
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

130 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 2, APRIL 2020

Bandwidth Scheduling for Big Data Transfer with
Two Variable Node-Disjoint Paths

Aiqin Hou, Chase Qishi Wu, Liudong Zuo, Xiaoyang Zhang, Tao Wang, and Dingyi Fang

Abstract: Many large-scale applications in broad science, engineer-
ing, and business domains are generating big data, which must be
transferred to remote sites for various storage and analysis pur-
poses. Bandwidth reservation services that discover feasible rout-
ing options over dedicated paths in high-performance networks
have proved to be effective for such big data transfer. In this
paper, we formulate a generic problem of bandwidth scheduling
with two variable node-disjoint paths (BS-2VNDP) by exploring
the flexibility and capacity of multiple data transfer paths. We fur-
ther consider two variable paths of either fixed or variable band-
width with negligible or non-negligible path switching delay, re-
ferred to as 2VPFB-0/1 and 2VPVB-0/1, respectively. We prove that
all of these four scheduling problems are NP-complete, and then
propose a heuristic algorithm for each. For performance compar-
ison, we also design several other heuristic algorithms based on a
greedy strategy. These scheduling algorithms are implemented and
tested in both simulated and real-life networks, and extensive re-
sults show that the proposed heuristic algorithms significantly out-
perform other algorithms in comparison.

Index Terms: Bandwidth scheduling, high-performance networks,
node-disjoint paths, switching delay, variable paths.

I. INTRODUCTION

MANY large-scale applications in various science, engi-
neering, and business domains require fast and reliable

transfer of big data over long distances for remote operations.
High-performance networks (HPNs), which feature high link
bandwidths and are capable of performing advance bandwidth
reservation, have emerged as a promising solution for the un-
precedented requirement of big data transfer. Such networks
provision dedicated channels with reserved bandwidth using
circuit-switching infrastructures as exemplified by UltraScience
Net [1] and CHEETAH [2], or IP-based tunneling techniques as
exemplified by OSCARS [3] of ESnet and AL2S [4] of Inter-
net2. Typically, the bandwidth scheduler in HPNs is responsi-
ble for computing an appropriate network path and allocating

Manuscript received July 17, 2018; Revised April 20, 2019; approved for
publication by Vangelis Angelakis, Division III, February 17, 2020.

This research is sponsored by National Nature Science Foundation of China
under Grant No. U1609202, Key Research and Development Plan of Shaanxi
Province, China under Grant No. 2018GY-011, and Xián Science and Technol-
ogy Plan under Grant No. GXYD18.2 with Northwest University, China.

A. Hou, X. Zhang, T. Wang, and D. Fang are with the School of Informa-
tion Science and Technology, Northwest University, China, email: {houaiqin,
dyf}@nwu.edu.cn,{shinezxy, wangt}@stumail.nwu.edu.cn.

C. Q. Wu is with New Jersey Institute of Technology, email:
chase.wu@njit.edu.

L. Zuo is with California State University, Dominguez Hills, email:
lzuo@csudh.edu.

C. Q. Wu is the corresponding author.
Digital Object Identifier: 10.1109/JCN.2020.000004

link bandwidths to meet a user’s data transfer request based on
the network topology and bandwidth availability [5], [11], [13],
[18].

Considering the sheer volume of data transfer, an increasing
number of real-life bandwidth reservation systems adopt multi-
path routing instead of single-path routing to improve data trans-
fer throughput. However, multi-path routing also introduces ex-
tra overhead to both the control plane and the data plane of a
network [19]. Multipath routing could be either link or node dis-
joint, with varying complexity in different circumstances. Par-
ticularly, node-disjoint paths are able to establish multiple com-
pletely independent data channels between source and destina-
tion, and hence can effectively increase transmission bandwidth
and reliability [17]

Many problems on single-path bandwidth scheduling have
been proved to be NP-complete [31], which sheds light on the
difficulty of multi-path routing. For example, several studies
have shown that the problems with multiple constrained paths
(MCP) are generally NP-complete [20], [21]. Furthermore, find-
ing disjoint paths with a single constraint is also an NP-hard
problem [22]–[26]. The two-path routing problem with reliabil-
ity consideration is NP-hard in the strong sense, as opposed to
the ordinary NP-completeness of the single-path problem [27].

