JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 3, JUNE 2020

215

Accelerating Wireless Channel Autoencoders for
Short Coherence-time Communications

Manuel Eugenio Morocho-Cayamcela and Wansu Lim

Abstract: Traditional wireless communication theory is based on
complex probabilistic models and fixed conjectures, which limit
the optimal utilization of spectrum resources. Deep learning has
been used to design end-to-end communication systems using an
encoder to replace the transmitter and a decoder for the receiver.
We address the challenge to update the parameters of a wireless
channel autoencoder (AE) under a time-varying channel with short
coherence-time. We suggest an optimized training algorithm that
updates the learning rate value on a per-dimension basis, restrict-
ing the past gradients instead of accumulating them. We also scale
the initial weights of our AE by sampling them from a normalized
uniform distribution. While recently proposed AE configurations
might fail to converge at a few number of epochs, our setting at-
tains a fast convergence maintaining its robustness to large gradi-
ents, oscillations, and vanishing problems. By simulation results,
we demonstrate that our proposed AE configuration improves the
bit reconstruction accuracy in shorter training time.

Index Terms: Autoencoders, channel estimation, deep learning,
physical layer, wireless systems.

I. INTRODUCTION

HE design and implementation of conventional communi-

cation systems are built upon strong probabilistic models
and assumptions [[1]. Furthermore, they are limited in explain-
ing the theory to practice when handling the complexity of opti-
mization for new wireless applications with high degrees of free-
dom. Deep learning (DL) has shown a high potential to address
these challenges via data-driven solutions, improving the uti-
lization of limited wireless spectrum resources [2[]-[4]. Instead
of following a rigid design, new generations of wireless systems
empowered by cognitive radio can learn from data, and optimize
their spectrum utilization to enhance their performance. These
smart communication systems rely on various detection, classi-
fication, and prediction tasks, such as signal detection and signal
type identification for spectrum sensing. To address these tasks,
DL provides powerful automated means for communication sys-
tems to learn from spectrum data and adapt to its dynamics [5]-
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[7]]. Wireless communications data come in large volumes at
high rates, and are subject to interference and security threats
due to the shared nature of the medium [_8]], [9]. Traditional mod-
eling often fall short when capturing the delicate relationship
between highly complex spectrum data, whereas DL has a ro-
bust capacity to meet the requirements (i.e., data rate, mobility,
latency, connection density, energy efficiency, traffic capacity,
etc.) of the next-generation mobile and wireless communication
systems (see [10]—[13]] and references therein).

DL-based designs for the wireless communications physical
layer has been studied recently, and one of the most promising
among them is the channel autoencoder (AE), that interprets a
traditional end-to-end wireless communications system as a pair
of convolutional neural networks (CNNs). A convolutional AE
can be described as a deep neural network (DNN) architecture
that consists of an encoder that learns a latent representation of
the given data, and a decoder that reconstructs the input data
from the encoded data. In this setting, joint modulation and cod-
ing at the transmitter correspond to the encoder, and joint de-
coding and demodulation at the receiver correspond to the de-
coder. Initial time-invariant simulations have demonstrated the
promising capacity of AEs by optimizing the reconstruction of
information bits through artificial neural network’s impairment
layers. However, the assumption that the wireless channel is
time-invariant, is only feasible when the receiver motion is less
than A\/2, where ) is the wavelength represented as the ratio of
the speed of light c to the carrier frequency f.. Emerging wire-
less applications are far from the latter assumption, requiring
a precise time-varying channel estimation, where the transmit-
ter, receiver, and objects in the propagation environment may
move relative to one another with a non-linear relation. If we
let the receiver velocity to be expressed as v (measured in me-
ters/second), the coherence-time can be expressed as T, = \/2v
(measured in seconds) [9]]. High-mobility scenarios reduce the
T, of the wireless system (i.e., the time during which the wire-
less channel can be assumed as time-invariant), demanding a
more frequent update of the AE’s parameters without sacrific-
ing accuracy and convergence time.

