of global
channel state information. Specifically, the deep deterministic pol-
icy gradient (DDPG) algorithm is adopted for dealing with the very
large state space, i.e., time-varying channel states. Simulation re-
sults verify that the proposed video delivery algorithm achieves all
the given goals, i.e., average video quality, smooth playback, and
reliable data rates for cellular vehicles.

Index Terms: Deep reinforcement learning, device-to-device under-
laid network, vehicular networks, video delivery, wireless caching.

I. INTRODUCTION

WITH the increasingly growing number of mobile devices,
it is expected that tens of exabytes of global data traf-

fic will be handled on a daily basis, 70% of which will con-
sist of on-demand video streaming services [1]. In on-demand
video streaming services, a small number of popular contents
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is requested at ultra-high rates, i.e., most of the requests are re-
peated, and thus, provision of the desired contents from the re-
mote base stations (BSs) would waste resources. In this regard,
the wireless caching technology discussed in [2], whereby the
BS pushes popular contents to cache-enabled nodes with lim-
ited storage space during off-load time so that these nodes can
provide popular contents directly to nearby mobile users, is ad-
vantageous for video streaming services.

As device-to-device (D2D) communication has become a
promising technology for improving spectral efficiency, a D2D-
assisted caching network has been studied [3], [4], where mo-
bile devices can store popular contents and directly respond to
the requests of neighboring users. Especially for delay-sensitive
content delivery, the necessary decision on which cache-enabled
device will deliver the desired content to the streaming user has
been extensively researched. The simplest method is to let the
cache-enabled node with the strongest channel condition deliver
the content to the streaming user [5]. The advanced node associ-
ation schemes have been developed for heterogeneous caching
networks by jointly optimizing routing and caching [7], man-
aging interference among D2D-assisted delivery links [8] and
allowing cooperation between adjacent BSs [9]. However, these
methods did not consider the different quality levels of contents
and assume that all the cached contents have the same size.

Since multimedia contents (e.g., video files) can be encoded
to multiple versions that differ in quality level (e.g., in their
peak-signal-to-noise-ratio (PSNR) and spatial resolution) [10],
each cache-enabled node can store the identical video contents
of different quality levels. In this case, the decision on which of
the cache-enabled nodes for content delivery becomes closely
related to content quality that the user can enjoy [11]. There ex-
ist several studies on methods that dynamically select the quality
level of the desired video [12]–[14] or maximize a network util-
ity function of time-average video quality [15]. Whereas the
video delivery policies presented in [12], [15] are operated at
the BS side, this paper considers a scenario where users dynam-
ically choose the desired content quality as in dynamic adaptive
streaming over HTTP (DASH) [16]. In [11], [13], [14], the au-
thors also considered video quality selection at the user side,
but not resource allocations in the D2D underlaid cellular sys-
tem. In addition, the above studies [10]–[15] requires global
channel state information (CSI); however, in practical vehicular
networks, it is difficult to track the time-varying channel gains
due to high mobility of vehicle users.

The reinforcement learning (RL) algorithms have been re-
cently employed to proactively cache popular contents in the
scenario in the absence of global CSI in [17]–[19]; however,
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content delivery is not optimized in these works. In addition, the
RL-based dynamic resource allocation method for edge com-
puting networks is proposed in [20], but content delivery is not
considered. Content placement and delivery are also jointly op-
timized in cache-enabled D2D networks, based on the deep-Q
network (DQN) [21] and the deep deterministic policy gradient
(DDPG) frameworks [22]. In addition, the RL-based content
delivery policy of a mobile device with service delay constraint
was proposed in [23]. However, the above studies [21]–[23] did
not consider the cache-enabled D2D underlaid cellular system
and differentiated quality requirements of multimedia contents.

In parallel, D2D underlaid cellular systems have been exten-
sively researched for efficient uses of spectrum resources, in
which frequency bands are shared for both cellular users (CUEs)
and D2D users (DUEs). In general, when spectrum is allocated
to CUEs, the newly generated D2D link reuses the spectrum of
one of the CUEs; therefore, the DUE interferes with the exist-
ing cellular and other D2D links. In order to manage the in-
terference as well as to maximize the network performances,
the advanced power controls and resource allocations have been
proposed for the D2D underlaid cellular system in [24]–[31].
Both the centralized and the distributed power control schemes
that improve the signal-to-interference-plus-noise ratio (SINR)
were proposed and analyzed in D2D underlaid cellular networks
in [24], and the scheme proposed in [25] achieves the propor-
tional fairness among users. As the D2D underlaid cellular sys-
tem supports vehicle-to-vehicle (V2V) connections, the global
CSI is difficult to be obtained due to high mobility of vehicle
users [32]. To deal with this issue, power controls that reduce the
requirement of global CSI were presented by utilizing the vehi-
cles’ geographic features [26], large-scale channel fading infor-
mation [27], the statistical CSI [28], or the path loss rather than
instantaneous CSI [29]. Furthermore, the deep learning-based
and the deep reinforcement learning (DRL)-based power allo-
cation schemes not requiring global CSI have been proposed in
[30] and [31], respectively. However, all of the above studies do
not consider the content delivery in cache-enabled D2D under-
laid cellular networks. The content delivery in D2D underlaid
cellular networks was researched in [33]; however, this work fo-
cuses on offloading the cellular data traffic by D2D links rather
than node association for content delivery in caching networks.
The cache-enabled D2D underlaid cellular networks have been
studied in [34] and [35] that proposed a caching method and a
incentive mechanism respectively but not content delivery.

In this context, this paper jointly optimizes the node associa-
tion and resource allocations without global CSI for content de-
livery in the D2D underlaid cache-enabled Internet-of-vehicle
system. This paper reflects the two characteristics of cellular
system-assisted D2D communications to the multimedia content
delivery policy in wireless vehicular caching networks: spec-
trum reuse and high mobility. In the absence of global CSI,
we propose a deep reinforcement learning (DRL) based adap-
tive delivery scheme which learns a policy that makes follow-
ing decisions: 1) The cache-enabled vehicle that will deliver the
desired content to the streaming user, 2) power allocations for
D2D-assisted delivery links, and 3) power allocations for cellu-
lar links. Specifically, the delivery policy is learned by deep de-
terministic policy gradient (DDPG), which is a model-free and

off-policy algorithm. The main contributions of this paper are
as follows:
• A framework of the compromising characteristics of the

D2D underlaid cellular system, the vehicular network, and
the wireless caching network is presented. For such a net-
work, the joint optimization problem of three decisions
having different timescales is formulated: 1) Association
with the cache-enabled vehicle for delivering multime-
dia contents (e.g., video files), 2) power allocation of the
cache-enabled vehicle delivering the content via the D2D
link, and 3) power allocation of the CUE whose the spec-
trum is reused by the D2D-assisted delivery link. The opti-
mization problem maximizes the time-average video qual-
ity under the constraints on the limited playback delay of
the DUE and the minimum data rate of the CUE.

• The problem of dynamic power allocations for both cel-
lular and D2D links sharing the identical spectrum with-
out the knowledge of global CSI is formulated based on
a Markov decision process and solved by using the DRL
approach. In contrast to the approaches in [26] and [27],
the proposed approach dynamically changes power alloca-
tions to control interference and to limit the playback de-
lay based on channel statistics and queue states. In order
to achieve efficient and improved learning of the delivery
policy as well as to deal with the very large state space,
we adopt a DDPG-based method because the state space is
continuous and massively large.

• Considering the interference between the CUEs and DUEs,
the decision on the cache-enabled vehicle that will de-
livery the content, i.e., the D2D transmitter, is made un-
der the frame-based Lyapunov optimization theory [36], in
larger timescale than power allocations of cellular and D2D
links. With the help of the DRL-based power allocations
determined in smaller timescale, the node associations for
content delivery can be also completed without global CSI.