Multipath routing improves throughput in general, but also in-
troduces non-negligible overhead to both the control plane and
the data plane of an HPN. Especially for variable paths, it fre-
quently requires path switching between adjacent time slots, and
performing an excessive number of path switchings not only de-
grades transport performance but also increases implementation
complexity. Furthermore, if one user request takes up too many
paths (resources), it may cause a serious fairness issue to others.
Therefore, to find a good tradeoff between high throughput, sys-
tem overhead, transport robustness, and ease of implementation,
we consider two node-disjoint paths in this work.

We formulate a generic problem of bandwidth scheduling
with two variable node-disjoint paths (BS-2VNDP) to support
big data transfer in HPNs. In BS-2VNDP, we consider two
cases with two variable paths of either fixed or variable band-
width, referred to as 2VPFB and 2VPVB, or 2VPFB/VB for
brevity. Note that using variable paths during a data transfer
session requires some support from the network infrastructure
to perform path switching, which may incur a certain switch-
ing delay τ . Therefore, we further divide 2VPFB/VB into two
cases where the path switching delay is negligible (i.e., τ = 0)
and non-negligible (i.e., τ 6= 0), referred to as 2VPFB/VB-0
and 2VPFB/VB-1, respectively. We prove that all of these four
problems with different combinations of bandwidth variability
and switching delay negligibility are NP-complete, and design
a heuristic approach for each. For performance comparison, we

1229-2370/19/$10.00 © 2020 KICS

HOUet al.: BANDWIDTH SCHEDULING FOR BIG DATA TRANSFER WITH TWO ... 131

also design several other heuristic algorithms based on a greedy
strategy. We implement and test these bandwidth scheduling al-
gorithms in both simulated and real-life networks, and extensive
results show that the proposed Imp2VPFB-0, Imp2VPFB-1, and
Imp2VPVB-1 algorithms achieve about 10–20%, 12–35%, and
5% performance improvement on average over Greedy2VPFB-
0, Greedy2VPFB-1, and Greedy2VPVB-1 in comparison, re-
spectively.

The rest of this paper is organized as follows. We provide a
survey of related work on multi-path bandwidth scheduling in
Section II. We formulate the BS-2VNDP problem variants and
conduct complexity analysis in Section III. In Section IV, we
present the algorithm design with detailed explanations. Exten-
sive simulations are conducted and described in Section V. We
conclude our work in Section VI.

II. RELATED WORK

Different problems regarding multiple disjoint paths have
been extensively studied for decades in various contexts. We
provide below a survey of such efforts that are closely related
to our work.

Several researchers studied the problem of finding maximum
combined bandwidth in node-disjoint paths. In [25], Dahshan
proved that such problems with node-disjoint paths in com-
munication networks are NP-complete, and proposed a solu-
tion using a maximum-cost variant of Dijkstra’s algorithm and
a virtual-node representation to obtain maximum-bandwidth
node-disjoint paths. In [24], Shen et al. discussed the problem
of finding a pair of edge- or node-disjoint paths with maximum
combined bandwidth, including widest pair of disjoint paths
coupled (WPDPC) and widest pair of disjoint paths decoupled
(WPDPD). They proved that both versions of the problem are
NP-complete, and provided exact solutions using ILP and two
approximate solutions. In [30], a link-disjoint or node-disjoint
multi-path routing strategy is developed using two colored trees,
red and blue, rooted at a designated node called the drain. The
paths from a given source to the drain on these two trees are link-
disjoint or node-disjoint. This approach requires every node to
maintain only two preferred neighbors for each destination, one
on each tree. In [29], a distributed distance-vector algorithm is
used to find multiple node-disjoint paths including the shortest
path in a computer network.

