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Intelligent Network Data Analytics Function in 5G
Cellular Networks using Machine Learning

Salih Sevgican, Meriç Turan, Kerim Gökarslan, H. Birkan Yilmaz, and Tuna Tugcu

Abstract: 5G cellular networks come with many new features com-
pared to the legacy cellular networks, such as network data an-
alytics function (NWDAF), which enables the network operators
to either implement their own machine learning (ML) based data
analytics methodologies or integrate third-party solutions to their
networks. In this paper, the structure and the protocols of NWDAF
that are defined in the 3rd Generation Partnership Project (3GPP)
standard documents are first described. Then, cell-based synthetic
data set for 5G networks based on the fields defined by the 3GPP
specifications is generated. Further, some anomalies are added to
this data set (e.g., suddenly increasing traffic in a particular cell),
and then these anomalies within each cell, subscriber category,
and user equipment are classified. Afterward, three ML models,
namely, linear regression, long-short term memory, and recursive
neural networks are implemented to study behaviour information
estimation (e.g., anomalies in the network traffic) and network load
prediction capabilities of NWDAF. For the prediction of network
load, three different models are used to minimize the mean absolute
error, which is calculated by subtracting the actual generated data
from the model prediction value. For the classification of anoma-
lies, two ML models are used to increase the area under the re-
ceiver operating characteristics curve, namely, logistic regression
and extreme gradient boosting. According to the simulation re-
sults, neural network algorithms outperform linear regression in
network load prediction, whereas the tree-based gradient boost-
ing algorithm outperforms logistic regression in anomaly detection.
These estimations are expected to increase the performance of the
5G network through NWDAF.

Index Terms: Handover, machine learning, NWDAF, 5G networks.

I. INTRODUCTION

TECHNOLOGICAL developments in wireless cellular net-
working are expected to increase the number of users and

end-points tremendously, resulting in the creation of very com-
plex and busy networks. The standardization of the fourth-
generation (4G) cellular systems by the 3rd Generation Part-
nership Project (3GPP) enabled users to reach a couple of hun-
dred Mbps, thus allowing users to access the applications re-
quiring high data rates such as high-definition TV [1], [2]. Yet,
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4G is incapable of addressing exponentially increasing user de-
mands. In particular, Cisco’s Visual Networking Index forecasts
that the number of mobile-connected devices will reach to 12.3
billion, and the average smartphones will generate 132 GB traf-
fic annually. [3]. Moreover, the rapid emergence of applica-
tions requiring machine-to-machine (M2M) type communica-
tion (e.g., Internet of things (IoT)) has brought new requirements
that are not addressed by the previous cellular technologies de-
signed for human-to-human (H2H) communications [4]. As
such, the fifth-generation (5G) cellular networks have emerged
in the last decade. 3GPP first released the specifications for the
non-standalone (NSA) mode of 5G access that is based on the
existing 4G infrastructure, thus supporting interoperability be-
tween the existing cellular technologies.

Researchers anticipate that 5G will be a major paradigm shift
rather than an incremental advancement on 4G [5]. To this end,
3GPP published another series of specifications for standalone
(SA) 5G that introduces a new cloud-native 5G core indepen-
dent from the 4G cellular infrastructure. 5G SA brings much
simplified Radio Access Network (RAN) and device architec-
ture as it is a targeted 5G architecture option, which facilitates a
wider range of use cases for new device types, and device com-
munication patterns such as M2M communication [6]. More
specifically, 5G SA introduces an evolved packet core consid-
ering the newer use cases including IoT [6]. Therefore, some
of the already existing network functions (NF) in the service-
based architecture (SBA) of legacy cellular networks (i.e., 4G
or below) are replaced with new NFs in 5G SBA. For example,
instead of policy and charging rules function (PCRF) in 4G, 5G
has a policy control function (PCF). Similarly, instead of charg-
ing data record (CDR), 5G has charging function (CHF).

One such function is related to the data analytics. Data ana-
lytics has become vital in 5G SA as it is designed to support data
rates that can reach a gigabit. Network data analytics function
(NWDAF) is one of the newly proposed data analytics func-
tions for 5G networks, and it provides network analysis to other
NFs [7]–[10]. To do so, NWDAF can use any machine learning
(ML) or artificial intelligence (AI) algorithm based on the re-
quirements (e.g., time constraints) of the consuming NF [11].
According to the 3GPP consortium, NWDAF is expected to
have several capabilities, where we investigate three of them
deeply in this paper. We focus on the prediction of: (1) Ab-
normal behaviour information for a group of user equipment
(UE), (2) expected behaviour information for a group of UE,
(3) network load performance in an area of interest. The rea-
son for elaborating on the specific capabilities of NWDAF is to
keep the focus of the study clear. Considering the sake of the
paper, we pick three capabilities of NWDAF for investigation.
We believe that the selected capabilities are crucial for network
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sustainability and quality of service (QoS).
Even before 3GPP introduced NWDAF for 5G cellular net-

works, AI/ML models were frequently used in wireless net-
working as well as in many other areas. Yet, with the need for
ultra-reliable and low latency communication (URLLC) [12],
[13] and unprecedented data traffic that increases exponentially,
the use of AI/ML models in cellular networks has become a se-
rious necessity. 3GPP could not overlook this requirement, and
consequently introduced NWDAF to fulfill this requirement [8].