• We present an evaluation via data-intensive simulations to
verify the proposed video delivery policy, as well as to
show the advantages of Lyapunov optimization theory and
DRL-based approaches.

II. NETWORK MODEL

This section describes the D2D underlaid cache-enabled ve-
hicular network that we considered, and the user queue model is
introduced. Since we focus on the multimedia services (e.g., on-
demand streaming), the delivered content chunks are accumu-
lated in the user queue and the playback latency or stall events
are closely related to the queue dynamics.

A. D2D Underlaid Cache-enabled Vehicular Network

This paper addresses the D2D underlaid vehicular caching
network where a certain vehicle user can request a video file
from one of the cache-enabled vehicles in its vicinity while some
CUEs are communicating with the BS, as shown in Fig. 1. In
Fig. 1, we can see that both cellular and D2D links coexist, and
CUE 1 (or 2) and DUE 1 (or 2) share the identical frequency
band. The server has already pushed popular video files dur-
ing off-peak hours to cache-enabled vehicles, the storage size of
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Fig. 1. D2D underlaid cache-enabled vehicular network.

which is finite. Since we focus on video delivery, caching poli-
cies are outside the scope of this paper and only cache-enabled
vehicles that store the desired video are considered. Assume that
the desired video hasN quality levels and that there is no quality
controller in the cache-enabled vehicles, and therefore, they can
transmit only the video file of the fixed quality that the server
pushes. In this case, the user can choose the quality level of
the video file to be received; let q ∈ {1, · · ·, N} denote the de-
sired quality level. Therefore, the choice of the quality level
of the video file to be received is consistent with the choice of
the cache-enabled vehicle nearby for video delivery. When the
video request of a certain user has been accepted at one of the
nearby cache-enabled vehicles, a D2D link is activated between
them for delivering the desired content. Therefore, the cache-
enabled vehicle that is selected to deliver the requested content
to the streaming user will be simply called the D2D transmitter.

Let CUEs send massive traffic data to nearby infrastruc-
tures, e.g., BSs or roadside units. These vehicles utilize high-
capacity vehicle-to-infrastructure (V2I) communication via cel-
lular links. However, there exist several pairs of highly mobile
DUEs for video delivery via D2D links. For the D2D under-
laid cellular system, the spectrum reuse model is utilized, i.e.,
both CUEs and DUEs share the spectrum resources. Whenever
a D2D link is generated, one of the orthogonal resources of the
CUEs is reused by the D2D link. This paper considers only one
CUE and a pair of a D2D transmitter and a file-requesting user
that reuse the spectrum of the considered CUE, and thus, the
spectrum reuse policy for multiple CUEs and DUEs is outside
its scope.

The cache-enabled vehicles are modeled using independent
Poisson point processes (PPPs) with intensity λ. Assuming a
probabilistic caching policy [37], let pq be the caching probabil-
ity for the desired video of quality q. Then, the PPP intensity
of vehicles caching the desired video of quality q is λpq . Sup-
pose that the system does not allow any additional D2D link
that reuses the identical spectrum of the considered CUE and
the streaming user who is already downloading the desired con-
tent from certain cache-enabled vehicle. Then, the system can
guarantee negligible interference between multiple D2D links.
User mobility is also captured in the network model. The user is
moving in a pre-determined direction and periodically searches
for a cache-enabled vehicle from which to receive the desired

Table 1. System description parameters.

N Number of quality levels
α(t) Cache-enabled vehicle chosen at t
Pc(t) Transmit power of cellular link at t
Pd(t) Transmit power of D2D link at t
Q(t) Queue backlog of DUE at t
W (t) Virtual queue backlog at t
q Video quality
P(q) Measure of video quality q
S(q) Video file size of quality q
K Number of frames
T Time duration of a frame
tc Unit time slot duration
tk Beginning time of the k-th frame
Tk Time interval of the k-th frame
Rc(t) Data rate of cellular link at t
Rd(t) Data rate of D2D link at t
ηc Minimum data rate of cellular link
P 0
d , P 0

c Maximum power of cellular and D2D links
L(t) Lyapunov function
λ Intensity of cache-enabled vehicle distribution
B Bandwidth
σ2 Noise variance
V Lyapunov coefficient
Ck Cache-enabled vehicle candidate set in Tk
Θ(t) State of MDP at t
Ξ(t) Action of MDP at t
S State space of MDP
A Action space of MDP
r(t) Reward of MDP at t
Ps′s Transition probability from state s′ to state s
π Trained policy of DDPG algorithm

video file continuously. As shown in Fig. 1, the geological dis-
tribution of cache-enabled vehicles in the vicinity of the user
that store the desired file can vary at each time slot, and there-
fore, the decision on the cache-enabled vehicle to be used for
video delivery should be appropriately updated.

B. User Queue Model and Channel Model

A video content consists of many sequential chunks. The user
receives the video content from the cache-enabled vehicle and
processes data for video streaming services in units of chunks.
Each chunk of a content is responsible for some playback time
of the entire stream. Even if all the chunks are in the correct se-
quence, the quality of each chunk can differ in dynamic stream-
ing. Therefore, users can dynamically choose the video qual-
ity levels in each chunk’s processing time. It can be stated that,
when a queue model is used, playback delay occurs when the
chunk to be played has not yet arrived in the queue. Thus, the
receiver queue dynamics collectively reflect the various factors
that cause the playback delay. Therefore, we focus on limiting
the queueing delay by dynamically adjusting the queue backlogs
of the streaming user.

In general, a queue model has its own arrival and departure
processes. The queue dynamics of the D2D user in each discrete
time slot t ∈ {0, 1, · · ·} can be represented as follows:

Q(t+ 1) = max{Q(t) + µ(t)− c, 0} (1)
Q(0) = 0, (2)

whereQ(t) and µ(t) represent the queue backlog and the arrival
process of the DUE receiver at slot t, respectively. Since the
playback rate of streaming is usually unchanging, the departure
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is assumed as a constant c here for simplicity. The queue states
are updated in each unit time slot t, and the interval of each slot
is determined to be the channel coherence time, tc. Suppose a
block fading channel, the channel gain of which is static during
the processing of multiple chunks; then, tc = cτ , where τ is the
chunk processing time and c is the positive integer.

In this study, the queue backlog Q(t) counted the number
of video chunks in the queue. µ(t) semantically represents the
number of received chunks and clearly depends on the data rate
of the D2D link between the streaming user and its associated
cache-enabled vehicle and on the chunk size. The arrival pro-
cess is:

µ(t) =

⌊
Rd(α(t), Pc(t), Pd(t), t) · tc

S(q(α(t)))

⌋
, (3)

where α(t), Pc(t), and Pd(t) denote the cache-enabled vehicle
associated with the user (i.e., the D2D transmitter), the trans-
mit power of the CUE, and the transmit power of α(t) at slot
t, respectively, and q(α(t)) is the quality level of the requested
file that the D2D transmitter α(t) can provide. R(α(t), t) and
S(q(α(t)), t) indicate the data rate of the D2D link and the
chunk size of the requested file with the desired quality q(α(t))
at slot t, respectively. Some video chunks can be only par-
tially delivered as the channel condition varies at every time t.
Because partial chunk transmission is meaningless in our algo-
rithm, flooring is applied in (3).

A Rayleigh fading channel is assumed for the wireless links
from all vehicles to infrastructures and vehicles. Denote the
channel by h =

√
Xβg, where X = A/dγ controls path loss

with d being the server-user distance, the path loss component
of A, and the decay exponent γ. In addition, β is a log-normal
shadowing random variable with standard deviation ξ, and g rep-
resents the fast fading component with complex Gaussian distri-
bution g ∼ CN(0, 1). In vehicular networks, fast fading com-
ponents are not easily estimated at the receiver side owing to
users’ high mobility. Thus, in this study we considered the sit-
uation in which only the slow fading components, i.e., X and
β, are known in advance, but the fast fading components are not
known.

