
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020 493

An Efficient Defense Method For Compromised
Switch and Middlebox-Bypass Attacks

In Service Function Chaining
Nguyen Canh Thang and Minho Park

Abstract: Service function chaining (SFC) has a special and power-
ful ability to define an ordered list of required network services as a
virtual chain and makes a network more flexible and manageable.
However, there are many vulnerabilities to SFC, such as compro-
mised switches and middlebox-bypass attacks, which can damage
the operation and security of the network. In this study, we propose
a mechanism that not only detects both middlebox-bypass attacks
and compromised switch attacks in multiple service function chains
scenario but also prevents such attacks and protects the network.
The proposed mechanism uses both probe-based and statistics-
based methods to handle the probe packets and collect statistics
from middleboxes for detecting any attacks in SFC. After detec-
tion, the mechanism changes the network topology to eliminate the
compromised switches, while meeting the initial requirements of
the service chains. By combining probe-based and statistics-based
methods, our proposal overcomes the disadvantages of other pro-
posed solutions and brings about a robust protection to SFC. As
the experimental results indicate, the proposed mechanism is an
effective and relevant approach for detecting and preventing com-
promised switches and middlebox-bypass attacks in SFC.

Index Terms: Compromised switches, middlebox-bypass attack,
service function chaining (SFC).

I. INTRODUCTION

In recent years, service function chaining (SFC) has emerged
with the robust development of software defined networking
(SDN) and network function virtualization (NFV). SFC de-
fines ordered virtual chains of service functions (e.g., firewalls,
load balancing, and network address translation) and steers the
network traffic through them, leading to many different bene-
fits of a virtualized software-defined infrastructure [1]–[3]. Ser-
vice functions are provided by specialized network entities
called middleboxes. One middlebox is commonly connected to
a switch, and SFC connects switches to make a chain with the
required services. Middleboxes are responsible for packet pro-

Manuscript received February 24, 2020; revised September 20, 2020; ap-
proved for publication by B. Byunghoon Kang, Division III Editor, October 18,
2020.

This work was partly supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2020R1F1A1076795), and by Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea government (MSIT)
(No.2018-0-00254, SDN security technology development).

N. C. Thang is with the Department of Information Communication
Convergence Technology, Soongsil University, Seoul, South Korea, email:
nct@soongsil.ac.kr.

M. Park is with the School of Electronic Engineering, Soongsil University,
Seoul, South Korea, email: mhp@ssu.ac.kr

M. Park is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2020.000027

cessing and packet forwarding to the attached switches in the
service chain [4]–[8].

A. Problem Statement

Despite the robust advantages of SFC, some drawbacks may
destroy the operation of the entire network. A compromised
switch is one of the most serious security vulnerabilities, affect-
ing the traversing packets in SFC. The problems of SFC in terms
of compromised switches can be listed as follows:
• The switch is one of the most important components in SFC,

which has the task of forwarding packets between entities
within the network. Attackers can exploit this component to
create many types of attacks to destroy the network opera-
tion or steal the network information for other attacks in the
future. Compromised switches can be controlled to drop, du-
plicate, incorrectly forward, or modify packets without noti-
fying the controller. Packets and all network information can
be sent to attackers, and any of these problems can breach the
SFC policy.

• K. Bu et al.–FlowCloak [9] identified the middlebox-bypass
attack, which occur when compromised switches forward
packets to the next-hop middlebox in the SFC without send-
ing them to the attached middlebox. This means that packets
are not processed by all service functions inside the middle-
boxes, and thus the original goal of SFC is not met. Attackers,
therefore, can bypass some important service functions, e.g.,
a firewall or an IDS, and conduct more attacks.
Based on the above problems, we can observe that compro-

mised switches cause serious consequences to SFC. Besides, to
the best of our knowledge, there have been no other studies on
effectively solving both types of problems.

B. Our Proposal

To resolve the above issues related to compromised switches
in the SFC scenario, we propose a mechanism that can simul-
taneously detect compromised switch and middlebox-bypass
attacks in multiple SFC scenario. The proposed scheme uses
a hybrid of probe-based and statistics-based methods, which
overcomes the disadvantages of other solutions. A probe-based
method uses probe packets to investigate the operations of the
network components in SFC. Middleboxes are programmed to
handle a random pre-assigned key in a probe packet and trans-
mit it back to the attached switch. If the next-hop middlebox
defines an incorrectly handled key verification, which means
a middlebox-bypass attack has occurred, an alarm is triggered.
Statistics-based methods help the controller find irregularities by
monitoring all information on the packets that pass through the

1229-2370/19/$10.00 © 2020 KICS

494 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

1

Source
host

Destination
host

Firewall IDS Load balancer

S1 S2 S3

Fig. 1. Simple service function chain architecture example.

middlebox (e.g., the packet type, packet size, processing time,
and the number of packets). By combining two methods, we
can protect SFC from the compromised switch and middlebox-
bypass attacks.

C. Contributions

In summary, the contributions of our research are described
as follows:
• We describe the existing security vulnerabilities for a

traversing packet in SFC, that is, compromised switch and
middlebox-bypass attacks. We also discuss the disadvantages
of the current solutions for such vulnerabilities.

• We propose a mechanism that can detect both middlebox-
bypass attacks and other compromised switch attacks in
multiple SFC scenario. The proposed mechanism combines
probe-based and statistics-based methods to resolve the is-
sues inherent to other current solutions.

• Additionally, we describe the experimental studies conducted
and evaluate the performance and efficiency of the proposed
mechanism.
The rest of this research is organized as follows. Section II

provides brief introductions of SFC, compromised switches,
middleboxes, and middlebox-bypass attacks and their vulner-
abilities. Section III presents several previous studies related to
our research. A detailed analysis of our system is described in
Section IV, and the system designs are shown in Sections V
and VI. Section VII focuses on the detailed experiments and
evaluation of our scheme. Finally, some concluding remarks and
areas of future research are given in Section VIII.