The first issue that comes to mind is the data set while study-
ing ML topics. To be fair, the best option is to use a data set
gathered from an actual network setup. An alternative approach
could be using Generative Adversarial Networks (GAN) [14].
Unfortunately, we could not come up with the former one for
the NWDAF scenarios studied in this paper due to the lack in
the literature, which is elaborated in Section II. Similarly, one
requirement to use the latter one is to train GAN by using a sam-
ple from a real data set, which does not exist as stated. In that
manner, we firstly generate a publicly available 5G data set [15]
inspiring from 3GPP specifications for 5G networks to fill this
gap in the literature [16]–[19]. The generated 5G data set in-
cludes a topology with a fixed number of cells for a fixed num-
ber of subscriber categories, where different types of devices
that have different traffic patterns (e.g., cell phone, vehicle) can
connect to the network. We model each cell using a set of fea-
tures that we retrieve from other NFs: Bytes transmitted dur-
ing the monitoring time, list of categories associated with the
subscriber, personal equipment ID, and network area informa-
tion (i.e., RRU cell ID). Also, in order to make our synthetic
5G data set more realistic, we include anomalies such as unex-
pectedly increasing data traffic through a particular RRU cell.
Then, we present a novel system to perform network data ana-
lytics for 5G networks using state-of-the-art ML models in two
parts. In the first part, we perform network load performance
prediction by using linear regression, long short term memory
(LSTM), and recursive neural network (RNN) models. Then, in
the second part, using the anomalies integrated into the 5G data
set, we perform classification on the current status of a network
cell in order to detect the existing anomalies by using logistic
regression and a widely used tree-based ML algorithm, named
extreme gradient boosting (XGBoost) [20]. We, then, train dif-
ferent ML models using thoughtfully labeled data that we have
generated according to the 3GPP specifications. Thus, the main
contributions of this paper are threefold:
• We generate a cell-based synthetic data set for 5G networks

using the fields defined by the 5G standard documents.
• We introduce ML approaches, which are compatible with the

NWDAF system, for different 5G cellular network topolo-
gies. While one of the subsystems estimates the load perfor-
mance in the network, the other classifies network status to
predict whether there is an anomaly in the network.

• We present simulation results of the proposed system with a
fixed topology and compare the merits of different ML ap-
proaches for 5G network data analytics.

This paper is organized as follows. Section II investigates the
related works in the literature. Section III presents the network
data analytics function. Section IV describes our system model
and topology we used in our simulations. Section V introduces

Table 1. List of acronyms.

3GPP 3rd generation partnership project
AF Application function
AI Artificial intelligence
AMF Access and mobility management
ANN Artificial neural network
AUC Area under curve
AUC-ROC Area under receiver operating characteristics
CDR Charging data record
CHF Charging function
DL Deep learning
GAN Generative adversarial networks
H2H Human-to-human
IoT Internet of things
LogReg Logistic regression
LR Linear regression
LSTM Long-short term memory
LTE Long term evolution
M2M Machine-to-machine
MAC Mobile access control
MAE Mean absolute error
MAPE Mean absolute percentage error
MIMO Multiple input multiple output
ML Machine learning
mmWave Millimeter wave
NEF Network exposure function
NF Network function
NSA Non standalone
NSSF Network slice selection function
NR New radio
NWDAF Network data analytics function
OAM Operation administration and maintenance
PDCP Packet data convergence protocol
PCF Policy control function
PCRF Policy and charging rules function
QoS Quality of service
RAN Radio access network
RNN Recursive neural network
ROC Receiver operation characteristics
RRC Radio resource control
RRU Remote radio unit
SA Standalone
SBA Service-based architecture
SBI Service-based interface
SMF Session management function
SubsCat Subscriber category
TCP/IP Transmission control protocol internet protocol
UDM Unified data management
UDR Unified data repository
UE User equipment
URLLC Ultra reliable and low latency communication
WiMAX Worldwide interoperability for microwave access
xG xth-generation
XGBoost eXtreme gradient boosting

our method for data generation to evaluate ML-based 5G net-
work data analytic systems. Section VI discusses the set of fea-
tures that we pick for 5G cells and how we use them with several
state-of-the-art ML methods. Section VII gives the simulation
results based on different scenarios using the proposed system.
Finally, Section VIII concludes the paper and discusses several
future directions for ML-based 5G data analytics approaches.

Throughout the paper, we use several acronyms. To increase
the readability of the paper, we share these acronyms in Table 1.
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II. RELATED WORK

Due to the freshness of NWDAF in 5G cellular networks, the
literature about this topic is not as comprehensive as it should
be, and this paper institutes a novel work that considers NWDAF
compatible implementation. In [21], the authors introduce mo-
bility and network slicing capabilities of NWDAF. In [11], the
capabilities of NWDAF related to the network slicing are in-
vestigated. In terms of traffic data for 5G, unfortunately, there
is no comprehensive selection of data sets to be utilized for
the NWDAF scenarios studied in this paper. In [22], a ray-
tracing simulation is performed in order to produce data for 5G
multiple-input and multiple-output (MIMO) study. In [23], re-
searchers create a data set by monitoring one eNodeB and one
user equipment. The data set includes Packet Data Convergence
Protocol (PDCP), Radio Resource Control (RRC), and Mobile
Access Control (MAC) data. Considering the coverage and sin-
gularity of the monitoring, this data set also is not suitable for
ML purposes. So, to the best of our knowledge, there is no user
traffic data gathered from gNodeB based on 5G SA implemen-
tation and suitable for NWDAF scenarios of this paper in the
literature.