Consider a typical streaming user reusing the spectrum of
a certain CUE. Then, the cellular link and the D2D link for
streaming that share the spectrum are interfering with each
other. Therefore, the data rate of the cellular link from the CUE
to the BS is given by

Rd(t) = B log2

(
1 +

Pc(t)|hc,B(t)|2

Pd(t)|hd,B(α(t), t)|2 + σ2

)
, (4)

where B is the bandwidth and σ2 is the normalized noise vari-
ance. hc,B(t) and hd,B(α(t), t) are respectively the channel fad-
ing gains from the CUE and the D2D transmitter α(t) to the BS.
Similarly, the data rate of the D2D link between the streaming
user and the D2D transmitter α(t) is given by

Rd(t) = B log2

(
1 +

Pd(t)|hd(α(t), t)|2

Pc(t)|hc,d(t)|2 + σ2

)
, (5)

where hd(α(t), t) and hc,d(t) are the channel gains of the D2D
link for video delivery and of the interference link from the CUE
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Fig. 2. Different timescales for decisions on α(t), Pd(t), and Pc(t).

to the streaming user, respectively. Note that the data rate of the
video delivery link in (5) limits the number of chunks that can
be delivered to the streaming user as given by (3), which de-
pends on the associated cache-enabled vehicle as well as power
allocations for cellular and D2D users.

III. DYNAMIC NODE ASSOCIATIONS AND POWER
ALLOCATIONS

This section introduces how the timescales of decisions on
node association and power controls are different and formulates
the optimization problem the maximizes the average video qual-
ity with the constraints of limited playback latency for DUEs
and data rate guarantees for CUEs.

A. Decisions at Different Timescales

The goal of this study is to determine the appropriate deci-
sions for video delivery at each slot t in the network model de-
scribed in Section II: 1) The cache-enabled vehicle for video
delivery α(t), 2) the transmit power of the cache-enabled ve-
hicle Pd(t), and 3) the transmit power of the cellular vehicle
Pc(t). The last decision is not directly related to video delivery,
but very significantly affects video delivery in terms of interfer-
ence. Here, the association with one of the cache-enabled vehi-
cles in the vicinity of can be made after it has been determined
which vehicles store the desired file, the delivery has been re-
quested, and the request accepted. Therefore, the decision on
the cache-enabled vehicle α(t) takes longer than that on the dy-
namic power allocation. Thus, we consider the scenario where
the decision on α(t) is made at a larger timescale than that on
Pd(t) and Pc(t).

In this context, the different timescales of decisions on α(t),
Pd(t), and Pc(t) are shown in Fig. 2. The D2D transmitter and
the CUE allocate Pd(t) and Pc(t) at time slots t ∈ {0, 1, 2, · · ·},
but the update of association with the D2D transmitter is per-
formed at a larger timescale, t ∈ {1, T, 2T, · · ·}, where T is the
time interval for the decision on α(t). The time slot for the k-th
association is denoted by tk = (k− 1)T for n ∈ {1, 2, · · ·}. Let
the k-th frame for updates of association with the D2D transmit-
ter α(t) be Tk = {tk, tk + 1, · · ·, tk + T − 1}. Hereinafter, we
use the term αk rather than α(t) for t ∈ Tk, because αk remains
unchanged over the frame Tk. As shown in Fig. 2, after α(t)
has been determined at time tk, decisions on the transmit power
levels of the D2D transmitter α(t) and the CUE, i.e., Pd(t) and
Pc(t), are made over t ∈ Tk to maximize the average streaming
quality while guaranteeing the data rate of the CUE, as well as
limiting the playback delay of the streaming user.
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The user can create a candidate set of nearby cache-enabled
vehicles storing the desired video, denoted by Ck; α(tk) ∈ Ck.
In existing studies, the nearest vehicle was usually chosen, be-
cause it can provide the best channel condition. However, be-
cause the streaming user is moving and there exists an interfer-
ing cellular vehicle, an association with the nearest vehicle is
not always the best choice. Therefore, the user collects up to N
candidates of cache-enabled vehicles located in its vicinity for
video delivery, and selects that which can provide the best video
quality and allows the user to avoid the playback delay during
the frame Tk.

B. Problem Formulation

For determining the appropriate video delivery policy, three
performance metrics are considered: The average video quality,
the playback delay of the streaming user, and the data rate of
the CUE, the spectrum of which is reused by the streaming user.
Based on these goals, we can formulate the optimization prob-
lem that maximizes the long-term average video quality con-
strained by the need to avert queue emptiness and guarantee the
data rate of the CUE

max
Pd,Pc,α

lim
K→∞

1

K

K∑
k=1

E[P(q(αk))] (6)

s.t. lim
K→∞

1

KT

KT∑
t=1

E[Z(t)] <∞ (7)

lim
K→∞

1

KT

KT∑
t=1

E[Rc(Pc, Pd, t)] ≥ ηc (8)

0 ≤ Pd ≤ P d0 (9)
0 ≤ Pc ≤ P c0 , (10)

where P(q(αk)) is the quality measure of q(αk) and ηc is the
minimum data rate for the CUE. P d0 and P c0 are the power
budgets of all the cache-enabled vehicles and the CUE, re-
spectively. The decision vectors are represented as α =
[α1, · · ·, αK ], Pd = [Pd(0), Pd(1), · · ·, Pd(KT −1)], and Pc =
[Pc(0), Pc(1), · · ·, Pc(KT −1)]. Specifically, the expectation of
(6) is with respect to random channel realizations and stochastic
distributions of vehicles. The constraint (7) limits the playback
delay of the streaming service, and the constraint (8) guarantees
the minimum data rate of the CUE.

As mentioned previously, playback delay occurs when the
next chunk to be played has not arrived in the queue, and there-
fore, the role of the constraint (7) is to avoid queue emptiness,
whereZ(t) = Q̃−Q(t). Here, Z(t) is introduced so thatQ(t) is
sufficiently large to avert playback delay, and Q̃ is a sufficiently
large parameter that affects the maximal queue backlog. From
(2), the queue dynamics of Z(t) can be represented as

Z(t+ 1) = min{Z(t) + c− µ(t), Q̃} and Z(0) = Q̃. (11)

Although the update rules of Q(t) and Z(t) are different,
both queue dynamics refer to the same video chunk process-
ing. Therefore, playback delay due to emptiness of Q(t) can
be explained by the queueing delay of Z(t). By Littles’ the-
orem [38], the expected value of Z(t) is proportional to the

time-averaged queueing delay. Our aim is to limit the queu-
ing delay by addressing (7), and it is well known that Lyapunov
control-based time-average optimization with (7) can makeZ(t)
bounded [39].

From the optimization problem in (6)–(10), we can intu-
itively see the manner in which decisions are made according
to Z(t). Suppose that the queue is almost empty; Q(t) ≈ 0 and
Z(t) ≈ Q̃. In this case, the user prefers the cache-enabled vehi-
cle that has a strong channel condition and stores a low-quality
file, and the associated cache-enabled vehicle prefers to allo-
cate more transmit power to reduce Z(t). However, the large
transmit power of the D2D transmitter will significantly inter-
fere with to the CUE. In addition, the geological location of
the D2D transmitter α(t) influences the data rate of the CUE.
However, when the chunks already accumulated in the queue
are sufficient to avoid the playback delay, i.e., Q(t) ≈ Q̃ and
Z(t) ≈ 0, the streaming user will want to associate with the ve-
hicle caching a high-quality video. In addition, it is preferable
that the transmit power of the D2D transmitter be small so that
the CUE is provided with a large data rate.

IV. DECISION ON CACHE-ENABLED VEHICLE FOR
VIDEO DELIVERY

For avoiding the emptiness of the queue Q(t), i.e., for pursu-
ing the stability of Z(t), the optimization problem of (6)–(10)
is solved based on the Lyapunov optimization theory. We first
transform the inequality constraint in (8) into the form of queue
stability. Specifically, we define the virtual queueW (t) with the
update equation:

W (t+ 1) = max{W (t) + ηc −Rc(Pc, Pd, t), 0}. (12)

The strong stability of the virtual queue W (t) pushes the aver-
age of Rc(Pc, Pd, t) such that the constraint in (8) is satisfied.