II. BACKGROUND KNOWLEDGE

A. Service Function Chaining

SFC is a network function that provides the ability to de-
fine a chain of service functions and dynamically steer the net-
work traffic through various service function paths [1]. SFC en-
ables carriers to benefit from a virtualized software-defined in-
frastructure, offering the flexible management of specific ser-
vice/application traffic. It provides solutions for classifying net-
work flows and enforcing policies along the flow routes accord-
ing to the service requirements and considering the availability
of the network [2]. A simple service function chain architecture
is depicted in Fig. 1. Packets in this chain should follow this
path: SourceHost−S1−Firewall−S1−S2− IDS−S2−
S3−LB−S3−DestinationHost, to create a simple function
chain.

SFC provides flexible network management by determining

an ordered list of abstract service functions. Network policies
typically require packets to go through a sequence of service
functions. Achieving the benefits from such service functions
and ensuring that the network traffic is directed through the de-
sired sequence of service functions typically requires significant
manual effort and operator expertise. Using SFC, the entire pro-
cess becomes easier and more convenient. Service functions
(e.g., network address translation, firewall, and load balancing)
are traditionally deployed on dedicated hardware components,
which are described in subsection II.C.

SFC makes use of a technology called software-defined net-
working (SDN). Similar to other software-defined architectures,
SFC architectures are also vulnerable to security attacks. If a
virtualized function is attacked, the complete service chain may
collapse. Although there are already many solutions for protect-
ing software components against attacks, such solutions must
be revisited for application to SFC scenarios. Many potential
security challenges remain as the future directions for SFC secu-
rity, such as how to defend against distributed denial-of-service
(DDoS) attacks and how to detect compromised components
and mitigate their impact [3]. The next subsections describe two
of the most serious problems to SFC security.

B. Compromised Switch Attacks

A compromised switch attack is a serious issue for an SDN
in general and an SFC in particular. M. Antikainen [11] and
P. Chi [12] defined several types of compromised switch attacks,
such as packet dropping, packet duplication, packet manipula-
tion, incorrect forwarding, eavesdropping, weight adjustments,
man-in-the-middle attacks, state-spoofing, and control-channel
hijacking. These attacks occur when compromised switches
conduct certain attack actions in addition to forwarding the
packets as the commands from the controllers. By controlling
the compromised switches to apply one or all of these attacks,
attackers can cause serious problems to the entire network.

For example, as shown in Fig. 2, when a compromised switch
receives a packet, it can drop the packet (packet dropping at-
tack), forward the packet multiple times to the next-hop switches
(packet duplicating attack), modify the packet (packet manipu-
lation attack), or even send that packet to an attacker or other
switches outside of the chain (incorrect the chain (incorrect for-
warding, eavesdropping, or man-in-the-middle attacks). Such
attacks can ruin the operation of both the SFC and the network
because one switch typically belongs to multiple SFC chains,
which means that a compromised switch can connect to many
other network entities. Furthermore, if there are other compro-
mised switches in the network and if they join together, they can
spoof information and breach all of the detection mechanisms.

C. Middlebox And Middlebox-bypass Attack

Middleboxes (such as firewalls, NATs, and load balancers)
have grown into a major part of modern network infrastruc-
ture [5]. A middlebox can be defined as any intermediary net-
work device applying functions other than standard functions of
an IP forwarding between two end hosts [6]. Network deploy-
ments now use the deployment of middleboxes to handle chang-
ing applications, workloads, and policy requirements. Surveys

THANG et al.: AN EFFICIENT DEFENSE METHOD FOR COMPROMISED ... 495
2

Packet manipulating

A B

Incorrect forwarding, eavesdropping,
man-in-the-middle...

Packet dropping

100% 50%

Packet duplicating

100% 200%

Fig. 2. Attack model using the compromised switch. The compromised switch
can conduct duplication, packet manipulation, incorrect forwarding, eaves-
dropping, or man-in-the-middle attacks.

show that middleboxes play a critical role in many network set-
tings [7].

Middleboxes offer valuable benefits, such as improved se-
curity, improved performance, and policy compliance capabili-
ties [8]. Middleboxes classify, filter, and shape the traffic, there-
fore interfering with the performance of the application, which
can be categorized into two main types: security enhancements
(enhancing the visibility of network traffic and enabling the en-
forcement of security policies) and performance enhancements
(through traffic shaping, caching, and transparent proxying) [5].
However, middleboxes are also widely recognized to cause sig-
nificant problems including a high cost, inflexibility, and com-
plex management requirements, leading to high operational ex-
penses and administrative issues. Because of the complex and
specialized processing, as well as variations in management
tools across devices and vendors, there are many vulnerabilities
with middleboxes such as deployment, management, overloads,
and failures [8].

A middlebox-bypass attack is a new vulnerability proposed
by FlowCloak [9], which is another special type of incorrect
forwarding attack through compromised switches. This attack
occurs when a compromised switch does not forward packets
to its attached middlebox. A simple example of a middlebox-
bypass attack is shown in Fig. 3. Here, S1 is connected to im-
portant service in the SFC chain, which in this case is a Firewall
preventing harmful packets from coming inside the chain. In the
normal case, the packets are forwarded from S1 to Firewall and
comeback to S1. However, in the middlebox-bypass attack case,
attackers try to bypass the Firewall by control S1 to send packets
to S2 without forwarding to its attached middlebox (Firewall).
This attack breaches the policy of the SFC and the middleboxes
and requires the packets to pass through a certain chain of ser-
vices within the middleboxes.

III. RELATED WORKS

A. Compromised Switch Attacks

Various countermeasures have been proposed to protect SFC
and SDN from compromised switches [11] – [24]. There are two
main categories of such a solution: probe-based and statistics-
based method. With a probe-based method, probe packets are
sent to each flow or specific switch, and the path and integrity

3

Packet in

Firewall

S1 S2

Normal case

Packet in

Firewall

S1 S2

Attack case

X

Fig. 3. Example of the middlebox-bypass attack.

of those packets are then checked. M. Antikainen [11] showed
how to exploit compromised OpenFlow switches to attack SDN
networks. P. Chi [12] defined some attack models through com-
promised switches and designed a probe-based detection mech-
anism to find these compromised devices. Y. Chiu [13] designed
a method to detect disobedient forwarding in the flow table by
installing new flow entries, sending probe packets, and check-
ing the path of probe packets. Y. Ke [14] proposed SDNProbe,
a lightweight SDN application that sends a provably minimized
number of probe packets to pinpoint malfunctioning switches.
C.-T. Kuo [15] addressed the SDN security challenge of com-
promised switches (single and collusion attack models) and pro-
posed detection mechanisms by adding ghost switches into the
network. N.Y. Vijayvergiya [16] proposed several algorithms to
determine the compromised switch and the collaboration be-
tween them. Y. Zhang [17] presents a novel troubleshooting
tool that can discover the forwarding path taken by any pack-
ets. However, the probe-based method can be disabled if com-
promised switches can recognize the probe packets and forward
them as commanded.