Intelligent cellular networks based on the state-of-the-art
AI/ML techniques, on the other hand, have been studied thor-
oughly in the last decade. In [24], the authors address the sig-
nificance and the necessity of using AI for the next-generation
cellular networks (i.e., 5G and 6G), and they specify some of
the challenges and the roadmap. In [25], Jiang et al. argue that
the next-generation wireless technologies, including 5G, would
require the support of extremely high data rates; thus, deci-
sion making in the new radio systems can benefit from ML
techniques. They propose different ML techniques for differ-
ent tasks in 5G networks including supervised learning-based
methods for MIMO channel controlling, unsupervised learn-
ing for anomaly detection, and reinforcement learning for de-
cision making under unknown network conditions. Yet, they do
not investigate how ML would be used for network analytics
in 5G. Casellas et al. also emphasize the necessity of enabling
AI/ML techniques to control, manage, and orchestrate compo-
nents of 5G networks without mentioning about NWDAF [26].
In [27], ML is proposed as a way to manage self-organizing
5G networks. Self-organization in cellular networks comes into
prominence as 5G technology leans towards millimeter wave
(mmWave) radio models that would require massive network
densification. To this end, the authors of [27] give a detailed
network management system using different ML techniques to-
gether. In [28] and [29], the authors investigate the existing
studies using ANN/ML techniques related to wireless networks.
Fang et al. propose to use ML techniques for 5G and beyond
wireless networks due to the security concerns, especially con-
sidering authentication issues [30]. In [31], the authors argue
that due to the unprecedented user demands on mobile and wire-
less networking, real-time extraction of fine-grained analytics
and agile management of network resources become more and
more critical. The authors investigate deep learning studies in
the literature since they find it as a solution to meet the unprece-
dented user demands. There are also various studies for more
specific tasks based on 5G cellular networks. [32]–[34] inves-
tigate the use cases of ML in vehicular networks based on 5G
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Fig. 1. Data collection and network data analytics exposure architecture.

networks. Moreover, [35]–[37] study ML in mmWave massive
MIMO to control the radio including beamforming.

In summary, several works in the literature study ML, AI,
and deep learning (DL) concepts for 5G cellular networks with
or without considering NWDAF. Yet, these works are currently
immature. Moreover, even some sections in the 3GPP specifi-
cations regarding NWDAF [7]–[10] are left blank at the present
due to the novelty of NWDAF. Furthermore, the existing data
sets are not meeting the NWDAF scenario requirements of this
paper. We, therefore, generate our synthetic data set based on
3GPP specifications, as we discuss in Section V.

III. NETWORK DATA ANALYTICS FUNCTION

NWDAF is a newly defined data analytics function in 5G cel-
lular networks that provides network analysis upon request from
other NFs [8]. As its data source, NWDAF can use any other
NF. Therefore, there is a two-way relation between NWDAF
and NFs as depicted in Fig. 1. Note that Nnwdaf represents
the service-based interface of NWDAF, and Nnf represents
the service-based interface of any NF (e.g., Npcf represents
the service-based interface of PCF) [8]. As seen in the fig-
ure, NWDAF can either provide network analysis data to other
NFs (i.e., analytics information) or NFs can request subscription
from NWDAF for data delivery (i.e., events subscription) by us-
ing Nnwdaf interface. Also, NWDAF fetches data from other
NFs using Nnf interface.

There are two Nnwdaf services, namely, events subscription
(i.e., analytics subscription), and analytics information [7]–[10].
Nnwdaf events subscription service allows NF consumers to
subscribe to and unsubscribe from different analytics events, and
notifies NF consumers with a corresponding subscription about
observed events. On the other hand, Nnwdaf analytics informa-
tion enables NF consumers to request and get a different type
of analytic event information from NWDAF. Therefore, one can
consider events subscription service as more of a charging ser-
vice, whereas analytics information service is the one that re-
quires the AI/ML techniques to apply. Considering these, our
main focus in this paper is on Nnwdaf analytics information ser-
vice. With Nnwdaf analytics information, the following events
can be observed:
• Abnormal behaviour information for a group of UE or a spe-

cific UE,
• Expected behaviour information for a group of UE or a spe-

cific UE,
• Network load performance in an area of interest,
• Load level of network slice instance,
• NF load analytics information for a specific NF,
• Communication pattern for a specific UE,
• Congestion information of user data in a specific location,
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Fig. 3. Service-based architecture of the Nnwdaf analytics info service [9].

• Mobility related information for a group of UE or a specific
UE,

• QoS change statistics and potential QoS change in a certain
area,

• Service experience for an application or for a network slice.

In this work, we focus on the first three events and classify
the behaviour information for a group of UE while estimating
the network load performance. Commonly known consumers of
the NWDAF analytics information service can be seen in Fig. 3.
Any NF in Fig. 3 can be the consumer of the events NWDAF
analyzes upon subscription.