Most of the aforementioned work considers static networks
for path computing, and the routes computed in such static net-
works correspond to those computed in a single time slot in
dynamic networks with time-varying link bandwidths across
multiple time slots. There also exist several efforts on band-
width scheduling in dynamic HPN networks, [31], [32], [36],
[38]. In [35], Zuo et al. investigated the problem of scheduling
as many concurrent bandwidth reservation requests as possible
over different paths in an HPN while achieving the average ear-
liest completion time (ECT) and the average shortest duration
(SD) of scheduled BRRs. These two problems were proved to be
NP-complete, and heuristic algorithms were proposed. In [37],
Zuo et al. considered two generic types of bandwidth reserva-
tion requests concerning data transfer reliability: (i) To achieve
the highest data transfer reliability under a given data transfer

deadline, and (ii) to achieve the earliest data transfer completion
time while satisfying a given data transfer reliability require-
ment. Optimal scheduling algorithms with optimality proofs are
proposed.

In [31], [32], Lin and Wu investigated single-path bandwidth
scheduling with an exhaustive combination of different path
and bandwidth constraints: i) Fixed path with fixed bandwidth
(FPFB), ii) fixed path with variable bandwidth (FPVB), iii) vari-
able path with fixed bandwidth (VPFB), and iv) variable path
with variable bandwidth (VPVB). These four problems have
the same objective to minimize the data transfer end time for
a given transfer request with a pre-specified data size. To sup-
port big data transfer, our work extends single-path routing to
multi-path routing to minimize the data transfer end time and
achieve a higher quality of service (QoS). Note that multi-path
routing could be leveraged from software-defined networking
(SDN) technologies to realize complex network operations and
control [12], [18]. For example, in [12], Aktas et al. used SDN
to provide data transport service control and resource provision-
ing to meet different QoS requirements from multiple coupled
workflows sharing the same service medium. They presented a
flexible control and a disciplined resource scheduling approach
for data transfer. In [16], Hou et al. studied bandwidth schedul-
ing with two fixed node-disjoint paths for concurrent data trans-
fer. In this work, we consider variable paths to achieve a higher
resource utilization than fixed paths.

III. PROBLEM FORMULATION

In this section, we firstly show the scheduling network model,
followed by the problem definition and complexity analysis.

A. Network Model

The topology of an HPN can be represented as a graph
G(V,E) with |V | nodes and |E| links, where each link l ∈ E
maintains a list of residual bandwidths specified as a segmented
constant function of time. We use a 3-tuple of time-bandwidth
(TB) (tl[i], tl[i + 1], bl[i]) to denote the residual bandwidth
bl[i] of link l during the i-th time-slot (i.e., the time interval
[tl[i], tl[i + 1]]), i = 0, 1, 2, · · ·, Tl − 1, where Tl is the total
number of time-slots on link l.

Before path computing, we combine the TB lists of all links
to build an aggregated TB (ATB) list, where we store the resid-
ual bandwidths of all links in each intersected time-slot. As
shown in Fig. 1, we create a set of new time slots by combin-
ing the time slots of all links, and then map the residual band-
widths of each link to the ATB list in each new time slot. We
denote the ATB list as (t[0], t[1], b0[0], b1[0], · · ·, b|E|−1[0]), · · ·,
(t[T − 1],t[T], b0[T−1], b1[T−1], · · ·, b|E|−1[T−1]), where T
is the total number of new time-slots after the aggregation of TB
lists of |E| links. Without loss of generality, we set the smallest
time-slot to be 1 time unit.