With a statistics-based method, all information should be col-
lected from the data plane (e.g., the number of transmitted / re-
ceived / dropped packets, the packet type, the packet size, and
the arrival/departure times) and compared to determine the com-
promised switches. T. Chao et al. [18] explored practical solu-
tions for localizing and mitigating malicious switches by three
techniques: active probing, statistics checking and packet ob-
fuscation. A. Kamisiński proposed FlowMon [19], a methodol-
ogy for SDN controllers to detect malicious switches in SDN
networks by the statistics-based method. P. Zhang et al. [20]
presented FOCES, a network-wide forwarding anomaly detec-
tion method in SDN, which can check the forwarding behav-
iors of all flows in the network simultaneously. K. Zhang [21]
proposed a proactive detection mechanism to detect MITM at-
tacks in SDN by collecting all information of each flow in the
network and checking if any flow satisfies the traffic character-
istic of MITM attack. H. Zhou et al. [22] hires a backup con-
troller to collect and compare the information of network events
from master controllers and switches. R. A. Eichelberger [23]
tries to track every packet, notify the controller every time a
packet comes through a switch in SFC. Y. Qiu [24] defines and
checks the key information of SFC policy, collect the flow rule
of network and compare the relations of flow rules and flow pat-
tern. The statistics-based method can find out the compromised
switches, but it does not support real-time detection because it

496 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

Table 1. Compromised switch attack solutions based on category

References Solution type
Probe-based Statistics-based

[12] X
[13] X
[14] X
[15] X
[16] X
[17] X
[18] X X
[19] X
[20] X
[21] X
[22] X
[23] X
[24] X
[25] X X

needs time to gather data and only works after packets are for-
warded. Moreover, packets can be forwarded without being sent
to middleboxes, which bring us to the middlebox-bypass attack
in the next subsection. In our previous work, we also use the
hybrid of probe-based and statistics-based method, but only for
single service function chain [25]. The compromised switches
attack solutions based on categories are shown in Table 1.

B. Middlebox-Bypass Attack

There are several solutions to defeat this type of at-
tack [9], [10]. With such solutions, tags are added to unused
packet header fields to track the process on the middleboxes.
When a middlebox receives a packet, it needs to check these
special tags to make sure the received packet was correctly pro-
cessed by the previous middlebox within the chain, and that the
packet was forwarded back to the switch. However, this method
can only work when compromised switches only bypass the
middleboxes. In other attack cases of compromised switches
(for example, if a packet is dropped), the next-hop middlebox
cannot verify the tags, which interferes with the detection mech-
anism. If a packet is duplicated, the tag verification process is
still correct, although the number of packets inside the SFC is
increased numerous times. Besides, adding tags to every packet
and processing them can cause delays and overhead for the net-
work. Moreover, this mechanism requires the egress switches to
have the ability to untag the packet before sending it to the end
hosts. In SFC, every switch can be an ingress or egress switch
of a service chain, which means every switch must be modified
to handle this task. An egress switch can also be compromised,
which cannot be detected through this mechanism. The tagging
scheme has been said to be lightweight and effective, although it
needs to be integrated with other solutions to handle other com-
promised switch attacks.

Recognizing the need to resolve SFC vulnerabilities based on
the related studies above, we propose an approach to detect both
the middlebox-bypass attacks and all other compromised switch
attacks.

IV. SYSTEM OVERVIEW

In this section, we first analyze the objectives of our mech-
anism and then describe how the system is designed using the
main components. The detailed operating procedures are de-
scribed in Section V and VI.

A. Objectives

To resolve the mentioned SFC vulnerabilities in Section II,
our mechanism needs to achieve the following objectives:
• Efficiency: The mechanism needs to efficiently detect both a

middlebox-bypass attack and all compromised switch attacks
mentioned in Section II that are not fully detected by the other
solutions.

• Effectiveness: Per-packet checking, as mentioned earlier, can
be a good approach for real-time checking but may cause
an overhead in the network. Moreover, per-packet checking
needs an egress switch to modify the packet back to the orig-
inal state before sending it to the end host, which requires
another technique for this switch [9]. We decided to use the
per-flow checking (a probe-based method) to minimize the
overhead, and thus the middleboxes only have to check the
probe packets.

• Security: Is one of the most essential requirements for the
detection process. If an attacker can determine the detection
method, the mechanism will be compromised. The combina-
tion of multiple algorithms can protect the detection process
from attackers.

• High Performance: Packet loss can inevitably become a
challenge if the packet processing procedure is insufficiently
fast. One of the solutions is to use a temporary buffer to store
the packets before processing, although this can be difficult
with some middleboxes that do not have sufficient physical
resources. The packet processing procedure needs to be fast
and effective. With our mechanism, only probe packets with
a key are analyzed, and other packets are only checked to ob-
tain the necessary information, which ensures a fast process-
ing speed. Although this may not support real-time detection,
if we increase the number of probe packets, we can detect ab-
normal actions more quickly.