IV. SYSTEM MODEL

In this section, we first introduce the high-level workflow of
our system. We then describe the type of network topology and
the traffic conditions that we consider in this paper. We study
a system workflow that consists of UE, user data, 5G SBA, ML
models, NWDAF, and other NFs.

A. Workflow

As depicted in Fig. 2, data obtained from UE is transferred
into the 5G SBA, where NWDAF and other NFs stand. NWDAF
is connected to other NFs via the service-based interface (SBI),
and NWDAF and other NFs mutually make data transfer be-
tween each other. NWDAF then gathers the information from
different NFs and fits several ML models to both predict the
network load performance and detect the network load anoma-
lies. Given a fixed topology, our system uses labeled data to
train; therefore, it picks the finest ML model depending on the
characteristic of the topology.

RRU 1

RRU 2

RRU 3

RRU 4

RRU 5

Cell phone

Vehicle

Smart watch

Tablet computer 

IoT device

Remote radio
unit

Fig. 4. Sample network topology representation.

B. Topology

We use a fixed cellular topology, which consists of a fixed set
of RRU cells, a fixed set of subscriber categories, and a fixed
set of personal equipment (i.e., device) types. For the sake of
simplicity, even though our system model can support topolo-
gies that consist of a large number of RRU cells, subscriber cat-
egories, and personal equipment types, we consider a network
topology that consists of five RRU cells in our simulations. In
each of these cells, there are three subscriber categories, where
these subscriber categories represent platinum, gold, and silver
subscriptions. The logic behind these three subscriptions is to
make the generated data more realistic because mobile service
providers sell these kinds of subscriptions in the real world.
Also, within each subscriber category, there are five different
types of personal equipment (i.e., user equipment), namely, IoT
device, vehicle, cell phone, smartwatch, and tablet computer. A
sample representation of our network topology can be seen in
Fig. 4.
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Table 2. Mean handover ratios per hour.

Time of day IoT device Vehicle Cell phone Smart watch Tablet computer
00:00–06:00 1% 10% 2.5% 2.5% 1%
06:00–07:00 1% 18% 4.5% 4.5% 1.8%
07:00–09:30 1% 12% 3% 3% 1%
09:30–11:00 1% 14% 3.5% 3.5% 1.2%
11:00–13:00 1% 16% 4% 4% 1.5%
13:00–16:00 1% 14% 3.5% 3.5% 1.2%
16:00–20:00 1% 12% 3% 3% 1%
20:00–22:00 1% 18% 4.5% 4.5% 1.8%
22:00–00:00 1% 10% 2.5% 2.5% 1%

C. Traffic

According to the proposed model, each personal equipment
within each subscriber category and RRU cell includes a prede-
termined amount of traffic load at the beginning of the simula-
tion. Therefore, we can say that network traffic is saturated from
the beginning to the end of the simulation. Then, for every sim-
ulation time step (∆t), some portion of the load handovers from
one cell (i.e., source) to another cell (i.e., target), which is adja-
cent to the source cell. The handover process also occurs based
on predetermined ratios. To make the traffic more realistic, we
change mean handover ratios according to the time of the day.
Between 22:00–06:00, since people are expected to move less,
the mean handover ratio is also expected to be smaller. Between
06:00–07:00 and 20:00–22:00, since roads will most likely be
traffic-free, people are expected to move faster from one place
to another, and the mean handover ratio is expected to be higher.
Between 11:00–13:00, traffic will be slightly more, and people
will move a bit slower compared to 06:00–07:00 and 20:00–
22:00, and consequently the mean handover ratio is expected to
be smaller. Between 09:30–11:00 and 16:00–20:00, the mean
handover ratio is expected to be smaller than 11:00–13:00 due
to the increasing traffic. Since 07:00–09:30 and 16:00–20:00
are rush hours, the mean handover ratio is expected to be the
smallest excluding the night time. Also, for IoT devices, no ma-
jor difference for the mean handover ratios is expected for the
time of the day because these devices are not expected to move
as much as other personal equipment we consider due to their
nature. On the other hand, mean handover ratios are higher for
vehicles due to their mobility. We give the detailed mean han-
dover ratios in Table 2. Also, note that the handover ratio values
in Table 2 are mean values, which imply that there are also vari-
ance values. With these carefully tuned statistical parameters
by canonical approximations, we aim to achieve a real-like user
traffic. The details of the distribution used for the handover ratio
determination process is explained in Section V.

V. DATA GENERATION

There are different types of AI/ML models throughout com-
puter science history. Among these many AI/ML models, the
algorithms behind these models work differently. In general,
one can say that ML algorithms can be categorized under three
different parts, namely, supervised, unsupervised, and reinforce-
ment learning. Since we consider supervised ML algorithms in
this paper, labeled data becomes crucial in this context. As a
result, the data generation part becomes an important aspect of

this paper. Considering all these, we generate a labeled data
set for 5G cellular networks. While selecting the fields of the
proposed data set, we are inspired by the 5G specifications pub-
lished by the 3GPP consortium [16]–[19]. The selected fields
are as follows:
• Data rate: Amount of transmitted data in bytes for a certain

period of time.
• Network area information: Cell information of a group of

UE that is connected to.
• Subscription categories: The policy of a group of UE is

subscribing.
• Personal equipment ID: Device type information of a UE

(e.g., cell phone, smart watch).
While generating the labeled data set, we come up with the