B. Problem Definition

We define a generic problem of BS-2VNDP as follows [5].
Definition 1: BS-2VNDP: Given a graph G(V,E) of an

HPN with an ATB list for all links, and a user request that spec-
ifies source vs, destination vd, and data size δ, we wish to find

132 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 2, APRIL 2020

R
es

id
u
a

l
b

an
d
w

id
th

R
es

id
u
a

l
ba

n
d
w

id
th

R
es

id
u
a
l

ba
n
d
w

id
th

TB list for link 1

t1[0] t1[1] t1[2]

TB list for link 2

Aggregated TB

t2[0] t2[1] t2[2]

t[0] t[1]

t

t

t
t[2] t[3] t[4]

t1[3]

t[5]

3

6

4

4

2

Fig. 1. An aggregated TB list by combining two individual TB lists.

two variable node-disjoint paths for the transfer of data size δ
from vs to vd such that the data transfer end time is minimized,
or equivalently, sum of the bandwidths of these two paths is
maximized.

In BS-2VNDP, we consider two cases based on the bandwidth
variability of each path, as defined below [5].

Definition 2: 2VPFB: Given the above network model and
user request, the goal is to find two variable node-disjoint paths
from vs to vd, each of which has a fixed bandwidth across differ-
ent time-slots, such that the data transfer end time is minimized.

Definition 3: 2VPVB: Given the above network model and
user request, the goal is to find two variable node-disjoint paths
from vs to vd, each of which could have variable bandwidths
across different time-slots, such that the data transfer end time
is minimized.

In 2VPFB/2VPVB, considering the path switching delay τ ,
we further consider two different types of service models: i)
The path switching delay is negligible (i.e., τ = 0), referred
to as 2VPFB-0/2VPVB-0, and ii) the path switching delay is
not negligible (i.e., τ > 0), referred to as 2VPFB-1/2VPVB-
1. Note that path switching may happen between two adjacent
time slots, either at the end of one time-slot or at the beginning
of its succeeding time-slot. Generally, it should be performed at
the time slot with a lower bandwidth because the data transfer
process is suspended during the period of path switching.

For illustration, we provide an example network in Fig. 2,
which has seven nodes, a pair of which are designated as source
and destination, and eleven links, each of which has residual
bandwidths across two time-slots starting from time point 0 as
labeled on the link. The other parameters include data size
δ = 19 units and path switching delay τ = 0.1 unit of time.

In 2VPFB-0, the optimal solution is shown in Fig. 3(a).
In the first time-slot, we find two node-disjoint paths:
p1[0] : vs − v2 − v3 − vd (with maximum bandwidth of 6 in
time-slot 0), and p2[0] : vs − v1 − v4 − vd (with bandwidth
of 4, which is also the maximum in the current network except

v
3

v
4

v1 5, 6

6, 5

6, 13

vs vd

v5
v
2

Fig. 2. An example HPN with link bandwidths.

the nodes in use). In the second time-slot, we also find two
node-disjoint paths with the maximum bandwidth in the current
network: p1[1] : vs − v2 − v5 − vd (with maximum bandwidth
of 10), and p2[1] : vs − v1 − v3 − v4 − vd (with bandwidth of
7). Obviously, the transfer of data δ = 19 cannot be completed
in time-slot 0, so data transfer will continue to time-slot 1. Since
we consider fixed bandwidth (i.e., the bandwidth remains con-
stant during the entire data transfer period), the available band-
width of p1[1] and p2[1] is the same as that of p1[0] and p2[0],
respectively. Therefore, sum of bandwidths in both time-slots is
the same as β = 6+4 = 10. For data size δ = 19, the total data
transfer end time is 19/10 = 1.9.

In 2VPFB-1, the optimal solution is shown in Fig. 3(b), where
the two node-disjoint paths and the sum of their respective band-
widths are the same as in 2VPFB-0. Since both of the time-slots
have the same fixed bandwidth on each path, the path switching
could be performed either at the end of the first time-slot (i.e.,
time interval [0.9, 1]), or at the beginning of the second time-
slot (i.e., time interval [1, 1.1]). For data size δ = 19, the data
transfer end time is calculated as 9/10 + 0.1 + 10/10 = 2.