• Applicability: The detection procedures should be suffi-
ciently simple to apply in practice. We only set up the detec-
tion programs on controllers and middleboxes, where other
administrative programs and service functions are installed.
By contrast, in a real system, the switches normally have lim-
ited resources and do not support additional detection func-
tions other than packet forwarding.
To satisfy the above objectives, there are a few assumptions

that we should rely on when designing the system. First, we
must exclude cases in which there are collaborations between
compromised switches. Although a few solutions have been pro-
posed to detect this type of attack, they have a high delay and
low accuracy or try to prevent collaboration from the begin-
ning [14]–[16]. Most other solutions also try to avoid such col-
laborations because it is difficult to detect instances in which
compromised switches can help each other spoof the statistics
and share information. Finally, middleboxes, controllers, and the
connections between them need to be trustworthy. If attackers
can access the middleboxes or controllers, the pre-assigned key

THANG et al.: AN EFFICIENT DEFENSE METHOD FOR COMPROMISED ... 497

can be exploited and all of the detection and prevention mecha-
nisms will be destroyed.

B. Methodology

Our mechanism detects compromised switch and middlebox-
bypass attacks by sending probe packets for each SFC chain
(probe-based method) and continuously collects information
from the middleboxes (statistical-based method). Middleboxes
are programmed to handle packets and alert the controller when-
ever a probe packet is received without a correctly processed
key, which is caused by a middlebox-bypass attack. By moni-
toring all information of the packets that also pass through the
middlebox, the controller can find other compromised switch at-
tacks. We only modify the controller and middleboxes to handle
our developed algorithms and put the operation of switches out
of our work because of the potential for compromise and the
lack of resources on such devices. The task blocks of the system
are shown in Fig. 4, and can be described as follows:
• Topology setup: Sets up network topology based on the re-

quirements of applications and the Statistics Analyzing Mod-
ule.

• Key sets generation: Creates and assigns special key sets for
each middlebox.

• Key verification: Detects the middlebox-bypass attacks by
checking the key in probe packets.

• Statistics generation: Prepares statistics of packets that come
through middleboxes and sends them to the controller to find
out other attacks by compromised switches.

• Statistics analysis: Analyze statistics from middleboxes to
find out other attacks by compromised switches, and send a
request to the Controller Module to change topology.
The key sets generation and key verification modules be-

long to a probe-based method, which can be used to detect
middlebox-bypass attacks. The statistics generation and statis-
tical analysis are used in statistics-based methods and can find
other compromised switch attacks. By combining both probe-
based and statistics-based methods, we can take advantage of
the strength of each method and solve the problems inherent to
the other proposals. A summary comparing our proposal with
other current solutions is provided in Table 2.

C. System Architecture

We designed our system for use under two scenarios: sin-
gle and multiple service function chains. The operations of the
system in a single service function chain are described in Sec-
tion V, and Section VI describes the operations for multiple ser-
vice function chains. The general system architecture is shown
in Fig. 5. The system under both scenarios has the same three
main components as follows:

C.1 Controller

Consists of three modules, which is depicted in Fig. 6. We
only consider the case of a single controller in the system. Multi-
ple controllers will require synchronization between controllers,
which is not the main goal of our research.
• Controller module: Defines the service function chains in the

network. This module installs the flow rules on switches as
well as connects them to middleboxes and sends the updated

4

Key sets
generation

Statistics
analysis

Statistics
generation

Key
verification

Controller’s operation

Middlebox’s operation

Topology
setup

Fig. 4. Tasking blocks in the system.
5

Controller

Source
host

Destination
host

S1 S2 Sn

Controller <-> Switches

Probe packet path

Controller <-> Middleboxes

…

Group of
middleboxes

Fig. 5. General system architecture. Middleboxes with the same service func-
tion can be grouped to perform load balancing function, which prevents mid-
dleboxes from being overwhelmed.

network topology to Key Generator Module and Statistics
Analyzing Module.

• Key generator module: Based on the most up-to-date net-
work topology, this module creates and assigns new key sets
to middleboxes. These key sets are used to check the integrity
of probe packets in the service chains.

• Statistics analyzing module: Based on the most up-to-date
network topology, this module analyzes statistics from mid-
dleboxes to find out abnormal actions and send a request to
Controller Module to set up new topology to protect SFC if
an attack is detected.

498 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

Table 2. Comparison between our proposal and current solutions

Methods Current solutions Our proposal

Probe-based
method

For compromised
switch attacks

- Can be disabled if compromised
switches can recognize the probe packets.

- Adds special keys into unused packet
header fields, and therefore only middlebox
can recognize the probe packets.

For middlebox-
bypass attack

- Can only detect middlebox-bypass attack.
- Causes delay and overhead for the network
by adding keys to every packet.
- Needs to modify egress switches to have
the ability of untagging packets.

- Uses statistics-based method to detect
other compromised switch attacks.
- Adds keys only upon probe packet
and processes only probe packets.
- Only modifies the middlebox,
which has better computing resources
than switches.

Statistics-based
method

For compromised
switch attacks

- Does not support real-time detection.
- Cannot detect middlebox-bypass attack.

- Uses probe-based method to
support real-time detection and
detect middlebox-bypass attacks.6

Key generator
module

Controller module <-> Switches

Other modules <-> Middleboxes

Statistics analyzing
module

Controller

Controller
module

MiddleboxesSwitches

Service function chains

Fig. 6. Modules in the controller.

C.2 Switches

Follow the command from the controller to connect middle-
boxes to make service function chains.

C.3 Middleboxes

Besides the main service functions of each middlebox, they
are programmed to check every received packet from switches,
record the packet information to make statistics, process the
probe packet, and send statistics to the controller. Middle-
boxes with the same service function can be grouped to perform
load balancing function, which prevents middleboxes from over-
whelmed.

In the next sections, we will propose more details about the
operations of the above tasks in the view of the controller and
middleboxes.

V. SYSTEM DESIGN IN
SINGLE SERVICE FUNCTION CHAIN

The system architecture in the single service function chain
scenario is depicted in Fig. 7. For ease of understanding, we

assume our system with a single controller and a single service
function chain (contains hosts, switches, and middleboxes, each
middlebox connects to one switch). The detailed operating algo-
rithms of the controller and middleboxes are depicted in Figs. 8
and 9 respectively.