following predefined parameters as the input fields of the data
generation simulation, which are
• RRU cell number, which represents the number of RRU cells

in the topology.
• Category names and IDs.
• Personal equipment IDs and names of the device types.
• Initial load configurations, which represent the initial load

per group of personal equipment.
• Adjacency cell configurations.
• Handover percentage for a group of personal equipment.
• Mean and variance ratios for the handover process.
• Simulation time step, which represents the period of data

fetching process from NFs.
• Simulation time, which represents the total length of the sim-

ulation.
For the beginning of the data generation simulation, regarding

the subscriber category and the personal equipment type, initial
load configurations for each RRU cell can be seen in Table 3.
As seen, different loads are assigned for each personal equip-
ment type as well as each subscriber category. The logic behind
these load values is that it is more likely for a user to subscribe to
the platinum category rather than gold and silver categories for
the cell phone subscription. On the other hand, it is less likely
to subscribe to a higher category for a tablet computer, vehicle,
and IoT device. Also, for the RRU cell with four adjacent RRU
cells in Fig. 4, the mean handover ratios in Table 2 are doubled
in order to keep the balance in the network. Moreover, as afore-
mentioned, the handover ratios in Table 2 are mean values. We
assume that the handover events exhibit Gaussian distribution
and the mean and the variance parameters are given as follows

∆Hratio ∼ N (µ,
µ

8
), (1)
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Table 3. Initial loads.

Subscriber category (Number) IoT device Vehicle Cell phone Smart watch Tablet computer
Platinum (1) 3 Gbps 20 Gbps 90 Gbps 1 Gbps 6 Gbps

Gold (2) 4 Gbps 18 Gbps 72 Gbps 1 Gbps 5 Gbps
Silver (3) 5 Gbps 16 Gbps 53 Gbps 1 Gbps 5 Gbps

where ∆Hratio is the resulting handover ratio, and N (µ, σ2) is
the Gaussian random variable with mean µ and variance σ2.

Then, we generate six months long network traffic data,
which consist of a network snapshot in each 15 minutes inter-
val (∆t). In each of these intervals, UE may handover between
adjacent cells.

In order to make our data set more realistic, we add anoma-
lies to the generated network traffic data throughout the simula-
tion. We describe anomalies as unexpectedly generated large
amounts of network traffic compared to the average network
traffic, which fades and stabilizes in time. While creating these
kinds of anomalies, we are inspired by our daily lives, where
constantly some videos go viral or some breaking news occurs,
which affects the network traffic data in an increasing manner.

While describing anomalies, we also label the time points,
which include abnormal traffic loads. This is required in order
to generate the ground truth and to extract behaviour informa-
tion from the 5G network data set.

We implement data generation methodology in Python pro-
gramming language. Many ML algorithms are implemented as
a library for this language since it is widely used, easy to read,
and code. Alongside implemented ML libraries, data processing
libraries are also available for Python, which makes this pro-
gramming language very convenient for our purposes.

In the implementation, we create models for device type, sub-
scriber category, and RRU cell. The cell object model contains
information of adjacent cells as mentioned in Section IV.B. The
subscriber category object model keeps the information for each
device type including their loads and statistics. The device type
object model handles handover operations and keeps load infor-
mation at the current time point. After deciding all three models
for the data generation process, we create the proposed system
model by using a predefined adjacency matrix for RRU cells,
handover parameters for device types, simulation duration, and
percentage of anomaly occurrences. After defining all these,
data generation simulation is ready to start. At each time point
t (i.e., 0, ∆t, 2 × ∆t,· · ·, t), each device type determines how
much load will be transferred for handover, then handover op-
eration occurs by transferring the network load for the partic-
ular device type from the source RRU cell to the target RRU
cell. Moreover, the starting and ending time of anomalies are
randomly chosen before the data generation simulation starts.
Throughout the simulation, when an anomaly period starts, a
predefined percentage of the network load, which increases ex-
ponentially during the anomaly period, is added to each device.
With the completion of the data generation process, all network
load data are exported in order to analyze and generate appro-
priate features, which is discussed in Section VI.A. In Fig 5,
aggregated data rates of each cell are represented.
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VI. MACHINE LEARNING MODELS

With the recent advancements in the technology, and conse-
quently the huge amount of data available and required to be
processed, ML algorithms become very popular and are seen as
a potential solution for many different types of problems. Out
of past data, ML models are used to produce certain required
information. There are various types of ML algorithms, where
each of these algorithms are designed to solve a certain kind of
problem. As mentioned in Section V, ML models can be cate-
gorized under three parts, and the ones we use in this paper fall
under the supervised learning algorithms category. Since the
generated 5G data set is properly labeled, we can benefit from
the merits of supervised learning algorithms. In the paper, we
focus on two different problems. For both of these problems,
we use different solution specific ML models and compare the
performance of these models.

A. Feature Extraction

ML models need to be trained in order to produce accurate
results. Data should be processed and fitted in a form that the
ML model can understand. In order to train ML models, some
of the certain features are required to be extracted from the data
set. With the help of human insight and elaborative data anal-
ysis, these features become very helpful to an ML algorithm
throughout the training process, and consequently resulting in
better prediction results. On the other hand, DL models are gen-
erally capable of learning the patterns of the data without the
help of these insights and features due to their neural network
nature. Yet, for a fair comparison, we feed both ML and DL
models with the same input.