In addition, because the timescale of the decision on α is
larger than that of the decisions on P v and P c, the frame-based
Lyapunov optimization theory [36] is used for the decision on
the cache-enabled vehicle to be used for video delivery. Let
Θ(t) = [Z(t),W (t)] be the concatenated vector of actual and
virtual queue backlogs. Then, the quadratic Lyapunov function
L[Θ(t)] is defined as

L(Θ(t)) =
1

2

{
Z(t)2 + γW (t)2

}
, (13)

where γ is a coefficient for adjusting the scales of Z(t) and
W (t). Then, let ∆(.) be a frame-based conditional Lyapunov
function that can be formulated as E[L(tk +T )−L(tk)|Θ(tk)],
i.e., the drift over the time interval T . The dynamic policy is
designed to solve the given optimization problem of (6)–(10) by
observing the current queue states of Θ(tk) and determining the
cache-enabled vehicle such that the upper bound on the frame-
based drift-plus-penalty is minimized [36]:

∆(tk)− V E[P(q(αk))|Θ(tk)], (14)

where V is the importance weight for quality improvement.
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The upper bound on the Lyapunov drift can be found in the
Lyapunov function:

L[Θ(t+ 1)]− L[Θ(t)]

=
1

2

{
Z(t+ 1)2 − Z(t)2 + γ(W (t+ 1)2 −W (t)2)

}
≤ 1

2

{
c2 + µ(t)2 + γ(ηc −Rc(Pc, Pd, t))2]

}
+ {Z(t)(c− µ(t)) + γW (t)(ηc −Rc(Pc, Pd, t))}. (15)

By summing (15) over t ∈ Tk and taking the expectation with
respect to random channel generalizations, the upper bound on
the frame-based conditional Lyapunov drift is obtained by

∆(Θ(tk)) ≤ BT + E
[ tk+T−1∑

t=tk

{
Z(t)(c− µ(t))

+ γW (t)(ηc −Rc(Pc, Pd, t))
}]
, (16)

where we assume that the departure and arrival rates of all
queues are bounded, and B is a constant such that

1

2
E
[
c2 + a(t)2 + γ(ηc −Rc(Pc, Pd, t))2

]
≤ B. (17)

According to (14), minimizing the bound on frame-based
drift-plus-penalty is consistent with minimizing

D(αk,Θ(tk),Pd,k,Pc,k)

= E
[ tk+T−1∑

t=tk

{
Z(t)(c−

⌊ tcRd(αk, Pd, Pc, t)
S(q(αk))

⌋
)

+ γW (t)(ηc −Rc(Pc, Pd, t))

− V T · P(q(αk))
}∣∣∣∣Θ(tk)

]
, (18)

because BT is a constant. Let Pd,k = [Pd(tk), Pd(tk +
1), · · ·, Pd(tk + T − 1)] and Pc,k = [Pc(tk), Pc(tk +
1), · · ·, Pc(tk + T − 1)]. Note that Pc and Pd change over
time slots t ∈ Tk. This frame-based drift-plus-penalty algo-
rithm was shown in [36] to satisfy the queue stability constraints
of (7)–(8) while maximizing the objective function of (6). For
a given spectrum reuse policy, the minimum bound on frame-
based drift-plus-penalty can be obtained by

D(αk,Θ(tk)) = max
Pd,k,Pc,k

D(αk,Θ(tk),Pd,k,Pc,k). (19)

In Section V, we describe the determination of Pd,k and Pc,k by
using the deep reinforcement learning approach, which is aimed
to minimize (18) for a given pair of a streaming user and a CUE
sharing the spectrum.

System parameter V in (18) is the weight factor for the term
representing the video quality. The value of V is important for
controlling the queue backlogs and the quality level of the de-
sired video, i.e., for choosing αk at every frame. The appropri-
ate initial value of V needs to be obtained empirically, because
it depends on the distributions of cache-enabled vehicles and
channel environments. In addition, V ≥ 0 should be satisfied.

If V < 0, the optimization goal is converted into minimizing the
video quality. Moreover, in the case of V = 0, vehicle users aim
only at stacking the queue backlogs of Z(t) and do not pursue a
high-quality video. In contrast, when V →∞, vehicle users do
not consider the queue state and thus simply associate with the
cache-enabled vehicle that stores the highest-quality video. V
can be regarded as the parameter to control partially the trade-
off between the video quality, the data rate of the CUE, and the
queueing delay of the streaming user, which reflects the fact that
the selection of the cache-enabled vehicle for video delivery ex-
plicitly adjusts the mutual interference effects between the CUE
and DUEs.

With the initial condition of Θ(tk), the system can compute
D(αk,Θ(tk)) for all possible αk ∈ Ck. Then, the optimal as-
sociation policy of α∗k that minimizes D(αk,Θ(tk)) can be ob-
tained by

α∗(tk) = arg max
α∈Ck

D(α(tk),Θ(tk)). (20)

In practice, since the number of cache-enabled vehicles in the
vicinity of the streaming user is finite, the user can easily find
a suitable vehicle for video delivery, i.e., make the decision on
αk, via a greedy search.

V. DYNAMIC POWER ALLOCATIONS BY DEEP
REINFORCEMENT LEARNING

A. Modeling of Markov Decision Process

According to (15), we can formulate the drift-plus-penalty al-
gorithm of the k-th frame as

{P∗d,k,P∗c,k} = arg minD(αk,Θ(tk),Pd,k,Pc,k) (21)

s.t. 0 ≤ Pd ≤ P d0 (22)
0 ≤ Pc ≤ P c0 . (23)

The problem of (21)–(23) can be modeled by a Markov decision
process (MDP). In the network model, αk is given, and Θ(t) for
t ∈ Tk can be observed before making decisions on Pc(t) and
Pv(t) at every time t ∈ Tk.

The MDP is defined as M = {S,A, T, r}, where S de-
notes the state space, A denotes the action space, T denotes
the transition model and r denotes the reward structure. The
queue backlog set of Θ(t) represents the current state that sat-
isfies the Markov property. The state space is S = Z × R+,
where Z(t) ∈ Z = {0, 1, · · ·, Q̃} and W (t) ∈ R+. R+ rep-
resents a set of nonnegative real numbers. The action set con-
sists of power allocations for the D2D transmitter and the CUE,
i.e., Pd(t) and Pc(t) for t ∈ Tk. Denote the action at slot
t by Ξ(t) = [Pc(t), Pd(t)]. By letting the action space be
A ∈ [0, P d0 ] × [0, P c0 ], the constraints of (22) and (23) are sat-
isfied. Let power allocations for both the CUE and the DUE
be uniformly discretized into NA + 1 levels, and the finite
action space is represented by A = {0, P d0 /NA, · · ·, (NA −
1)P d0 /NA} × {0, P c0/NA, · · ·, (NA − 1)P c0/NA}. The action
decisions are made over the k-th frame, i.e., t ∈ Tk, and accord-
ing to (18), the reward (i.e., incurred cost with the negative sign)
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at each slot t ∈ Tk is represented by

r(Θ(t),Ξ(t)) = Z(t)
(
c−

⌊ tcRd(αk, Pd, Pc, t)
S(q(αk))

⌋)
+ γW (t)(ηc −Rc(Pc, Pd, t))− V T · P(q(αk)); (24)

therefore, the reward r is the cost (24) multiplied by the negative
sign. At every slot t, channel gains are randomly generated and
state transitions occur according to random network events and
the current queue state of Θ(t). The transition from Θ(t) to
Θ(t+ 1) is defined as