A. Controller’s Operation

A.1 Key Sets Generation

Take the service function chain in Fig. 7 as an example. The
packet path is SourceHost − S1 −Middlebox1 − S1 − ... −
Sn − Middleboxn − Sn − DestinationHost. If we set the
chain so that packets are sent from the controller and come back
to the controller, compromised switches can realize this and op-
erate like normal switches. After the Controller Module set up
the above service chain, it sends the updated topology to the
key generator module and statistics analyzing module. The key
generator module creates and assigns new key sets to each mid-
dlebox randomly, as shown in Table 3. These key sets can be
used to check the integrity of probe packets in the service chains.
Each key set contains many keys, and each key is the hash result
of the compatible key in the previous set. For example, the key
can be calculated as in (1). We use a 10-bit key which is also the
same condition with FlowCloak [9]. This research claimed that
the success rate of random guessing under 0.1%. We put our
key into the unused header field of the packet, which has limited
capacity. If we use longer keys (e.g, 128 or 256-bit), we need
to put it in another part of the packet (e.g, payload), which can
bring other risks for security. Longer key also needs a longer
time to be processed, which can cause more delay in the packet
processing procedure.

key21 = hash(key11)

key31 = hash(key21).
(1)

After a certain period, we refresh the key sets by re-executing
the above procedures. By creating new key sets and randomly
assign different keys for each probe packet in the same service
chain, we reduce the probability that an attacker can guess the
exact key and spoof the probe packet. If attackers can do that,
the possibility they can spoof two probe packets continuously
is nearly zero, except the case that they know our key set and

THANG et al.: AN EFFICIENT DEFENSE METHOD FOR COMPROMISED ... 4997

Controller

Source
host

Destination
host

Middlebox1 Middlebox2 Middleboxn

S1 S2 Sn

Controller <-> Switches

Probe packet path

Controller <-> Middleboxes

Middlebox3

S3

…

Key set K2

{Key21, Key22

,…}

Key set K3

{Key31, Key32

,…}

Probe packet

Processed key

Assigned key set

Fig. 7. System architecture in a single service function chain. At first, the middlebox receives a key set. When receiving a new probe packet, the middlebox checks
the integrity of the packet, then modifies the key in the probe packet and sends the packet to the next-hop middlebox. The middlebox also prepares the statistics
and send them to the controller.

Table 3. Key set for middleboxes

Key set K1 Key set K2 Key set K3 ... Key set Kn

Key11 Key21 Key31 ... Keyn1
Key12 Key22 Key32 ... Keyn2
Key13 Key23 Key33 ... Keyn3

...

Topology setup

8

Set up new
network topology

Create new
key sets

Assign new key
sets to each
middlebox

Timeout?

Send new
topology to

other modules

Wait
Request to
modify the
topology

Analyse
statistics

Found
attack?

Key sets
generation

Statistics
analysis

Statistics
from

middleboxes

Y
N

Y

N

Fig. 8. Operating algorithms of the controller are depicted in three blocks:
Topology Setup, Key Sets Generation and Statistics Analysis.

random key order. Furthermore, the numerical order and the key
value of the probe packet are also monitored by the controller,
which restricts other guessing methods.

A.2 Statistics Analysis

After receiving the statistics from middleboxes and the most
up-to-date network topology from the key generator module, the
statistics analyzing module analyzes and compares this informa-
tion to find out the abnormal actions. If an attack is detected, this
module requests other modules to set up a new network topol-
ogy and create new key sets to protect the network. The detailed
operations are described in Section VI.

9

New packet
from switch

Correct
Key?

Prepare
statistics

about packet

Probe
packet?

N

Send correct
probe packet

to switch

Set alert in
statistics

Send statistics
to controller

Create
new key

Y

Y N

Key verification Statistics generation

Drop packet

Forward to
other service
functions in
middlebox

Fig. 9. Operating algorithms of middleboxes are depicted in two blocks: Key
Verification and Statistics Generation.

B. Middlebox’s Operation

B.1 Key Verification

Take the service function chain in Fig. 7 as an example again.
When Middlebox2 receives a new packet from its attached
switch S2, it first checks if this is the probe packet or normal
packet. We use an unused bit in the header to help middleboxes
recognizes the probe packet. As mentioned in Section IV.A, only
probe packets are processed by middleboxes to ensure the effec-
tiveness and high performance of the system. If this is a probe
packet, Middlebox2 needs to check whether it was processed
correctly or not by referring to the key set. For example, after
receiving a probe packet with the key named keyx, Middlebox2

defines the integrity of this packet by checking whether the
keyx is in the key set K2 or not. If this probe packet was cor-
rectly processed, Middlebox2 will replace the keyx by keyy ,
which is calculated by hash function as in (2). After this process,
Middlebox2 forwards the probe packet back to S2 to transfer to
the next-hop middlebox (Middlebox3). The Middlebox3 now
needs to check this probe packet with the same procedure as
above. If the probe packet is not correct, which means this can
be a middlebox-bypass attack, Middlebox3 drops the packet
and triggers an alarm to the controller by creating an alert in

500 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

the statistics.

keyy = hash(keyx). (2)

In practice, we do not need an additional method to check the
integrity of the last switch in the chain, while FlowCloak [9]
needs another technique on egress switches. As mentioned
above in subsection III.A, a switch typically belongs to multi-
ple SFC chains, which means that it can be checked through the
operation of other chains. In the case of only one chain as the
example above, we run a program on the Destination Host to
check the probe packets from Sn just like other middleboxes.

B.2 Statistics Generation

For other packet types, the parameters that are shown in Ta-
ble 4 are recorded to make the statistics report. Those pack-
ets are then forwarded to other service functions in the mid-
dleboxes. The middlebox sends the statistics report to the con-
troller, deleted the statistics, and waits for new packets.

VI. SYSTEM DESIGN IN MULTIPLE SERVICE
FUNCTION CHAINS

The operation of each middlebox in multiple service func-
tion chains is the same as in a single service function chain. In
the controller, to detect other compromised switch attacks (e.g.,
packet dropping, packet duplication, packet manipulation, and
a weight adjustment), the statistics processing module applies a
statistical analysis function, in which it always listens to statis-
tics sent from the middleboxes. By comparing these statistics
between middleboxes and checking the alert signal, this mod-
ule can detect the compromised switches and middlebox-bypass
attacks.