In the feature extraction process, we produce features by con-
sidering the data rates in the previous time slots. Extracted fea-
tures are specifically as follows
• last2_mean: Average data rate of the last two ∆t.
• last4_mean: Average data rate of the last four ∆t.
• last8_mean: Average data rate of the last eight ∆t.
• per_change_last2: Percentage of the data rate difference
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Fig. 6. Correlation matrix of the extracted features.

between the last two ∆t.
• per_change_last3: Percentage of the data rate difference

between the t− ∆t and t− 3 × ∆t.
• per_change_last4: Percentage of the data rate difference

between the t− ∆t and t− 4 × ∆t.
• change_last2: Data rate difference between the last two ∆t.
• change_last3: Data rate difference between the t − ∆t and
t− 3 × ∆t.

• change_last4: Data rate difference between the t − ∆t and
t− 4 × ∆t.

Among all considered features, feature importance and cor-
relation tests are performed. These two tests give informa-
tion about the quality of features, which affects the quality
of the trained models. Feature importance test shows that
last2_mean, last4_mean, and last8_mean are the most impor-
tant features. These features are followed by per_change_last2,
per_change_last3, and per_change_last4, which are followed
by per_change_last2, per_change_last3, and per_change_last4.
However, as can be seen in Fig. 6, data rate averages and change
in data rates have higher correlations among their feature sub-
group, compared to the percentage change in data rates fea-
ture. Considering the feature importance test, we select the
most important feature from data rate average features, which
is last2_mean and all percentage change in data rates features.
Change in data rates features is not selected due to their low
scores compared to other features in feature importance test.

B. Network Load Performance Prediction

As depicted in Section III, one of the main focus of this pa-
per is to estimate network the load performance. We define this
problem as a time series problem, and then use three different
ML models, namely LR, RNN, and LSTM, where LSTM is
a slightly modified version of RNN. While training these ML
models, we both use the labeled data set (i.e., data rate of each
time slot is the label) and the extracted features in Section VI.A.

B.1 Linear Regression

LR fits a linear relation between the given features of many
observations and labels. Since LR is one of the most commonly
used ML models for predictions and forecasting problems, we
choose this model as a base model for comparison purposes.

B.2 Recursive Neural Networks

Neural networks and deep learning provide effective solutions
to many problems. The nature of neural networks enables the
algorithm to learn complex relations in the features and pro-
duces highly accurate results. RNN is a specialized version of
the neural network algorithm, enabling to carry data from pre-
vious neurons and increasing accuracy for prediction and fore-
casting problems. We use RNN for our network load prediction
purposes. The model consists of one simple RNN layer, four
hidden layers, and one output layer. The loss function of RNN
is mean absolute error (MAE), which is also one of the perfor-
mance metrics we consider.

B.3 Long-Short Term Memory

LSTM is a modified version of RNN, where neuron struc-
ture is modified compared to RNN. While RNN keeps informa-
tion from previous neurons, LSTM’s complex structure helps
to keep information from very past data unlike simple RNNs.
In this way, even there is a time gap between an observed pat-
tern, LSTM is able to make accurate predictions. In the LSTM
model, we use one LSTM layer, four hidden layers, and one out-
put layer. The loss function of LSTM is also MAE similar to the
RNN model.

C. Anomaly Detection

As aforementioned, the contribution of this paper from the
NWDAF perspective is twofold, where the one we investigate
in this subsection is about gaining insights of behaviour infor-
mation for a group of UE. To do so, network load anomalies are
added as well as labeling each time slot as normal or abnormal
while creating the network traffic data set. This behaviour infor-
mation is classified by using two different ML models, namely,
logistic regression, and extreme gradient boosting.

C.1 Logistic Regression

Logistic regression is a commonly used model for various
classification problems. Logistic regression uses a logistic func-
tion in order to estimate the labels of the given data. We choose
logistic regression as the base model for the anomaly detection
problem. Since the produced data has unequal numbers of the
anomaly and normal states throughout the simulation, we set
class weight parameters in order to overcome the issues that
will be caused due to the imbalanced number of label types (i.e.,
anomaly and normal).

C.2 Extreme Gradient Boosting

For classification problems, there are many algorithms that
use tree-based approaches. Tree-based algorithms make a de-
cision based on given features while reducing the loss func-
tion. XGBoost is a state-of-the-art implementation of gradi-
ent boosted decision trees designed for speed and performance.
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Considering it is a widely used algorithm for classification prob-
lems, we also use XGBoost model in this paper. As discussed in
the logistic regression subsection, the produced data has an im-
balanced number of anomalies. In order to eliminate the prob-
lems caused by the imbalanced number of labels, we also tune
XGBoost model by reducing the effectiveness of the dominat-
ing label. This methodology helps the model to achieve a higher
score in terms of the AUC-ROC performance metric.

VII. SIMULATION RESULTS

Considering the scenarios described in Section IV, and gen-
erated the data by following the procedures in Section V, the
following results are obtained. Results are considered in two
folds. In the first one, we investigate the network load perfor-
mance using LR, LSTM, and RNN models. In the latter one, we
investigate the anomalies in the network throughout the simula-
tion using logistic regression and XGBoost models.

Table 4. Results for load performance predictions.