A reduced 7, limits the numbers of training epochs the AE
has to reach convergence (i.e., to be able to fully capture the
dense representations of the wireless channel impairments).
Limiting the number of epochs of the AE, compels to increase
the learning rate of the optimizer to cope with the same signal-
to-noise ratio (SNR) vs. block error rate (BLER). The problem
with increasing the learning rate is that it can make the AE fail
to converge, diverge, or stop learning after a few iterations. If
the AE fails to converge, the end-to-end wireless system will
produce errors in the reconstruction of the bits. We can verify
that the AE has not converged by analyzing the epoch vs. ac-
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Table 1. Summary of wireless channel autoencoder related works.

Methodology Data input Channel Cost function Optimizer Performance metric Future work Reference
Introduced the concept of a chan-  Discrete bits (i.e., 0’s  Random Gaussian  Cross-entropy loss. RMSprop and Adam, SNR vs. BER. Rely on channel T. O’Shea et al
nel AE to communicate binary in-  and 1’s). variable to  each but obtained better re- gradient approxima-  (2016) [[14].
formation over an impaired chan- in-phase  (I), and sults with Adam. tion methods, and
nel. quadrature (Q) sam- constrained by error

ples, as well as feedback bandwidth

frequency and phase and latency.

offset.
Design a DL-based physical layer A one-hot input vec-  Additive white Gaus-  Categorical cross-  Adaptive momentum. SNR vs. BER. Further comparison T. O’Shea et al.
for multiple input multiple output  tor of length 2% witha  sian noise N (0, o). entropy loss function. with error correction  (2017) [15].
(MIMO) wireless communications  single non-zero value coding baselines may
using an AE. of 1 (k = bits). be added.
Interpret a communications system  Input symbol repre-  Additive noise layer  Categorical cross-  Stochastic  gradient BLER, ie., Pr(S§ # Has only been vali- T. O’Shea et al
as an end-to-end reconstruction task ~ sented as a one-hot  with a fixed variance  entropy between input  descent (SGD). s) of the communica-  dated by simulations (2017) [16].
with an AE to learn full transceivers  vector. B = (2RE,/No)~!.  symbol and the recov- tions system. for block-based trans-
implementation for a given channel ered message with the missions. Limited
model. highest  probability scalability to long

Lep(0). block lengths.
Extend the existing ideas toward An embedding func-  Additive white gaus-  Cross-entropy Stochastic  gradient BLER. Does not enable S. Dorner et al
continuous end-to-end data trans-  tion that takes an in-  sian noise (AWGN) loss function  descent (SGD). on-the-fly finetuning  (2018) [[17].
mission over-the-air, which eases  teger input ¢ and re- with fixed random Lj,s5 = —log(bs). to adapt to varying
the restriction to short block lengths  turns the ith column  noise power o2 per channel conditions for
on [16]. of a matrix. complex symbol. which it has not been
trained

End-to-end communication system  Input symbol repre-  Additive noise layer  Categorical cross-  Stochastic  gradient BLER to be reduced The channel models T. Erpek et al. (2019)
using AEs to capture channel sented as a one-hor  with a fixed variance  entropy £c g (6). descent (SGD). Adam  at the receiver. used to simulate [18].
impairments, ~ jointly  optimiz-  vector. B8 = (2RE,/No)~ L. (Ir=0.001). the impairments are

ing the transmitter and receiver
operations in a single-antenna,
multiple-antenna, and multi-user
communications scenarios.

Gaussian.
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Fig. 1. An autoencoder-based end-to-end communication system.

curacy, and epoch vs. loss responses. Also, a slow convergence
rate will be translated into a higher BLER, and spacing in the
constellations produced by the AE.