Take the SFC chain in Fig. 10 as an example. For the chain
number 1, the packet path is ...−S1−Middlebox2−S1−S2−
Middlebox5−S2− If Middlebox2 reports that it forwarded
100 packets to S1 (75 normal packets and 25 probe packets)
in a period (calculated by the controller) so that Middlebox5

should report that it also received 100 packets with the same
number of normal and probe packets in the same period. We set
several thresholds for the difference of statistics (because of the
latency for packet processing by other service functions in the
middlebox, transmission delay or other reasons). For example,
if the threshold for the number of received packets is 5%, this
means that Middlebox5 should receive at least 95 or at most 105
packets in the same period. If Middlebox5’s report shows that it
only gets 90 packets, this means that S2 does not forward all of
the packets to Middlebox5 (missing at least 5 packets), and this
can be a packet dropping attack. In another case, if Middlebox5

reports that it received 150 packets in that period, this means
an attack is happening (packet duplicating or weight adjusting
attack). Furthermore, to detect other attack cases, the Statistics
Processing Module need to analyze other statistics parameter in
Table 4.

On the other hand, multiple middleboxes can be connected to
a switch to perform a load balancing function. When the net-
work traffic increases robustly, which can overwhelm a single
middlebox by forcing it to process every packet, the switches

10

Middlebox1 Middlebox2 Middlebox3 Middlebox4 Middlebox5 Middlebox6

S1 S2

Group 1 Group 2

Chain 1
Chain 2

Fig. 10. Multiple service function chains with groups of middleboxes. If S2 is
compromised, it can be commanded to forward all the packets in chain 2 to
only Middlebox6 instead of steer equally to Middlebox4,5,6, which can
make Middlebox6 overwhelmed (weight adjusting attack).

Table 4. Statistical parameters

Parameter Description
ChainID Assigned ID for each service function chain

SrcIP IP address of source host
DesIP IP address of destination host

PktType Type of packet
PktLeng Payload size in bytes

ProcTime Total time for processing packet
TxNum Total number of received packets
DrNum Total number of transmitted packets
RxNum Total number of dropped packets

Alert
Alert signal is raised when finding out
an incorrect key from probe packet

can be used to dynamically steer the network traffic to the same
middleboxes in a group. For example in Fig. 10, S2 can di-
vide equally the traffic from chain 2 to Middlebox4,5,6. If
S2 is compromised, it can be commanded to forward all the
packets to only Middlebox6, which can make it overwhelmed
(weight adjusting attack). By comparing the statistics from
Middlebox4,5,6, the controller can calculate the load balancing
ratio in group 2 and detect this kind of attack.

After detecting any attacks or alerts from the statistics, the
statistical analysis module requests the other modules to set up
a new network topology and create new key sets to eliminate the
compromised switches, thus protecting the network. We leave
the handling of compromised switches after detection for future
studies. In the next section, we describe the implementation and
evaluation of our scheme in detail.

VII. EXPERIMENTS AND EVALUATION

In this section, we evaluate the performance and efficiency
of our proposed mechanism through three experimental stud-
ies. The first study deals with the latency for processing probe
packets on the middleboxes. In the second study, we evaluate
the CPU and memory consumption caused by our mechanism
on both middleboxes and the controller, respectively. These two
studies will help us evaluate the performance and applicability
of our mechanism. In the third study, the detection rate, accu-
racy, and false alarm rate are taken into account, which can be
used to evaluate the efficiency of our solution.

The experiment topology is depicted in Fig. 11. Our proto-

THANG et al.: AN EFFICIENT DEFENSE METHOD FOR COMPROMISED ... 50111

Middlebox 1

Compute 1

Switch 1
Source

host

Middlebox 4

Compute 4

Switch 4
Destination

host

Middlebox 2

Switch 2

Compute 2

Controller
Open stack

environments

Middlebox 3

Switch 3

Compute 3

Fig. 11. Experiment topology.12

0

0.05

0.1

0.15

0.2

0.25

0.3

La
te

nc
y

(m
s)

Packet instance
500 1000 1500

Average
0.08

Fig. 12. Probe packet processing latency on middleboxes.

type consists of a controller program that also runs in this en-
vironment, as well as a service function program that runs on
middleboxes to handle the packets. These programs need only
approximately 800 lines of C code and can easily be modified
and integrated with other service functions and controllers. We
implemented the prototype on a computer with 12 3.4-GHz Intel
i7-8700 CPUs and 48 of GB memory. Each virtual machine is
allocated 2 GB of memory and 1 CPU. We use OpenStack [26]
(Stein version), a free open-source software platform used for
cloud computing, to create the service function chaining envi-
ronment. By using OpenStack, we can easily create virtual mid-
dleboxes and switches, as well as create service function chains.

A. Performance Evaluation

A.1 Probe Packet Processing Latency

As mentioned in Section IV.A, the packet processing proce-
dure needs to be fast and effective, and we only handle the probe
packet to reduce the overhead on the packet processing. Normal
packets are only checked to generate the statistics, which re-
quires an insignificant amount of time. We conducted our first
study by measuring the latency for processing the probe pack-
ets. We generated network traffic including normal and probe
packets (1500 bytes with a pre-assigned 10-bit key, and apply-
ing the hash function FNV-1a [27], which are the same condi-
tions as [9]) into the chain. The results in Fig. 12 show the probe
packet processing latency on middleboxes at 100 probe packets
per second (1.172 Mbps).

We also compared the results with other similar approaches
that also need packet handling in Fig. 13. Whereas Flow-
Cloak [9] and SFC Path Tracer [23] require 0.3 ms, the average
probe packet processing latency of our work is only 0.08 ms.

13

0.08

0.3

0.3

1.23

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Our proposal

FlowCloak

SFC path tracer

SDN traceroute

Latency (ms)

Fig. 13. Comparison of probe packet processing latency on middleboxes be-
tween related works.

14

0

1

2

3

4

5

6

7

8

9

10

Pe
rc

en
ta

ge
 (

%
)

Time (s)
100 200 300

Average
3.3621

Fig. 14. CPU utilization on middlebox during the experiment.