Ps′s(ξ) = Pr
{

Θ(t+ 1) = s′|Θ(t) = s,Ξ(t) = ξ
}
, (25)

for all states s, s′ ∈ S and ξ ∈ A.
According to Bellman optimality equation, the minimum in-

curred cost at Θ(t0) = s0 is given by

min
Ξ

E
[ T∑
t=t0

r
(
Θ(t),Ξ(t)

)∣∣∣Θ(t0) = s0

]
= min

Ξ
E
[
r(s0, ξ) +G

(
Θ(t0 + 1)

∣∣Θ(t0) = s0,Ξ(t0) = ξ
)]

= min
Ξ

E
[
r(s0, ξ) +

∑
s∈S

Ps,s0(ξ)G(s)

∣∣Θ(t0) = s0,Ξ(t0) = ξ
]
. (26)

Note that the channel information is not known, and the state
transition probabilities are not given; therefore, we solve the
problem (21)–(23) by using a DRL algorithm. Based on the fi-
nite MDP, the goal of reinforcement learning is to train a policy
π ∈ Π : S × A → [0, 1] which gives all action candidates at
every state the probability values in [0, 1]. The policy π maps
the state of the environment to the action to maximize the ex-
pected reward. Denote the expected reward under the policy π
by J (π). With finite T steps, J (π) can be described as the
accumulation of the reward at each time step.

J (π) = E

[
T∑
t=0

δtr
(
Θ(t),Ξ(t)

)∣∣∣π] , (27)

where δ is a discount factor that adjusts the effect of future re-
wards to the current decision. The optimal policy π∗ is

π∗ = arg max
π
J (π). (28)

In deep reinforcement learning, the policy π is approximated by
parameter θ. The state sequence of s that is generated according
to the policy πθ is the distribution. Then, the expected reward
obtained by the state sequence s and the policy πθ can be de-
noted as J (s, πθ(s)), and the objective reinforcement learning
is formulated as:

arg max
θ

Es∼πθ [J (s, πθ(s))] . (29)

The following subsections describe the deep reinforcement
learning algorithms that can solve (29) by finding the optimal
policy for every state at each time step t. In the following subsec-
tions, st, at, and rt are used for state, action, and reward at time
step t for simplicity, rather than Θ(t), Ξ(t), and r(Θ(t),Ξ(t)).

B. Deep Q-network (DQN)

The deep Q-network (DQN) is one of the breakthrough deep
reinforcement algorithms for applying a neural network to re-
inforcement learning. A neural network is used to approximate
state-action functions (Q-functions). The Q-functions approx-
imated by the neural network allow the DQN to go straight
from the high dimensional state space. The concept of the DQN
is based on the classic Q-learning algorithm. In classical Q-
learning, the Q-value of a state-action pair is estimated through
iterative updates based on multiple interactions with the environ-
ment. Therefore, in a DQN, with every action taken in a state,
the immediate reward received and the expected Q-value of the
new state are used to update the Q-functions. Accordingly, the
objective of a DQN is described as

arg min
θ
`DQN (θ) = arg min

θ
(Q(st, at; θ)− Q̄(st, at; θ))

2,

(30)
where st ∈ S state at time t, at ∈ A selected action at st,
and θ is the parameter set of Q-functions. Q(st, at; θ) is the
target Q-value that is derived from the current Q-functions at
time t. Therefore, Q(st, at; θ) = rt + δmax

á
(st+1, á; θ). Al-

though DQNs show a successful and high performance in many
domains, however, because a DQN approximates Q-functions
with neural networks, it can be used only for a discrete action
space.

C. Deterministic Policy Gradient (DPG)

Policy gradient methods attempt to learn a policy function di-
rectly, in contrast to a DQN, which attempts to learn action-
value Q functions. The basic idea is to increase the probabilities
of actions that lead to high rewards and reduce the probabilities
of actions that lead to low rewards until the optimal policy is
trained. In deterministic policy gradient (DPG) methods, a neu-
ral network is used to approximate the policies. The policy is
trained by updating the parameters of the policies via stochas-
tic gradient optimization. The objective of the DPG method is
described as

arg max
θ
`DPG(θ) = arg max

θ
E [log πθ(at|st; θ)r̂t] , (31)

where r̂t is the reward that is returned from the environment.
The DPG method is an on-policy algorithm and can be used for
environments having either discrete or continuous action spaces.

D. Deep Deterministic Policy Gradient (DDPG)

Although DQNs can solve problems with high-dimensional
state spaces, they can handle only discrete and low-dimensional
action spaces. However, the action spaces of the environments
of many applications (i.e., proactive caching, resource man-
agement, etc.) are continuous and high dimensional. As men-
tioned previously, DQN algorithms cannot be straightforwardly
applied to continuous actions, because a DQN depends on the
best action that maximizes the Q-value function being selected.
When there exists a finite number of discrete actions, the action
that causes the Q value to be maximized can be selected, because
the possible Q values at the state can be computed directly for
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each action. However, when the action space is continuous, it is
difficult to evaluate Q values exhaustively.

The deep deterministic policy gradient (DDPG) algorithm
concurrently learns the Q-value function and the policy. The
action-value Q function is learned and it is also used to learn
the policy. In DDPG, the function Q∗(s, a) is approximated by
the neural network, as in a DQN. Therefore, because the action
space is continuous, the function Q∗(s, a) can be differentiable
in terms of the action. Thus, the policy πθ can be updated ef-
ficiently. Qφ(s, a), which is approximated using the parameter
set of φ, is updated by minimizing the mean-squared Bellman
error (MSBE).

`(φ,D) = E
[
(Q(st, at;φ)− Q̄(st, at;φ))2

]
, (32)

where D is a set of transitions (s, a, r, s′, d). DDPG is aimed to
learn a deterministic policy πθ(s), which gives the action that
maximizes Qφ(s, a).

max
θ

Es∼D [Qφ(s, πθ(s))] . (33)

In summary, the DPG is used for finding the optimal deter-
ministic policy by using the gradient method, and the DQN pro-
vides the optimal stochastic policy by using the deepQ-network.
Lastly, the DDPG employs the deep learning framework for de-
riving the DPG, especially when the state and action spaces are
continuous and/or the state transition model is not tractable.

VI. SIMULATION RESULTS

This section presents the simulation results to verify the ad-
vantages of the proposed dynamic node association and power
allocation policy for content delivery in cache-enabled D2D un-
derlaid cellular systems. We leveraged TensorFlow in our sim-
ulations to implement our proposed DDPG-based scheme. As
shown in (6)–(10), the main performance metrics of streaming
users (i.e., DUEs) are the average content quality and the de-
lay incidence, and that of CUEs is the average data rate. There-
fore, we first show the convergence of the proposed DDPG al-
gorithm in the D2D underlaid cache-enabled vehicular network,
and compare the performance metrics of the proposed scheme
with other techniques.

A. Simulation environments

In the simulation, the scenario of the D2D underlaid cache-
enabled vehicular network shown in Fig. 1 was considered, in
which vehicles are moving in traffic lanes and the BS is located
between the incoming and outgoing lanes. Some vehicles are
communicating with the BS via cellular links, and streaming
users (vehicles) receive the desired video chunks from nearby
cache-enabled vehicles via D2D links. We assume that all ve-
hicles can activate only one type of link, i.e., a vehicle com-
municating via a cellular link cannot activate a D2D link and
vice versa. Since streaming users having the desired videos in
their own storage do not activate D2D link, we consider only the
streaming users requesting contents from another cache-enabled
devices. For the D2D underlaid cellular model, the spectrum of

one CUE can be reused by one D2D link. Since this paper fo-
cuses on node association and power controls for content deliv-
ery in the cache-enabled D2D underlaid cellular system, spec-
trum allocation is out of scope; therefore, suppose that the spec-
trum reuse policy is given, i.e., the pairs of the cellular and D2D
links sharing the spectrum have already been determined. For
simplicity, we also suppose that the maximum transmit power
and noise variance of both cellular and D2D links are the same,
i.e., P c0 = P d0 = 23 dB and σ2 = −114 dBm. In addition,
ηc = 30 Mbps and B = 2 MHz are used. The shadowing stan-
dard deviations for cellular and D2D links are 8 dB and 3 dB,
respectively.