In this paper, we address the need to update the parameters of
the wireless channel AE under a time-varying channel with short
coherence-time. Our goal is to structure a wireless channel AE
that can converge within a fewer number of epochs to cope with
the need of a rapid-varying real-world environment. We sug-
gest an optimized learning-rate update algorithm that changes
its value on a per-dimension basis, restricting the past gradi-
ents instead of accumulating them. Furthermore, we scale the
initial parameters of the AE by sampling them from a normal-
ized uniform distribution. The proposed convolutional encoder-
decoder design is able to capture wireless channel impairments
by jointly optimizing the transmitter and receiver operations.
We demonstrate that whereas previously proposed AE config-
urations might fail to converge at a few numbers of epochs,
our setting attains fast convergence, retaining robustness to large
gradients, oscillations, and vanishing gradients. By simulations,
we compare the SNR vs. BLER, and learned constellations from
different wireless channel AE configurations. We show that our
proposed AE reaches a higher bit reconstruction accuracy in
shorter training time. Our results demonstrate the power of op-
timization strategies and proper weight initialization in provid-
ing means to meet the requirements of new high-mobility and
multiple-environmental wireless applications.

II. RELATED WORKS

The concept of learning an end-to-end communications sys-
tem by using an encoder to replace the transmitter functional-
ities such as modulation and coding, and a decoder for the re-
ceiver functionalities such as demodulation and decoding was
first introduced by T. O’Shea ef al. in [14]. The authors used
a feed-forward network (FFN) to replace the functions of the
transmitter, and a decoder to act as the receiver. The channel
noise was simulated by adding a random Gaussian variable to
each in-phase (I) and quadrature (Q) samples, as well as fre-
quency and phase offset. They used discrete bits (i.e., 1’s and
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0’s) as the input of the AE, and compared the SNR against the bit
error rate (BER). Subsequently in [[15]], the authors generalized
the AE from [14]] to multiple input multiple outputs (MIMO)
wireless communications using a one-hot vector as input, noise
from an additive white Gaussian distribution N (0, ). The en-
coder and decoder were built using a convolutional FFN. They
used the same performance metric as the previous work. In
[16], the authors used an additive noise layer operating at rate
R = 4/7 with a fixed variance 8 = (2RE,/Ny)~! (with Ej
representing the energy per bit and Ny the noise power spec-
tral density), to supersede the wireless channel effects, with
a similar AE architecture as [14]], [15]]. The input block was
compared with the recovered message via a categorical cross-
entropy function. They show that the BLER obtained with their
AE can approximate the results of a conventional wireless com-
munications system. S. Dorner et al. [17]], extended the exist-
ing ideas to continuous end-to-end data transmission over-the-
air which eases the restriction to short block lengths found on
[16]. They used an embedding function that takes an integer as
input ¢ and returns the ith column of a matrix. Additive white
Gaussian noise (AWGN) with fixed random noise power o2 was
added to each complex symbol. The authors used the standard-
ized cross-entropy loss function Lj,ss = —log(bs) to compare
the sent blocks b, to the reconstructed ones. T. Erpek ef al. [18]],
generalized the end-to-end AE system to jointly optimize the
transmitter and receiver operations in a single-antenna, multiple-
antenna, and multi-user communications scenarios. The authors
used the one-hot vector coding to represent the input informa-
tion. Analogous to [16]], they used an additive noise layer with
a fixed variance 3 = (2RE}/Ny)~! between the encoder and
decoder, and a categorical cross-entropy. They showed that the
BLER is reduced at the receiver for all the scenarios.

All these works treat a communication system as an unsu-
pervised learning problem (i.e., no additional labels exist in the
dataset since the same input is used to compute the loss func-
tion), for which stochastic gradient descent (SGD) [19] is a
prevalent selection to find the local/global minimum of the cat-
egorical cross-entropy loss function. However, SGD does not
always guarantee good convergence for this kind of cost func-
tion. Moreover, there is no information on the value of the
learning rate, which makes it difficult to reproduce the exact
results. The learning rate is one of the most sensitive hyper-
parameters, since it significantly affects the performance of the
AE. Further optimizers has been proposed to solve certain chal-
lenges of training neural network models, such as root mean
square propagation (RMSprop) [20], adaptive gradient (Ada-
grad) [21]], adaptive moment (Adam) [22], Adam-based infinity
norm (Adamax) [22]], and Nesterov Adam (Nadam) [23]]. Never-
theless, either they require to manually select hyperparameters
such as the learning rate, or make the learning rate infinitesi-
mally small and stop the parameter update. Lastly, none of the
authors have discussed the initialization of the parameters from
the FFN. Initializing the weights of the network randomly, or
with a value of zero has been proved to cause vanishing and
exploding gradient problems [24].
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III. AN END-TO-END COMMUNICATION SEQUENCE
WITH DEEP LEARNING