In 2VPVB-0, the optimal solution is shown in Fig. 3(c). In
the first time-slot, we find two node-disjoint paths: p1[0] :
vs − v2 − v3 − vd (with maximum bandwidth of 6), and p2[0] :
vs − v1 − v4 − vd (with bandwidth of 4, which is also the max-
imum in the current network except the nodes in use). The sum
of bandwidths in the first time-slot is β[0] = 6 + 4 = 10.
In the second time-slot, we also find two node-disjoint paths:
p1[1] : vs − v2 − v5 − vd (with maximum bandwidth of 10),
and p2[1] : vs − v1 − v3 − v4 − vd (with bandwidth of 7,
which is also the maximum in the current network except the
nodes in use). Sum of the bandwidths in the second time-slot is
β[1] = 10 + 7 = 17. For data size δ = 19, the data transfer end
time is 10/10 + 9/17 = 1.53.

In 2VPVB-1, the optimal solution is shown in Fig. 3(d),
where the two node-disjoint paths and sum of their respec-
tive bandwidths are the same as in 2VPVB-0. Since sum of
path bandwidths in the first time-slot is smaller than that in
the second time-slot, the path switching of both paths should
be performed at the end of the first time-slot (i.e., time interval
[0.9, 1]). For data size δ = 19, the data transfer end time is
9/10 + 0.1 + 10/17 = 1.59.

C. Problem Complexity Analysis

The 2VPFB/VB-0 and 2VPFB/VB-1 problems as formulated
are more general than their counterparts in static networks with
constant link bandwidths [22]–[25], [27].

HOUet al.: BANDWIDTH SCHEDULING FOR BIG DATA TRANSFER WITH TWO ... 133

10

b

b

t

b

 (d)

 (c)

b

6

t

10

10 1.53

4

7

6

t10 1.53

4

7

t

0.9

switch

1.59

 (a)

v -v -v -vs d2 3
6

t10

v -v -v -vs d2 5

1.9

4

6

10

4

0.9

switch

2

 (b)

t

0

v -v -v -vs d1 4 s 41 3 dv -v -v -v -v

v -v -v -vs d2 3

v -v -v -vs d1 4

v -v -v -vs d2 5

s 41 3 dv -v -v -v -v

v -v -v -vs d2 3

v -v -v -vs d1 4

v -v -v -vs d2 5

s 41 3 dv -v -v -v -v

v -v -v -vs d2 5

s 41 3 dv -v -v -v -vv -v -v -vs d2 3

v -v -v -vs d1 4

Fig. 3. Illustration of 2VPFB-0/1 and 2VPVB-0/1: (a) 2VPFB-0, (b) 2VPFB-1,
(c) 2VPVB-0, and (d) 2VPVB-1.

To analyze the computational complexity of these problems,
we first introduce the WPDPC problem, as defined and proved
to be NP-complete in [24].

Definition 4: WPDPC: given a network with a fixed band-
width for each link, does there exist two disjoint paths P1 and
P2 from vs to vd, such that the sum of the bandwidths of these

two paths is greater than or equal to X?
WPDPC is to compute two edge-/node-disjoint paths with the

largest sum of bandwidths in a single time slot, which is a spe-
cial case of our problems using two disjoint variable paths across
multiple time slots, as detailed below.

C.1 Complexity of 2VPFB-0

We have the following theorem for the complexity of
2VPFB-0.

Theorem 1: 2VPFB-0 is NP-complete.
Proof: We first show that 2VPFB-0 ∈ NP . The decision

version of 2VPFB-0 is as follows: Given the network model
and user request, are there two variable node-disjoint paths from
vs to vd, each of which has a fixed bandwidth across different
time-slots, such that the data transfer end time is no larger than
a given bound T without considering the path switching delay?
Given two variable node-disjoint paths from vs to vd, we can
identify the available fixed bandwidth of these two paths and
further check whether the data transfer end time is no larger than
T . Obviously, the above process can be done in polynomial time,
so 2VPFB-0 ∈ NP .