Metric name (Cell - SubsCat) ID LR LSTM RNN

MAPE

1 - 1 0.577 0.504 0.512
1 - 2 0.575 0.512 0.573
1 - 3 0.579 0.511 0.498
2 - 1 0.578 0.510 0.499
2 - 2 0.576 0.510 0.521
2 - 3 0.585 0.504 0.519
3 - 1 0.761 0.680 0.735
3 - 2 0.757 0.688 0.754
3 - 3 0.750 0.696 0.735
4 - 1 0.581 0.507 0.487
4 - 2 0.576 0.505 0.501
4 - 3 0.581 0.505 0.499
5 - 1 0.578 0.506 0.515
5 - 2 0.581 0.511 0.539
5 - 3 0.583 0.509 0.500

Average 0.615 0.544 0.560

MAE

1 - 1 0.185 0.157 0.148
1 - 2 0.237 0.205 0.233
1 - 3 0.290 0.251 0.217
2 - 1 0.184 0.158 0.139
2 - 2 0.238 0.202 0.192
2 - 3 0.291 0.242 0.219
3 - 1 0.223 0.196 0.204
3 - 2 0.282 0.252 0.269
3 - 3 0.339 0.312 0.307
4 - 1 0.185 0.157 0.135
4 - 2 0.238 0.205 0.180
4 - 3 0.289 0.243 0.218
5 - 1 0.185 0.159 0.147
5 - 2 0.238 0.204 0.197
5 - 3 0.289 0.243 0.214

Average 0.247 0.213 0.202

A. Network Load Performance Prediction

Using the aforementioned three AI/ML models, we perform
the simulation for each user equipment within each subscriber
category and RRU cell. Then, we calculate the mean average
percentage error (MAPE) and mean absolute error (MAE) for
each of these scenarios. The results using these metrics can be
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Fig. 7. Time versus data rate for different AI/ML models: (a) RRU cell number
is three, subscriber category is gold, and UE type is cell phone and (b) RRU
cell number is four, subscriber category is platinum, and UE type is vehicle.

seen in Table 4. Note that cell ID represents the RRU cell num-
ber as depicted in Fig. 4, and SubsCat represents the subscriber
categories, platinum, gold, and silver from one to three, respec-
tively. In Table 4, it can be seen that LSTM and RNN perform
better than LR in all scenarios as expected. For almost half of the
scenarios, RNN outperforms LSTM. The reason for this com-
petition is caused due to the nature of neural networks, which
includes significant randomization factor. However, in the av-
erage, LSTM also outperforms RNN in terms of MAPE metric.
Yet, as seen, RNN outperforms LSTM in terms of MAE metric.
This is because RNN is more successful in detecting unexpected
conditions (i.e., unsteady data rates). In other words, LSTM is
more successful in detecting the steady data rates compared to
RNN. Even though the score of RNN according to the MAE
metric is lower, since unsteady data rates are higher than the
steady ones, according to the MAPE metric, the score of LSTM
is lower compared to RNN due to the ratio between the numer-
ator and the denominator.

In Fig. 7, data rate predictions of RNN, LSTM, and LR mod-
els can be seen as well as actual results throughout the time,
which is randomly captured one full day within the six months
long data set. Both in Fig. 7(a), where the results captured from
RRU cell number three, subscriber category gold, and cell phone
device type, and in Fig. 7(b), where the results captured from
RRU cell number four, subscriber category platinum, and ve-
hicle device type, we come up with two distinct conclusions.
Firstly, ANN models outperform LR showing that they are bet-
ter at predicting sudden changes (i.e., sharp slopes). Since LR
does not provide a complex formula for predictions, these re-
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Table 5. Average results for anomaly predictions (averaging is done over device types).

Logistic regression XGBoost
Cell ID SubsCat AUC-ROC Accuracy Precision AUC-ROC Accuracy Precision

1 Platinum 88.0% 55.4% 77.8% 91.5% 63.4% 77.5%
1 Gold 87.4% 56.0% 77.4% 91.5% 63.5% 77.9%
1 Silver 87.6% 55.3% 77.4% 91.7% 63.6% 78.0%
2 Platinum 87.3% 55.5% 77.0% 91.4% 63.3% 77.6%
2 Gold 87.6% 55.7% 77.5% 91.2% 63.1% 77.6%
2 Silver 87.5% 56.1% 77.5% 91.9% 63.7% 78.0%
3 Platinum 84.9% 55.6% 75.2% 87.7% 60.1% 75.5%
3 Gold 85.4% 55.8% 75.7% 88.5% 89.8% 76.4%
3 Silver 84.5% 54.9% 75.1% 87.9% 59.4% 76.1%
4 Platinum 88.0% 56.3% 77.5% 91.6% 63.5% 77.7%
4 Gold 87.4% 55.7% 77.2% 91.4% 62.9% 77.6%
4 Silver 87.9% 55.6% 76.9% 91.8% 63.8% 77.8%
5 Platinum 87.2% 55.5% 77.0% 91.0% 63.1% 77.2%
5 Gold 87.5% 55.7% 77.2% 91.0% 63.0% 77.3%
5 Silver 87.4% 55.5% 77.1% 91.0% 63.0% 77.6%

Average 87.0% 55.6% 76.9% 90.7% 62.6% 77.3%

sults were expected. Secondly, for steady data rates, it can be
seen that LSTM predictions are closer to the actual values fol-
lowed by RNN predictions and later LR predictions. However,
for unsteady data rates, RNN predictions are closer to the ac-
tual values followed by LSTM predictions that are also followed
by LR predictions. One can clearly see these two observations
by looking between 07:00 and 10:00 for unsteady data rates in
Fig. 7(a), and between 00:00 and 01:30 in Fig. 7(b).