As shown in Fig. 1 and Table 1, the rectangular road, the size
of which is rx × ry , consists of four lanes in each direction.
rx = 1 km and ry = (Nl+1)wl where wl = 4 m, because there
are eight lanes and one lane between the two four-lane parts of
the road for the BS. The BS is located at (0,0). For simplicity,
the location of the CUE is fixed at (200, 8); however, the location
of the DUE (i.e., streaming user) is randomly chosen. Assume
that a constant speed v = 60 km/h for every vehicle and cache-
enabled vehicles are distributed with λ = 0.01. We consider
three quality levels whose PSNR measures and file sizes are
P(q) = [34, 36.64, 39.11] dB and S(q) = [2621, 5073, 10658]
kbits, respectively. In addition, T = 10, tc = 1 ms, V = 0.3,
c = 15, Q̃ = 500 and γ = 10−6 are used in this section.

For simulation, we employed a NVIDIA DGX station
equipped with 4× Tesla V100 GPUs (a total of 128 GB memory
available) and an Intel Xeon E5–2698 v3 2.2 GHz CPU with 20
cores (256 GB system memory available in total). In addition,
Pythos version 3.6 on Ubuntu 16.04 LTS is utilized to build the
DDPG-based node association and power control scheme. Also,
we used a Xavier initializer [40] to avoid the occurrence of van-
ishing gradient descent during the learning phase. The neural
network was constructed with a fully connected deep neural net-
work (DNN), and the number of nodes in the hidden layer was
200. The discount factor for reward is δ = 10−6. The RL model
was trained through a total of 100,000 iterations. Here, note
that the DNN is used to approximate the Q-function Q(s, a) of
this system because the state space is continuous and the ran-
dom event distribution (i.e., channel statistics in this setup) is not
known. Therefore, the inputs of the DNN are the current state
and action of the agent and the output becomes its Q-function.

To verify the advantages of the proposed dynamic video de-
livery policy, we compared the proposed scheme with four other
schemes:
• “Genie-aided”: Through knowledge of the fast fading gains

of all links, the optimal transmit powers of both the CUE
and the DUE are optimally obtained. The decision on the
cache-enabled vehicle to be used for video delivery is not
considered.

• The scheme presented in [27]: The power allocations for
the CUE and the DUE are achieved based on ergodic ca-
pacity and are aimed to satisfy the constraint of the prob-
ability that delay occurs. This approach is not dynamic,
and therefore, a fixed power allocation is applied for each
frame. Because no association algorithm for video deliv-
ery is included in the method in [27], the decision on the
cache-enabled vehicle for video delivery is not considered.
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Fig. 3. Learning traces with learning rate of 3× 10−6.

• “Nearest”: The streaming user associates with the nearest
cache-enabled vehicle that is likely to provide the strongest
channel condition. The power allocations based on deep re-
inforcement learning are the same as those of the proposed
scheme.

• “Highest-Qual”: The streaming user associates with the
cache-enabled vehicle that caches the highest quality ver-
sion of the requested file. If there are many vehicles caching
the highest-quality version of video, the user chooses
the nearest. The power allocations based on deep rein-
forcement learning are the same as those of the proposed
scheme.

In summary, a comparison of our scheme with the “Genie-
aided" scheme and the scheme presented in [27] can provide
specific insight into the effectiveness of deep reinforcement
learning-based power allocations. The performance comparison
of the proposed cache-enabled vehicle association for video de-
livery based on frame-based Lyapunov optimization with the
“Nearest" and “Highest-Qual" schemes shows its advantages.

B. Learning Traces

Fig. 3 shows the traces of learning the power allocations of
Pd and Pc at a learning rate of 3 × 10−6 to minimize the up-
per bound on the drift-plus-penalty in (18). The learning trace
in Fig. 3 is obtained with an example scenario of a certain
randomly generated vehicular network; however, the learning
traces of most of the random generations are similar to that in
this figure. We can easily see that a dramatic increase in the
reward is obtained after around 2000 episodes; 4000 episodes
were used in the simulation to provide a sufficient margin to con-
verge the learning process. However, although the reward seems
to converge to a certain degree, the trace is in general unsteady.
This means that the learning process is not quite stable, because
the fast fading gains are completely unknown. Therefore, we
restrict the action space of the power allocations to the finite
set instead of the nonnegative real number set. In practice, the
system is usually unable to change the transmit power continu-
ously, and the finiteNA levels of transmit power are used. Thus,
each transmit power becomes P d0 ∈ {0, P d0 /NA, · · ·, (NA −
1)P d0 /NA] and P c0 ∈ {0, P c0/NA, · · ·, (NA − 1)P c0/NA]. In
addition, this deep reinforcement learning is very sensitive to
changes in the learning rate. We can see in Fig. 4 that the total
rewards do not converge even as the episode proceeds when the
learning rate is 4× 10−6.
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Fig. 4. Learning traces with learning rate of 4× 10−6.
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Fig. 5. Data rate of CUE Rc vs. P0.

C. Performances of Cellular and D2D Links

We used three performance metrics: 1) The data rate of
the CUE, 2) the playback delay at the DUE, and 3) the time-
average video quality. Figs. 5–7 show the plots of these per-
formance metrics versus the transmit power budgets of both
cellular and D2D users, i.e., P d0 and P c0 . Because we assume
P d0 = P c0 = P0, the power of the target signal of the CUE,
as well as the interfering signal from the D2D link, increase as
P0 grows. Therefore, the data rate of the CUE does not dra-
matically change with P0, as shown in Fig. 5. We can see that
the “Genie-aided” scheme definitely shows the largest data rates
among the compared techniques. However, the data rate of the
scheme presented in [27] is the smallest, because it endeavors
to reduce the queuing delay of the DUE rather than to raise the
data rate.

The effect of the proposed step for selecting the cache-
enabled vehicle for video delivery based on the frame-based
Lyapunov optimization can be seen by comparing its perfor-
mance with that of the “Nearest" and “Highest-Qual" schemes.
Because in the “Nearest" scheme the streaming user must as-
sociate with the nearest cache-enabled vehicle, the distance be-
tween the D2D transmitter and the BS is usually shorter than
that produced by the proposed algorithm and “Highest-Qual."
Therefore, the data rate of “Nearest" is smaller than that of the
proposed scheme and “Highest-Qual," because the interference
power that it introduces to the BS is large.

Similarly, since the distribution density of cache-enabled ve-
hicles that store the highest-quality content is considerably less
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Fig. 6. Delay occurrence rates vs. P0.

than that of vehicles that store the desired content at lower qual-
ities, “Highest-Qual" can provide a larger data rate for the CUE
than the proposed scheme. However, by considering the min-
imum data rate of the CUE (i.e., ηc), the proposed algorithm
adequately satisfies this constraint, whereas “Nearest" does not.
In addition, as already mentioned concerning the unstable learn-
ing process in Fig. 3, the data rate performances of all methods
that utilize deep reinforcement learning-based power allocation
are not monotonic; however, the fluctuation of their trends is not
very severe.

Fig. 6 shows the plots of playback delay incidences versus P0.
As explained previously, when there is no chunk in the queue
when the streaming service is being employed, playback delay
occurs. Therefore, the playback delay incidence reflects the ex-
tent of queue emptiness that occurs over the total playback time.
In Fig. 6, it can be seen that the “Genie-aided" scheme and the
scheme presented in [27] result in no delay. However, the other
power allocation algorithms do not result in delay. A compar-
ison of Figs. 5 and 6, reveals that the proposed algorithm en-
deavors to satisfy the constraint of the minimum data rate of the
CUE at the expense of its delay performance.