The NP-hardness of 2VPFB-0 could be established through
proof-by-restriction. We consider a special case of 2VPFB-0
where the bandwidth of each link keeps the same across all time-
slots. Obviously, any instance of WPDPC could be mapped to
the above special case of 2VPFB-0, and such mapping could
be done in polynomial time. If we could find two paths sat-
isfying WPDPC, these two paths could also satisfy 2VPFB-0
(t = δ/X), and vice versa (X = δ/t). Therefore, 2VPFB-0 is
at least as hard as WPDPC.

Since a special case of 2VPFB-0 is NP-complete, so is the
general 2VPFB-0 problem with time-varying link bandwidths.
Proof ends.

2

C.2 Complexity of 2VPFB-1

We have the following lemma for the complexity of 2VPFP-1.
Lemma 1: 2VPFB-1 is NP-complete.

Proof: We prove the NP-completeness of 2VPFB-1 by
showing that 2VPFB-0 is a special case of 2VPFB-1. This is
straightforward as we can restrict 2VPFB-1 to 2VPFB-0 by only
considering those problem instances where the path switching
delay is negligible (i.e., τ = 0). Since 2VPFB-0 is NP-complete,
so is 2VPFB-1.

2

C.3 Complexity of 2VPVB-0

We have the following lemma for the complexity of
2VPVB-0.

Lemma 2: 2VPVB-0 is NP-complete.
Proof: Similar to the proof of Theorem 1, we can prove

the NP-completeness of 2VPVB-0 by showing that the WPDPC
problem [24] is a special case of 2VPVB-0. We restrict 2VPVB-
0 to WPDPC by only considering those problem instances where
the bandwidth of each link remains constant across all time-
slots. In other words, there is no need to switch paths between
any adjacent time-slots. Hence, WPDPC is a special case of

134 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 2, APRIL 2020

2VPVB-0 when the network is static with constant link band-
widths. Since WPDPC is NP-complete [24], so is 2VPVB-0. 2

C.4 Complexity of 2VPVB-1

We have the following lemma for the complexity of
2VPVB-1.

Lemma 3: 2VPVB-1 is NP-complete.
Proof: The NP-completeness of VPVB-1 has been estab-

lished in [31] by showing that FPVB, which is NP-complete, is a
special case of VPVB-1. Obviously, 2VPVB-1 is a more general
version of VPVB-1 that computes multiple concurrent VPVB-1
paths. 2

IV. DESIGN OF SCHEDULING ALGORITHMS

The NP-completeness of 2VPFB/VB-0/1 indicates that there
does not exist any polynomial-time optimal algorithm unless
P = NP . Therefore, we focus on the design of heuristic al-
gorithms for 2VPFB/VB-0/1.

Since no existing algorithm can be used directly to solve these
four scheduling problems, we design a heuristic algorithm for
each in Sections IV.A, IV.B, IV.C, and IV.D, respectively. Mean-
while, we design heuristic algorithms based on a greedy strategy
for performance comparison.

A. Heuristic Scheduling Algorithms for 2VPFB-0

In 2VPFB-0, we compute two node-disjoint paths in time-slot
[0, i], i ≤ T −1, each of which is allowed to use different routes
with zero path switching delay across different time-slots, while
the bandwidth must be fixed.

A.1 Greedy Algorithm for 2VPFB-0

We design a polynomial-time greedy algorithm, Greedy2VPFB-0,
whose pseudocode is provided in Algorithm 1. The algorithm
computes two variable node-disjoint path sets (i.e., p1 and p2)
with fixed bandwidth, on which data of size δ has the earli-
est transfer end time (i.e., maximum sum of fixed bandwidths).
Each path set is composed of paths p1[i] and p2[i] from vs to vd
with maximum bandwidth β1[i] and β2[i] using Dijkstra’s algo-
rithm at different time-slots. The bandwidths of p1 and p2 are
β1 = min(β1[0], · · ·, β1[i]) and β2 = min(β2[0], · · ·, β2[i]), re-
spectively. The algorithm checks if the data of size δ can be con-
currently transferred by the path-pair during the time-slot range
[0, i] (i.e., time interval [t[0], t[i+1]]). If paths in these two path
sets could not finish the data transfer, we move onto the next
time slot; otherwise, we compute the transfer end time tend. At
the end, tend is returned. If tend = ∞, it means that we could
not finish the data transfer of size δ within T time slots. Note
that the data size to be transferred by each path set is propor-
tional to its bandwidth during the data transfer period.