Lastly, even though LR performs reasonable with our synthet-
ically generated data set, we would like to point out that regres-
sion models might perform worse, and consequently are likely
to provide lower accuracy values in actual deployments. We
have generated the data set with high standard variation and ran-
domization parameters to make it as realistic as possible. Even
though the base idea behind training ML models is the same,
it can be expected to have slightly different results in basic ML
models. On the other hand, complex ML models are expected to
provide similar performance compared to the performance with
the proposed data set.

B. Anomaly Detection

For the detection of the anomalies in the 5G network traffic
data, we use logistic regression and XGBoost models. In order
to measure the performance of these two models, we use AUC-
ROC as the performance metric. Moreover, we visualize the
results using receiver operation characteristics (ROC) curves.
ROC curve has two axes, namely, true positive rate (i.e., proba-
bility of detection -Pd), and false positive rate (i.e., false alarm
rate -Pf ). Pd is the ratio of true positives versus actual true
values. It represents the accuracy of the model for the detection
of the anomalies (i.e., percentage of the successful predictions
among the network states having anomaly). The other axis, Pf ,
is the ratio of the false positives versus actual negative values.
It represents the probability of false decisions when the actual
network state is not exhibiting anomaly (i.e., percentage of the
false predictions for the non-anomaly states). The desired ROC
curve shape is similar to an elbow going towards the upper side
of the figure.

AUC-ROC, accuracy, and precision metrics are summarized

for XGBoost and logistic regression models in Table 5. As de-
picted in Table 5, the AUC-ROC score of XGBoost model is
significantly higher than the logistic regression model for each
subscriber category and RRU cell. Consequently, as also seen
in the average AUC-ROC, accuracy, and precision scores, XG-
Boost model predicts anomalies much better than the logistic re-
gression model. While precision is not improved significantly,
we observe a significant improvement in accuracy.

In Fig. 8 we compare the results of cell phones’ different sub-
scriber categories that is under RRU cell number three and four.
Comparing Fig. 8(a) with Fig. 8(d), Fig. 8(b) with Fig. 8(e),
and Fig. 8(c) with Fig. 8(f), it can be seen that the area under
ROC curve difference between XGBoost and logistic regression
is higher in favor of XGBoost model. Overall, among RRU cells
three and four, logistic regression is not able to increase Pd as
XGBoost does for a fixed false alarm rate. If we consider the
network topology in Section IV.B, where RRU cell three has
more neighbors than RRU cell four, RRU cell three is more
volatile due to having higher handover ratio compared to the
other RRU cells. Since logistic regression is a less complex ML
model than XGBoost, logistic regression is worse with the pre-
dictions in both cells and is not able to improve the performance
score adequately.

Among subscriber categories, as depicted in subfigures of
Fig. 8, the ROC curves of the models are not varying much.
We understand the fact that subscriber categories do not affect
model performance significantly. On the other hand, one can see
that when two ROC curves (i.e., curves of logistic regression and
XGBoost models) are compared in all cases, the logistic regres-
sion curve stays below XGBoost curve in each particular case,
which means that XGBoost achieves higher Pd for a given Pf .

VIII. CONCLUSION AND FUTURE WORK

This paper presents a novel system to achieve intelligent net-
work analytics for 5G cellular networks. To this end, we first
describe NWDAF in the service-based architecture of 5G cellu-
lar networks, and then employ several ML techniques to over-
come two major problems. In the first problem, network load is
predicted using time series analysis, by specifically using linear
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platinum, and UE type is cell phone.
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(d) RRU cell number is four, subscriber category is
silver, and UE type is cell phone.
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Fig. 8. False positive rate versus true positive rate for logistic regression and XGBoost models (AUC-ROC).

regression, LSTM, and RNN models. In the second problem,
anomalies in the network are classified by using a state-of-the-
art tree-based gradient boosting technique, XGBoost, and logis-
tic regression models. Moreover, we introduce a systematical
generation of a cell-based data set to evaluate network data an-
alytics for 5G cellular networks using the fields defined by the
5G standard document. In the experiments, we see that neu-
ral network models outperform the linear regression model for
the correct prediction of the network load. Similarly, tree-based
XGBoost outperforms logistic regression while classifying the
anomalies in the network. In conclusion, we show a very practi-
cal usage of NWDAF by using popular and common ML mod-
els.

Due to the novelty of NWDAF, there are also many open is-
sues in the literature. One such issue is the multi-label classifi-
cation for the detection of anomalies. It is because an anomaly
event can be at different levels, and classifying this event with
its corresponding level is the ultimate goal for the network op-
erators. Another issue is enriching generated data with the nec-
essary fields by inspiring from 3GPP specifications in order to
observe and gather analytics on network slice level base. Ad-
ditionally, based on the generated data set, our future work in-
cludes communication pattern detection using exploratory data

analysis. Last but not the least, our work can be extended by us-
ing different AI/ML models while focusing on other capabilities
of NWDAF.
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