From this result, we found that our mechanism is fast and ef-
fective. With a low-latency packet handling of 0.08 ms, we val-
idated that our scheme can detect middlebox-bypass attacks in
real time. This procedure can also be easily integrated into other
service functions without noticeable delays, which increases the
applicability of our mechanism.

A.2 Resources Consumption

The CPU and memory utilization on the middleboxes and
controller are important parameters for evaluating the perfor-
mance of our system. The results in Figs. 14 and 15 show the
CPU and memory utilization of our program on middleboxes
during the experiment. Our program uses only 3.3621% of the
CPU and 0.01013% of memory (2 GB total) on average, which
are good values for devices with limited resources, such as a
middlebox. These results demonstrate that our program works
well and causes minor obstacles to the operation of the middle-
box. Figs. 16 and 17 show the CPU and memory utilization
of our program on the controller applied during the experiment.
With 7.5326% CPU and 0.00287% memory (36 GB in total) use
on average, we can see that our program generates relatively lit-
tle overhead on the controller. We can consider a network entity
such as a controller to require enormous resources, which indi-
cates that the resource utilization of our program is negligible.

Moreover, we compared our mechanism with other solutions

502 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020
15

100 200 300
0.0097

0.0098

0.0099

0.01

0.0101

0.0102

0.0103

0.0104

Pe
rc

en
ta

ge
 (

%
)

Time (s)

Average
0.01013

Fig. 15. Memory utilization on middlebox during the experiment.

that also apply a statistics-based method (a process using the
most resources). SDN-RDCD [22] is a mechanism that applies a
backup controller to collect and handle the network information.
This program uses only 8.8633% of the CPU and 0.8783% of the
memory (16 GB in total), which are higher than those of our ap-
proach. Other solutions only focus on evaluating the efficiency
of the method and omit the consumption of resources. From the
above results, we can validate that our mechanism works with
noticeable overhead for the system.

B. Efficiency Evaluation

B.1 Study Setup

For this study, we created some attacks and evaluated how
well our system works against these attacks. We focused on two
types of attacks, as mentioned above: middlebox-bypass attacks
and other compromised switch attacks. The evaluation param-
eters are the detection rate, accuracy, and false alarm rate. We
injected some incorrect probe packets to create the middlebox-
bypass attacks. As mentioned in subsection IV-B, we did not
intervene in the operation of the switches, and other compro-
mised switch attacks could be easily detected through the statis-
tical analysis procedure; thus, we did not need to tamper with
the other attack cases. After the attack detection, the network
topology was changed to protect the SFC. If switch 2 is compro-
mised, and an attack near switch 2 is detected, and the system
will remove the chain through this switch. After some period,
we switch the network topology back to the original version. We
only focus on evaluating the operation of our mechanism under
a multiple service function chain scenario. The optimization of
network traffic steering was not our main goal.

B.2 Results Evaluation

The detection results are divided into four categories based on
particular conditions, as described in Table 5. True positive (TP)
is the number of incorrect probe packets that are detected. False
positive (FP) is the number of correct probe packets that are de-
tected as incorrect packets. False negative (FN) is the number
of incorrect probe packets that are detected as correct, and true
negative (TN) is the number of correct probe packets that are
detected as correct.

With a 10-bit key, FlowCloak [9] achieves a successful ran-
dom guessing rate of under 0.1%. Because we also use the same

16

0

1

2

3

4

5

6

7

8

9

Pe
rc

en
ta

ge
 (

%
)

Time (s)100 200 300

Average
7.5326

Controller CPU utilization

Fig. 16. CPU utilization on the controller during the experiment.

17

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Pe
rc

en
ta

ge
 (

%
)

Time (s)
100 200 300

Average
0.00287

Fig. 17. Memory utilization on the controller during the experiment.

conditions as in [9], we can count the number of false nega-
tive results equals to 0.1% of the number of packets detected
as attacks (TP + FP). We then can calculate the detection rate
(DR), accuracy (AC), and false alarm rate (FAR) of our system
are 99.8148%, 99.539%, and 0.4625% respectively by (3), (4),
and (5). The false positive, as shown in Table 5, reduces the ac-
curacy and increase the false alarm rate. We can program the
controller to ignore the alarms when the network topology is
updating, which eliminates the FPs. However, we allow the sys-
tem to continue to receive any alerts, even false alarms because
problems with the network topology that are not caused by the
controller can also occur.

DR =
TP

TP + FN
, (3)

AC =
TP + TN

TP + TN + FP + FN
, (4)

FAR =
FP

FP + TN
. (5)

Finally, we again compared our results to the other solu-
tions, as shown in Fig. 18. With 100% detection rate, SDN-
RDCD [22] shows an impressive results with 100% accuracy,
while Generic [10] has 98%, Track [17] has more than 95.08%
and FlowMon [19] has 77% accuracy. From the comparison, we
can see that our mechanism is effective in detecting middlebox-
bypass attacks and compromised switches.

THANG et al.: AN EFFICIENT DEFENSE METHOD FOR COMPROMISED ... 503

Table 5. Detection Conditions

Detected as attack Detected as normal

Actual attack

True positive (TP)
Conditions:
- Incorrect key.
- Incorrect statistics.

False negative (FN)
Conditions:
- Attackers can guess the key and
spoof probe packets.

Actual normal

False positive (FP)
Conditions:
- Incorrect key: when the network topology is changed,
the controller needs time to update the key set on middleboxes
while probe packets are still being sent.
- Incorrect statistics: because of packet processing
latency, transmission delay, etc.

True negative (TN)
Conditions:
- Correct probe packet.
- Normal packet.

18

77

95.08

98

99.539

100

70 75 80 85 90 95 100 105

SDN-RDCD

Our proposal

Generic

Track

FlowMon

Accuracy (%)

Fig. 18. Comparison of accuracy among related works.