Since the time complexity of Dijkstra’s algorithm is O(|V |2),
the time complexity of Greedy2VPFB-0 is O(T · |V |2 + T) in
the worst case, where T is the total number of new time slots in
the ATB list.

A.2 Improved Algorithm for 2VPFB-0

In Greedy2VPFB-0, for a given data size δ, the bandwidths
of path sets p1 and p2 are determined by the bandwidths of the

Algorithm 1 Greedy2VPFB-0
Input: an HPN graphG(V,E) with an ATB list, source vs, des-

tination vd, and data size δ
Output: the earliest transfer end time tend
1: tend =∞, β1 =∞, and β2 =∞;
2: for 0 ≤ i ≤ T − 1 do
3: β1[i] = bandwidth of the widest path p1[i] from vs to vd

in time slot i;
4: Remove the nodes and links of p1 from G to create a new

graph G′;
5: β2[i] = bandwidth of the widest path p2[i] from vs to vd

in time slot i;
6: β1 = min(β1[i], β1);
7: β2 = min(β2[i], β2);
8: β = β1 + β2;
9: if β · (t[i+ 1]− t[0]) ≥ δ then
10: tend = t[0] + δ/β;
11: if tend <∞ then
12: Break;
13: return tend.

bottleneck paths, namely the paths with the least available band-
widths among all paths in p1 and p2, respectively. Although the
bandwidth of each path is maximized in each time-slot, there is
no guarantee that the concurrent transfer end time by the path-
pair for data size δ is minimized from a global perspective. Since
the bandwidth of each path during transfer period [0, i] is fixed,
it may not be always optimal to start data transfer immediately,
for example, when the path bandwidths in the preceding time-
slots are much smaller than those in the succeeding time-slots
during the transfer period. In this case, we may start the data
transfer at the beginning of some time-slot after time-slot 0 to
improve Greedy2VPFB-0, referred to as Imp2VPFB-0.

The pseudocode of Imp2VPFB-0 is provided in Algorithm 2.
For a given time-slot i, Imp2VPFB-0 computes the widest path-
pair from vs to vd in the time-slot i, and then repeatedly checks
if the given data δ can be transferred during time-slot [j, i],
i ≥ j ≥ 0. If there exists certain j such that the data of size
δ can be transferred during time-slot [j, i] (i.e., time interval
[t[j], t[i + 1]]), the data transfer start time is t[j] and the data
transfer end time is computed as shown in Line 12 of Algo-
rithm 2; otherwise, Imp2VPFB-0 increases i by 1. The earliest
data transfer end time tend is returned at the end.

The same as in Greedy2VPFB-0, the data size to be trans-
ferred by each path set in Imp2VPFB-0 is also proportional to
its bandwidth during the data transfer period. Since the time
complexity of Dijkstra’s algorithm is O(|V |2), the complexity
of Imp2VPFB-0 is O(T · |V |2 + T 2) in the worst case.

B. Heuristic Scheduling Algorithms for 2VPFB-1

For 2VPFB-1, the path-switching delay is not negligi-
ble. Since each path set (such as p1 and p2) has a fixed band-
width, a path switching with a delay τ > 0 could occur either
at the end of one time-slot or at the beginning of its succeeding
time-slot. Since data transfer is suspended during the period of
path switching, it may not be always beneficial to perform path
switching between two adjacent time-slots. In the extreme case