The established communication system includes a transmit-
ter, a receiver, and a channel that carries the information be-
tween the transmitter and the receiver. Claude E. Shannon in
its original paper on communication theory [25], stated that the
fundamental problem of communication systems is: “Repro-
ducing at one point either exactly or approximately a message
selected at another point”. That statement is equivalent to the
concept of a modern AE, where its job is to reconstruct a given
input at its output. In this section, we revisit the physical layer
of a conventional communication system design and reformu-
late it as an end-to-end reconstruction task that aims to optimize
the transmitter and receiver components in a single operation.

A. The Limitation of Conventional Communication Systems

Conventional communication systems are divided into multi-
ple independent blocks for the transmitter and receiver. These
independent pieces are optimized individually for different tasks
[26]. Each block at the transmitter prepares the signal to the ef-
fects of the communication channel and noise at the receiver.
The source encoder compresses the input data and removes re-
dundancy. The channel encoder adds redundancy to the out-
put of the source encoder in a controlled way. The modulator
changes the characteristics of the signal based on the required
data rate. The transmitted signal is then distorted and attenu-
ated by the channel. On top of that, the impairments of the re-
ceiver’s hardware introduce extra noise to the signal. The trans-
mitter processes are reversed at the receiver to recover the infor-
mation. The optimization of these individual processing blocks
is known to be suboptimal, given that it does not optimize the
overall system collectively [[17]. In this conventional communi-
cation system, the transmitter communicates one from the M
available messages s € M = {1,2,---, M} to the receptor,
making n uses of the channel. The transmitter applies the mod-
ulation f : M — R" to the message s, and generates the signal
x = f(s) € R™ to be transmitted. Digital modulation maps the
input symbols from a discrete alphabet to complex numbers that
represent the points on the constellation diagram. The process of
digital modulation in conventional communication systems has
fixed and pre-established constellation diagrams. The desired
data rate determines the constellation scheme and the grouping
of the input bits for symbol construction. Linear decision re-
gions make it simple to decode the information at the receiver.

B. Accelerating the Convergence of an End-to-End Wireless
Communication Autoencoder

As opposed to the independent block optimization of conven-
tional communication systems, DL is capable to jointly optimize
multiple communications blocks at the transmitter and receiver
by training them as DNNs. In an AE system, the output con-
stellation diagrams are not pre-defined but learned, based on
the desired performance metric to be minimized at the receiver
(i.e., the symbol error rate, coherence-time, distance, propaga-
tion loss, etc.). The hardware of the transmitter imposes the
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Algorithm 1 Parameter learning and optimization

Input: Layer inputs m, layer outputs n, decay rate p,
constant €.

Output: Optimal hyperparameters 6 1.
Initialisation :

L Initialize 6~ U (/2551 /555).
2 Initialize accum. variables E[g?]o = 0, E[A8°%]y = 0.

Define the categorical cross-entropy loss function.

L lop(0) = =L M Y T
3 lop(0) = —37 2021 2j—0  Poj 109(Po,j)
Calculate parameter update.

> Glorot.

4:  while stopping criterion not met do > Num. of epochs.
5: fort =1:Tdo
6: Sample a minibatch B of M samples
7: Compute gradient: gy
8: Accumulate gradient:
Elg*]: = pBlg*i—1 + (1 - p)g;
9: Compute update:
Af; = —7“/1[51\%37]]271 gt
10 Accumulate updates:
E[A6%], = pE[A6%,_; + (1 p)A?
11: Apply update: 6,1 = 6, + AG;
12: end for

13: end while
14: return 0,

following constraints (T) [18]:

2|2 <n for energy,
lxs| < 1Vi for amplitude, D
E [|z;]*] <1Vi for average power,

on x. The data rate of this system is computed as R = k/n
(bit/channel use), where k& = logs (M) represents the number
of input bits. The notation (n, k) implies that a communication
system sends one from the M/ = 2* messages (i.e., k bits) over n
channel uses. Figure[T]illustrates a block diagram of the channel
AE, where the learning process exploits the distribution of the
communication channel data under impairments. The commu-
nication channel is explained by the density of the conditional
probability p(y|x), where y € R™ denotes the signal at the re-
ceiver. The transmitted message s is detected as y at the re-
ceiver, where the operation ¢g : R™ — M is applied to estimate
the value of 5. The channel AE parameters are optimized to map
x to y to enable s to be recovered by minimizing the probability
of error. The input symbol s is encoded as a one-hot vector, that
is, s can only take legal combinations of values with a single
high *1’ bit and all the others low ’0’ to allow a state machine
to run at a faster clock rate than any other encoding. Determin-
ing the state of a one-hot vector has a low and constant cost of
accessing one flip-flop. The transmitter is composed of an FNN
with two dense layers. The first dense layer has the same num-
ber of neurons as the available messages M, and is activated by
a rectified linear unit (ReLU). The second dense layer has the
same number of neurons as complex baseband symbols n, with-
out activation function to allow negative values. The last dense
layer output is reshaped to represent two complex numbers with
real (in-phase, I) and imaginary (quadrature, Q) parts for each
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Fig. 2. Training results of our proposed configuration: (a) Accuracy and (b)

loss obtained after our autoencoder has been trained for 50 epochs.

modulated input symbol. The final normalization layer of the
transmitter ensures that physical power constraints (I) on « are
met, preventing the AE to learn unnecessary large outputs and
become unstable. The channel is represented by additive white
Gaussian noise (AWGN) with variance

B = (2RE,/Ny) ™}, )

where Ej, /N constitutes the energy per bit Ej, to noise power
spectral density Ny ratio. The noise varies for every training
example, and it is used for the forward pass to distort the trans-
mitted signal, but neglected in the backward pass. Similar to
the transmitter, the receiver consists of a complex to real value
transformation, followed by a dense FNN with two layers. The
first dense layer has n neurons with ReLU activation, and the
second dense layer has M neurons without activation function.
The dense layers are followed by a softmax activation that out-
puts the probability vector p € (0,1)* over all possible mes-
sages. Lastly, the argmax function selects the element of p with
the highest probability value as s. During training, we use a cat-
egorical cross-entropy loss function {c(0) between the trans-
mitter and receiver (3)), that jointly optimize them and determine
the weights and biases for both of the FNNs that minimize the
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reconstruction loss.
1 M 2FNt_q
lep(9) = v Zl Zo s log(3) 3)
1= J=

The optimization involves the task of minimizing the function
lcg(0), by updating € in an iterative manner. We denote
(- () as the derivative of our cost function (3). The deriva-
tive ¢ ;(0) gives the slope of {cg(0) at the point 8 (i.e., it
defines how to scale the input to obtain the equivalent change
in the output Lo (6 + €) = Log(0) + €l 5(0)). For a small
enough ¢, the following condition is met:

lop (0 —esgn (Un(0))) < Lop(0). 4)

We aim to minimize our ¢¢ g (0) function with multiple inputs.
Nevertheless, the theory of minimization allows one scalar out-
put. For our multiple-input function, we use the concept of par-
tial derivatives and generalize to the case where the derivative
is with respect to a vector, denoting Vgl (0) as the gradient
containing the partial derivatives of /¢ (0). The loss function
Lcg(0) is minimized by moving € in small steps with the op-
posite sign of the derivative [19]. SGD updates the parameters
after computing the gradient of the error with respect to a single
training example. This is the optimization method used for al-
most all the related works in Section [l SGD updates the value
of the parameter @ until convergence (i.e., when every element
of the gradient is zero, or very close to zero) as follows:

00— GV(;ZCE(OL (5)

where ¢ is the learning rate, a positive scalar that determines the
size of the step. This value of ¢ is not evident for the AE design
and is considered an essential hyperparameter to reproducible
research. Accelerating the convergence of the AE requires us-
ing a higher value of €, however by using a high learning rate
the algorithm might overshoot the global minimum, or diverge
[27] (as will be shown in Section . It has been proved that
DL architectures based on FFNs, such as an AE, are strongly
affected by the choice of € [23]]. The value of € can determine
whether the end-to-end AE converges or not. Provided that the
AE converges with a given value of ¢, the chosen value can de-
termine the speed of convergence and if it converges to a high
or low-cost point. To accelerate the convergence time of an AE
and cope with the emerging high-mobility and short coherence-
time applications in wireless communications, the optimization
strategy is essential. To damp oscillations in directions of high
curvature, algorithms that compute the exponentially weighted
average of the past gradients and use the new gradient to update
the weights have been proposed [28]]. Nonetheless, the latter al-
gorithm introduces an additional hyperparameter that needs to
be chosen manually. Based on [29], and to avoid the gradients
become infinitesimally small, we restricted the past gradients
to a window to become a local estimate using recent gradients.
This method ensures progress in learning even after several iter-
ations. To implement the window, we accumulate an exponen-
tially decaying average of the squared gradients. At time ¢, we
compute this running average E[g?]; as follows:

E[¢*): = pE[g*)i—1 + (1 - p)g?, (©6)
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Fig. 3. 16PSK constellations generated by: (a) A conventional wireless communication system (16PSK-Hamming(7.4) HD), (b) AE optimized with SGD with
zero initialization (16PSK-AE-SGD-Zero [16]-[18])), (c) AE optimized with Adam and initialized randomly (16PSK-AE-Adam-Rand. [14], [[15]]), and (d) our
convolutional AE with the adaptive learning rate and normalized uniform distribution initialization (Proposed AE-Adadelta-Glorot ).
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Fig. 4. Signal to noise ratio (SNR) vs. block error rate (BLER) for different
convolutional autoencoder configurations after 50 epochs.

where p is the decay constant, and g; is the gradient of the pa-
rameters at the tth iteration 85%9590. The root mean square
(RMS) of the previous gradients up to time ¢ can be computed
with:

RMS[Q]t = E[QQ]t~ )

And the resulting parameter update A@; becomes:

RMS[AG)],_;

AG; = —
' RMS|g]:

- ®)
A summary of the wireless channel AE configuration for train-
ing can be found in Algorithm[I] The information on how the
weights of the FFNs were initialized is absent from previous
works, hence we replicated the baseline AE with both, random
and zero initialization. Since our AE uses a softmax activation

function, we scale the initial weights of our AE fully connected
layers with m inputs and n outputs as:

6 6
ei’jNU<_\/m+n’\/m+n>’ ©

by sampling each weight from a uniform distribution
U (—\/%, \/%) This normalized initialization derived from the
variance of the uniform distribution avoids the vanishing and ex-
ploding gradient problem [24f]. The training batch is the set of
all possible messages s € M, and the gradient is derived from

a categorical cross-entropy loss function between s and S.

IV. SIMULATION RESULTS AND PERFORMANCE
EVALUATION

Like any other unsupervised learning method, an AE learns
without any prior knowledge. The joint optimization is how
we force the AE to extract only the features that are necessary
and characterize the input data to store it in the bottleneck layer
(i.e., the layer that contains the smaller and dense representa-
tions). According to [15]], an AE can achieve equivalent perfor-
mance as the Hamming (7, 4) code with maximum likelihood
decoding (MLD). The AE achieves the same BLER as uncoded
BPSK for a (2, 2) system, and outperforms uncoded BPSK for
an (8, 8) system. We have reproduced the latter results and let
the AE learn a heavily tailored compression scheme for the spe-
cific communication system. The AE configurations are trained
using 4 NVIDIA GTX 1080Ti with local parallel pooling. All
results are obtained after 50 epochs. Fig. [Z(a) reveals that our
proposal attains a higher accuracy across the 50 training epochs.
Fig. 2{b) shows the rapid loss decrease of our wireless chan-
nel AE configuration. Table [2] displays the training and testing
time of the models under comparison using an Intel i7-7700
CPU, 4 NVIDIA GTX 1080Ti GPUs in parallel, and the on-
line Cloud TPU v3 from Google. Note that the proposed AE
model achieves the fastest training time when tested under the
three processor units. Also, our model requires a lower number
of epochs to reach convergence. In particular, note that when
using a TPU, our model training time is compliant with short
coherence-time channel use-cases for 5G scenarios [10]. As an
example, for a carrier frequency f. = 2 GHz, and a receiver ve-
locity v = 108 km/h (located outdoors), the coherence-time can
be as short as 7, = 2.5 ms, making it even shorter for higher
frequencies. The AEs have learned 16PSK with a random rota-
tion, without any prior modulation knowledge (Fig. [3). 16PSK
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Table 2. Training time obtained with different AE configurations and computational processing units.