VIII. CONCLUSION AND FUTURE WORK

Compromised switches and middlebox-bypass attacks are se-
rious issues affecting the SFC. We presented a mechanism that
not only detects both middlebox-bypass attacks and compro-
mised switch attacks in multiple SFC scenario but also prevents
them and protects the network. By combining probe-based and
statistics-based mechanisms, we overcome the disadvantages of
other proposed solutions and bring about robust protection to
the SFC. Based on the experimental results, we found that our
mechanism can detect attacks efficiently with a low packet pro-
cessing latency on middleboxes, with low resource consump-
tion, high detection rate, and high accuracy.

In the future, our mechanism can be extended to additional al-
gorithms to increase the performance and efficiency, apply ma-
chine learning to predict attacks, improve the packet processing
speed, and cover more attack cases from compromised switches.

REFERENCES
[1] D. Bhamare, R. Jain, M. Samaka, A. Erbad, "A Survey on service function

chaining," J. Netw. Comput. Applications, vol. 75, pp. 138-155, Nov. 2016.
[2] A. M. Medhat et al., "Service function chaining in next generation net-

works: State of the art and research challenges," IEEE Commun. Mag.,
vol. 55, no. 2, pp. 216-223, Feb. 2017.

[3] G. Mirjalily and Z. Luo, "Optimal network function virtualization and ser-
vice function chaining: A survey," Chinese J. Electronics, vol. 27, no. 4,
pp. 704-717, July 2018.

[4] L. Guo, J. Pang and A. Walid, "Dynamic service function chaining in
SDN-enabled networks with middleboxes," in Proc. IEEE ICNP, 2016.

[5] S. Huang, F. Cuadrado, and S. Uhlig, "Middleboxes in the internet: A
HTTP perspective," in Proc. TMA, 2017.

[6] S. W. Brim, B. E. Carpenter, "Middleboxes: Taxonomy and issues," RFC
3234, Mar. 2013.

[7] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simplify-
ing middlebox policy enforcement using sdn,” in Proc. ACM SIGCOMM,
2013.

[8] J. Sherry et al., "Making middleboxes someone else’s problem: Network
processing as a cloud service," in Proc. ACM SIGCOMM, 2012.

[9] K. Bu, Y. Yang, Z. Guo, Y. Yang, X. Li and S. Zhang, "FlowCloak: Defeat-
ing middlebox-bypass attacks in software-defined networking," in Proc.
IEEE INFOCOM, 2018.

[10] X. Zhang, Q. Li, J. Wu, and J. Yang, "Generic and agile service function
chain verification on cloud," in Proc. IEEE/ACM IWQoS, 2017.

[11] M. Antikainen, T. Aura, M. Särelä, “Spook in Your network: Attacking an
SDN with a compromised OpenFlow switch," in Proc. NordSec, 2014.

[12] P. Chi, C. Kuo, J. Guo and C. Lei, "How to detect a compromised SDN
switch," in Proc. IEEE NetSoft, 2015.

[13] Y. Chiu and P. Lin, "Rapid detection of disobedient forwarding on com-
promised OpenFlow switches," in Proc. IEEE ICNC, 2017.

[14] Y. Ke, H. Hsiao and T. H. Kim, "SDNProbe: Lightweight fault localization
in the error-prone environment," in Proc. IEEE ICDCS, 2018.

[15] C.-T. Kuo, P.-W. Chi, V. Chang, and C.-L. Lei, "SFaaS: Keeping an eye on
IoT fusion environment with security fusion as a service," Future Genera-
tion Computer Systems, vol. 86, pp. 1424–1436, Sept. 2018.

[16] N.Y. Vijayvergiya, "Detecting collaborative attacks caused by compro-
mised switches in SDN," Masters thesis, Indian Institute of Technology
Hyderabad, 2017.

[17] Y. Zhang, L. Cui, F. P. Tso, and Y. Zhang, "Track: Tracerouting in
SDN networks with arbitrary network functions," in Proc. IEEE Cloud-
Net, 2017.

[18] T. Chao et al., "Securing data planes in software-defined networks," in
Proc. IEEE NetSoft, 2016.

[19] A. Kamisiński and C. Fung., “FlowMon: Detecting malicious switches in
software-defined networks," in Proc. ACM CCS, 2015.

[20] P. Zhang et al., "FOCES: Detecting forwarding anomalies in software de-
fined networks,"in Proc. IEEE ICDCS, 2018.

[21] K. Zhang and X. Qiu, "CMD: A convincing mechanism for MITM detec-
tion in SDN," in Proc. IEEE ICCE, 2018.

[22] H. Zhou et al., "SDN-RDCD: A real-time and reliable method for detect-
ing compromised SDN devices," IEEE/ACM Trans. Netw., vol. 26, no. 5,
pp. 2048-2061, Oct. 2018.

[23] R. A. Eichelberger, T. Ferreto, S. Tandel, and P. A. P. R. Duarte, "SFC
path tracer: A troubleshooting tool for service function chaining," in Proc.
IFIP/IEEE IM, 2017.

[24] Y. Qiu, X. Qiu and Y. Cai, "Service function chaining policy compliance
checking," in Proc. IEEE/IFIP NOMS, 2018.

[25] N. C. Thang and M. Park, "Detecting compromised switches and
middlebox-bypass attacks in service function chaining," in Proc. ITNAC,
2019.

[26] OpenStack. [Online] Available: https://www.openstack.org/
[27] Fowler-Noll-Vo hash function. [Online] Available:

https://tinyurl.com/qxcqjhk

504 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

Nguyen Canh Thang received the B.S. degree of
Engineer in Control Engineering and Automation
from the Hanoi University of Science and Technol-
ogy, Hanoi, Vietnam, in 2018. He is currently pursu-
ing a M.S. degree in information communication at
Soongsil University, Seoul, Korea. His research inter-
ests include software-defined networks, service func-
tion chaining, and network security.

Minho Park received the B.S.and M.S. degrees in
electronics engineering from Korea University, in
2000 and 2002, respectively, and the Ph.D. degree
from the School of Electrical Engineering and Com-
puter Science, Seoul National University, Seoul, Ko-
rea, in 2010. He is currently an Associate Professor
with the School of Electronic Engineering, Soongsil
University, Seoul. His current research interests in-
clude wireless networks, vehicular communication
networks, network security, and cloud computing.