Among the comparison schemes that utilize power allocation
based on the deep reinforcement learning approach, “Nearest"
shows the lowest playback delay occurrence rates and the pro-
posed scheme shows the second lowest, whereas the “Highest-
Qual" scheme is expected to yield rather long buffering times.
As P0 increases, more chunks can be delivered to the streaming
user with the increased data rate of the D2D link; thus, the de-
lay occurrence rates of all the schemes decrease. “Nearest" in
particular provides the strongest channel condition to the D2D
link, and therefore, its delay performance is better than that of
the proposed and the “Highest-Qual" scheme.

In Fig. 7, we can see the time-average video qualities of all
the comparison schemes. Since “Genie-aided" scheme and the
scheme presented in [27] do not consider the decision on the
cache-enabled vehicle for video delivery, they are not shown
in this figure. Meanwhile, “Nearest" and “Highest-Qual" show
the trends of quality performance that differ from those of the
proposed scheme. Obviously, the “Highest-Qual" scheme gives
the best video quality. Because the “Nearest" scheme does not

17 18 19 20 21 22 23
Power (dBm)

37

37.5

38

38.5

39

39.5

A
v
g

. 
v
id

e
o

 q
u

a
lit

y
 m

e
a

s
u

re
 [

d
B

]

Proposed

Nearest

Highest-Qual

Fig. 7. Average video quality vs. P0.

pursue video quality enhancement, it is obvious that its perfor-
mance is the lowest among the techniques compared in Fig. 7.
The performance of the proposed algorithm is better than that of
“Nearest" and poorer than that of “Highest-Qual".

Overall, we can state that, although the proposed algorithm
results in a few playback delays, it can achieve both the min-
imum data rate of the CUE and quite good time-average video
quality. The scheme in [27] shows almost no playback delay, but
it cannot satisfy the minimum data rate constraint. Moreover, in
contrast to the method in [27], which does not consider wireless
caching and video delivery, the proposed algorithm can nicely
achieve average video quality. Similarly, “Nearest” provides a
better delay performance than the proposed scheme, but it also
cannot satisfy the minimum data rate constraint and achieve the
video quality as effectively as the proposed algorithm. Finally,
“Highest-Qual" can deliver the highest-quality streaming ser-
vice, but its delay performance is poorer than that of the pro-
posed scheme. Thus, we can conclude that the proposed algo-
rithm smooths the trade-off between the data rate of the CUE,
the playback delay incidence, and the time-average video qual-
ity.

VII. CONCLUSION AND FUTURE WORK

In this paper, a method for the joint optimization of three de-
cisions having different timescales in D2D underlaid cellular
and vehicular caching networks was proposed: 1) Association
with a cache-enabled vehicle to allow video delivery, 2) power
allocation for the DUE, and 3) power allocation for the CUE.
The proposed algorithm maximizes the long-term time averaged
video quality while limiting the playback delay and guarantee-
ing the data rate of the cellular user, given the spectrum reuse
policy. The decision on the cache-enabled vehicle to be used for
video delivery is achieved by using the frame-based Lyapunov
optimization theory under consideration of the interference sig-
nal from the CUE. The dynamic power allocations of both the
CUEs and DUEs are obtained by using the deep reinforcement
learning approach in the absence of knowledge of channel fast
fading. Our intensive simulation results verify that the proposed
algorithm effectively achieves a balanced trade-off between the
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data rate of the cellular user, the playback delay occurrence of
video streaming, and the average video quality. As future work,
extension to dynamic content delivery and routing optimization
in multi-hop wireless networks, e.g., vehicular ad hoc networks
(VANETs), is considerable.

REFERENCES
[1] “Cisco visual networking index: Global mobile data traffic fore-

cast update, 20162021 White Paper”, Cisco. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual-
networking-index-vni/mobile-white-paper-c11–520862.html

[2] E. Bastug, M. Bennis and M. Debbah, “Living on the edge: The role of
proactive caching in 5G wireless networks,” IEEE Commun. Mag., vol. 52,
no. 8, pp. 82–89, Aug. 2014.

[3] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Femtocaching
and device-to-device collaboration: A new architecture for wireless video
distribution,” IEEE Commun. Mag., vol. 51, no. 4, pp. 142–149, Apr. 2013.

[4] M. Ji, G. Caire and A. F. Molisch, “Wireless device-to-device caching
networks: Basic principles and system performance,” IEEE J. Sel. Areas
Commun., vol. 34, no. 1, pp. 176–189, Jan. 2016.

[5] S. H. Chae and W. Choi, “Caching placement in stochastic wireless
caching helper networks: Channel selection diversity via caching,” IEEE
Trans. Wireless Commun., vol. 15, no. 10, pp. 6626–6637, Oct. 2016.

[6] C. Yang, Y. Yao, Z. Chen and B. Xia, “Analysis on cache-enabled wireless
heterogeneous networks,” IEEE Trans. Wireless Commun., vol. 15, no. 1,
pp. 131–145, Jan. 2016.

[7] K. Poularakis, G. Iosifidis and L. Tassiulas, “Approximation algorithms
for mobile data caching in small cell networks,” IEEE Trans. Commun.,
vol. 62, no. 10, pp. 3665–3677, Oct. 2014.

[8] L. Zhang, M. Xiao, G. Wu and S. Li, “Efficient scheduling and power al-
location for D2D-assisted wireless caching networks,” IEEE Trans. Com-
mun., vol. 64, no. 6, pp. 2438–2452, June 2016.

[9] W. Jiang, G. Feng and S. Qin, “Optimal cooperative content caching and
delivery policy for heterogeneous cellular networks," IEEE Trans. Mobile
Comput., vol. 16, no. 5, pp. 1382–1393, May 2017.

[10] K. Poularakis, G. Iosifidis, A. Argyriou and L. Tassiulas, “Video delivery
over heterogeneous cellular networks: Optimizing cost and performance,”
in Proc. IEEE INFOCOM, 2014, pp. 1078-1086.

[11] M. Choi, J. Kim and J. Moon, “Wireless video caching and dynamic
streaming under differentiated quality requirements,” IEEE J. Sel. Areas
Commun., vol. 36, no. 6, pp. 1245–1257, June 2018.

[12] J. Kim, G. Caire, and A. F. Molisch, “Quality-aware streaming and
scheduling for device-to-device video delivery,” IEEE/ACM Trans. Netw.,
vol. 24, no. 4, pp. 2319—2331, Aug. 2016.

[13] M. Choi, A. No, M. Ji and J. Kim, “Markov decision policies for dynamic
video delivery in wireless caching networks," IEEE Trans. Wireless Com-
mun., vol. 18, no. 12, pp. 5705–5718, Dec. 2019.

[14] M. Choi, A. F. Molisch and J. Kim, “Joint distributed link scheduling and
power allocation for content delivery in wireless caching networks," IEEE
Trans. Wireless Commun., Early Access, Aug. 2020.

[15] D. Bethanabhotla, G. Caire, and M. J. Neely, “Adaptive video streaming
for wireless networks With multiple users and helpers,” IEEE Trans. Com-
mun., vol. 63, no. 1, pp. 268–285, Jan. 2015.

[16] T. Stockhammer, “Dynamic adaptive streaming over HTTP - standards and
design principles, Proc. ACM MMSys2011, Feb. 2011.

[17] S. O. Somuyiwa, A. György and D. Gündüz, “A reinforcement-learning
approach to proactive caching in wireless networks," IEEE J. Sel. Areas
Commun., vol. 36, no. 6, pp. 1331–1344, June 2018.

[18] W. Jiang, G. Feng, S. Qin, T. S. P. Yum and G. Cao, “Multi-agent rein-
forcement learning for efficient content caching in mobile D2D networks,"
IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1610–1622, Mar. 2019.

[19] V. Kirilin, A. Sundarrajan, S. Gorinsky and R. K. Sitaraman, “RL-cache:
Learning-based cache admission for content delivery," IEEE J. Sel. Areas
Commun., vol. 38, no. 10, pp. 2372–2385, Oct. 2020.