AE configuration CPUT (s/epoch)

GPU* (s/epoch)

TPU? (s/epoch) Convergence in epoch

SGD-Zero [16]—-[18] 5.84x1073 4.36x1073 3.45x1073 160
Adam-Rand [14], [[15] 4.43x1073 2.98x 1073 2.02x1073 90
Proposed AE” 3.12x103 1.47x1073 0.01x1073 50

T Trained using Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz.
8Trained using Cloud TPU v3 in Google Colab.

constellations generated by (a) a conventional wireless commu-
nication system, (b) AE optimized with SGD with zero initial-
ization, (c) AE optimized with Adam and random initialization,
and (d) the proposed convolutional wireless channel AE with
the adaptive learning, rate and normalized uniform distribution
initialization. It is noteworthy that the separation between the
constellation points in Figs.[3[b) and[3|c) is not uniformly equal,
which increases the BLER at the receiver. The plot of SNR vs.
BLER of the wireless channel AE configurations under study
can be seen in Fig. ] We note that SGD optimizer with zero
initialization, and Adam with random initialization fail to re-
cover the information blocks from the transmitter. Our adaptive
learning with restricted gradients and normalized initialization
improves the performance for short coherence-time scenarios.

V. CONCLUSIONS AND FUTURE WORK

We have review how DL architectures can help in the opti-
mization of wireless communication systems. First, the formu-
lation of a transmitter and receiver as an AE for the physical
layer has been discussed. An end-to-end optimization is em-
ployed for the reconstruction loss, instead of optimizing the in-
dividual blocks of a conventional communication system (i.e.,
synchronization, symbol estimation, error correction, channel
coding, modulation, etc.). It has been demonstrated that this
formulation enables to capture channel impairments of single-
antenna systems, and can match modulation baselines by apply-
ing DNNs. We have tackled the challenge of parameters update
on a wireless channel AE under a time-varying channel with
short coherence-time, by using a dynamic learning rate that up-
dates its value on a per-dimension basis. Also, we have scaled
the initial weights of the wireless channel AE by sampling the
parameters from a normalized uniform distribution to avoid fad-
ing gradients. By simulation results, we show that our proposed
wireless channel AE configuration effectively increases the bit
reconstruction accuracy in shorter training time. Future works
in the field include channel generalization by scaling from an
AWGN model to sophisticated real-world channels. This chan-
nel generalization might be studied by combining generative
with discriminative RF models, in an adversarial way to improve
them together. Additionally, researchers may leverage the prop-
agation and physics theory to propose better impairment models.
Moreover, additional AEs may be employed to extend this ap-
proach to multi-user systems and multiple-antenna systems. It
would be interesting to see the new solutions for using AEs as
we scale systems. Finally, this work may be transferred to spe-
cific domains, like satellite communications, backhaul radios,
dense urban wireless, BSG MIMO, etc. All things considered,

 Trained using 4 NVIDIA GTX 1080Ti with local parallel pooling.

*Convolutional AE with dynamic learning rate and normalized initial weights distribution.

there is still a wide opportunity for future researchers to include
engineering knowledge to exploit AEs in an effort to take wire-
less communications optimization to a fully-driven DL system.
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