[20] S. Deng et al., “Dynamical resource allocation in edge for trustable
Internet-of-things systems: A reinforcement learning method," IEEE
Trans. Industrial Informatics, vol. 16, no. 9, pp. 6103–6113, Sept. 2020.

[21] L. Li et al., “Deep reinforcement learning approaches for content caching
in cache-enabled D2D networks," IEEE Internet Things J., vol. 7, no. 1,
pp. 544–557, Jan. 2020.

[22] G. Qiao, S. Leng, S. Maharjan, Y. Zhang and N. Ansari, “Deep reinforce-
ment learning for cooperative content caching in vehicular edge computing
and networks," IEEE Internet Things J., vol. 7, no. 1, pp. 247–257, Jan.
2020.

[23] Z. Nan, Y. Jia, Z. Chen and L. Liang, “Reinforcement-learning-based op-
timization for content delivery policy in cache-enabled HetNets," in Proc.
IEEE GLOBECOM, 2019.

[24] N. Lee, X. Lin, J. G. Andrews and R. W. Heath, “Power control for D2D
underlaid cellular networks: Modeling, algorithms, and analysis," IEEE J.
Sel. Areas Commun., vol. 33, no. 1, pp. 1–13, Jan. 2015.

[25] X. Li, R. Shankaran, M. A. Orgun, G. Fang and Y. Xu, “Resource alloca-
tion for underlay D2D communication With proportional fairness," IEEE
Trans. Veh. Technol., vol. 67, no. 7, pp. 6244–6258, July 2018.

[26] Y. Ren, F. Liu, Z. Liu, C. Wang, and Y. Ji, “Power control in D2D-based
vehicular communication networks," IEEE Trans. Veh. Technol., vol. 64,
no. 12, pp. 5547–5562, Dec. 2015.

[27] L. Liang, G. Y. Li and W. Xu, “Resource allocation for D2D-enabled
vehicular communications," IEEE Trans. Commun., vol. 65, no. 7,
pp. 3186–3197, July 2017.

[28] P. Sun, K. G. Shin, H. Zhang and L. He, “Transmit power control for D2D-
underlaid cellular networks based on statistical features," IEEE Trans. Veh.
Technol., vol. 66, no. 5, pp. 4110–4119, May 2017.

[29] N. Cheng et al., “Performance analysis of vehicular device-to-device
underlay communication," IEEE Trans. Veh. Technol., vol. 66, no. 6,
pp. 5409–5421, June 2017.

[30] W. Lee, M. Kim and D. Cho, “Deep learning based transmit power control
in underlaid device-to-device communication," IEEE Systems J., vol. 13,
no. 3, pp. 2551–2554, Sept. 2019.

[31] I. Budhiraja, N. Kumar and S. Tyagi, “Deep reinforcement learning based
proportional fair scheduling control scheme for underlay D2D communi-
cation," IEEE Internet Things J., vol. 9, no. 5, pp. 3143–3156, Mar. 2021.

[32] Y. Liu, Z. Tan, and X. Chen, “Modeling the channel time variation
using high-order-motion model,” IEEE Commun. Lett., vol. 15, no. 3,
pp. 275–277, Mar. 2011.

[33] C. Xu, C. Gao, Z. Zhou, Z. Chang and Y. Jia, “Social network-based con-
tent delivery in device-to-device underlay cellular networks using match-
ing theory," IEEE Access, vol. 5, pp. 924–937, Nov. 2017.

[34] Y. Wang, X. Tao, X. Zhang and Y. Gu, “Cooperative caching placement
in cache-enabled D2D underlaid cellular network," IEEE Commun. Lett.,
vol. 21, no. 5, pp. 1151–1154, May 2017.

[35] L. Shi, L. Zhao, G. Zheng, Z. Han and Y. Ye, “Incentive design for cache-
enabled D2D underlaid cellular networks using stackelberg game," IEEE
Trans. Veh. Technol., vol. 68, no. 1, pp. 765–779, Jan. 2019.

[36] M. J. Neely and S. Supittayapornpong, “Dynamic Markov decision poli-
cies for delay constrained wireless scheduling," IEEE Trans. Automatic
Control, vol. 58, no. 8, pp. 1948–1961, Aug. 2013.

[37] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in cel-
lular networks,” in Proc. IEEE ICC, 2015.

[38] Dimitri Bertsekas and Robert G. Gallager, Data networks (2nd edition)
Prentice Hall, 1992.

[39] Michael J. Neely, “Stochastic network optimization with application to
communication and queueing systems”, Morgan & Claypool Synthesis
Lectures Commun. Netw., vol. 3, no. 1, pp. 1–211, 2010.

[40] X. Glorot and Y. Bengio, “Understanding the difficulty of tranining deep
feedforward neural networks," in Proc. AISTATS, 2010.

[41] H. Gao, C. Liu, Y. Li and X. Yang, “V2VR: Reliable hybrid-network-
oriented V2V data transmission and routing considering RSUs and con-
nectivity probability," IEEE Trans. Intelligent Trans. Sys., Early Access,
Apr. 2020.

Minseok Choi received the B.S., M.S., and Ph.D.
degrees from the School of Electrical Engineering,
Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in 2011, 2013, and
2018, respectively. He was a Visiting Postdoctoral Re-
searcher in electrical and computer engineering with
the University of Southern California (USC), Los An-
geles, CA, USA, and a Research Professor in electrical
engineering with Korea University, Seoul, South Ko-
rea. He has been an Assistant Professor with Jeju Na-
tional University, Jeju, South Korea, since 2020. His

research interests include wireless caching networks, stochastic network opti-
mization, non-orthogonal multiple access, and 5G networks.



CHOI et al.: DYNAMIC VIDEO DELIVERY USING DEEP REINFORCEMENT ... 127

Myungjae Shin received the B.S. and M.S. degrees
in Computer Science and Engineering (summa cum
laude) from the Chung-Ang University (CAU), Seoul,
South Korea, in 2018 and 2020, respectively. From
March to August 2020, he was an AI researcher at
Seoul National University Hospital (SNUH), Seoul,
South Korea. He is an AI Researcher at Korea Uni-
versity, working with Prof. Joongheon Kim. His re-
search interests include deep reinforcement learning,
machine learning, and robotics. Mr. Shin was the re-
cipient of the National Science & Technology Schol-

arship (2016–2017).

Joongheon Kim (M’06–SM’18) has been with the
School of Electrical Engineering, Korea University,
Seoul, Korea, since 2019, where he is currently an
Assistant Professor. He received the B.S. and M.S.
degrees in Computer Science and Engineering from
Korea University, Seoul, Korea, in 2004 and 2006, re-
spectively; and the Ph.D. degree in Computer Science
from the University of Southern California (USC),
Los Angeles, CA, USA, in 2014. Before joining Ko-
rea University, he was with LG Electronics (Seoul,
Korea, 2006–2009), InterDigital (San Diego, CA,

USA, 2012), Intel Corporation (Santa Clara in Silicon Valley, CA, USA, 2013–
2016), and Chung-Ang University (Seoul, Korea, 2016–2019). He serves as an
associate editor for IEEE TRANS. VEHICULAR TECHNOLOGY. He interna-
tionally published more than 80 journals, 110 conference papers, and 6 book
chapters. He also holds more than 50 granted patents. He was a recipient of An-
nenberg Graduate Fellowship with his Ph.D. admission from USC (2009), Intel
Corporation Next Generation and Standards (NGS) Division Recognition Award
(2015), Haedong Young Scholar Award by the Korea Institute of Communica-
tion and Information Sciences (KICS) (2018), IEEE Vehicular Technology So-
ciety (VTS) Seoul Chapter Award (2019), Outstanding Contribution Award by
KICS (2019), Gold Paper Award from IEEE Seoul Section Student Paper Con-
test (2019), and IEEE SYSTEMS JOURNAL Best Paper Award (2020).