HOUet al.: BANDWIDTH SCHEDULING FOR BIG DATA TRANSFER WITH TWO ... 135

Algorithm 2 Imp2VPFB-0
Input: an HPN graphG(V,E) with an ATB list, source vs, des-

tination vd, and data size δ
Output: the earliest transfer end time tend
1: tend =∞;
2: for 0 ≤ i ≤ T − 1 do
3: β1[i] = bandwidth of the widest path p1[i] from vs to vd

in time slot i;
4: Remove the nodes and links of p1 from G to create a new

graph G′;
5: β2[i] = bandwidth of the widest path p2[i] from vs to vd

in time slot i;
6: β1 =∞ and β2 =∞;
7: for i ≥ j ≥ 0 do
8: β1 = min(β1[j], β1);
9: β2 = min(β2[j], β2);
10: β[j] = β1 + β2;
11: if β[j] · (t[i+1]− t[j]) ≥ δ and (t[j]+ δ/β[j]) < tend

then
12: tend = t[j] + δ/β[j];
13: if tend <∞ then
14: Break;
15: return tend.

where τ is sufficiently large, any path switching would cause a
negative impact on the performance, and therefore 2VPFB-1 re-
duces to 2FPFB. In this paper, we assume that τ is a constant
and smaller than the length of any time-slot on the ATB list.

B.1 Greedy Algorithm for 2VPFB-1

We design a polynomial-time greedy algorithm, Greedy2VPFB-1,
whose pseudocodes is provided in Algorithm 3. Firstly, it com-
putes the node-disjoint path pair with the maximum bandwidth,
i.e., p1[i] and p2[i], in every time-slot, i = 0, 1, · · ·, T − 1.
During time slot [0, i], the bandwidths of p1 and p2 are β1 =
min(β1[0], · · ·, β1[i]) and β2 = min(β2[0], · · ·, β2[i]). Each
path may perform a path switching at every adjacent time-slot
to use the path pair with the maximum bandwidths. There are i
path switchings during the data transfer, and the total switching
delay is τ · i. The maximum amount of transferred data by path
pair p1 and p2 concurrently during the time-slot range [0, i] with
i path switchings is (β1 + β2) · (t[i + 1] − t[0] − τ · i). If it is
greater than or equal to the data size δ, then the data transfer is
completed.

Since the time complexity of Dijkstra’s algorithm is O(|V |2),
the complexity of Greedy2VPFB-0 is O(T · |V |2) in the worst
case.

B.2 Improved Algorithm for 2VPFB-1

Greedy2VPFB-1 starts data transfer immediately at time
point t[0] and performs path switching in every adjacent time-
slot, neither of which may not be always optimal. The improved
algorithm for 2VPFB-1, referred to as Imp2VPFB-1, varies the
transfer start time and, meanwhile, reduces the number of path
switchings between different time-slots to improve the perfor-
mance. The pseudocode of Imp2VPFB-1 is provided in Algo-
rithm 4.

Algorithm 3 Greedy2VPFB-1
Input: an HPN graphG(V,E) with an ATB list, source vs, des-

tination vd, data size δ, and path switching delay τ
Output: the earliest transfer end time tend
1: tend =∞, β1 =∞, and β2 =∞;
2: for 0 ≤ i ≤ T − 1 do
3: Use Dijkstra’s algorithm to compute path p1[i] with the

widest bandwidth β1[i] from vs to vd in G;
4: Remove the nodes and links of p1[i] from G to create a

new graph G′;
5: Use Dijkstra’s algorithm to compute path p2[i] with the

widest bandwidth β2[i] from vs to vd in G′;
6: β1 = min(β1[i], β1);
7: β2 = min(β2[i], β2);
8: β[i] = β1 + β2;
9: if β[i] · (t[i+ 1]− t[0]− τ · i) ≥ δ then
10: tend = t[0] + δ/β[i] + τ · i;
11: if tend <∞ then
12: Break;
13: return tend.

In Line 3, it initializes tend = ∞ (transfer end time for δ),
k1 = 0 (the path-switching time of p1) and k2 = 0 (the path-
switching time of p2).

In Lines 6–12, during time slot [p, q], under the condition of
fixed bandwidth, it optimizes the first path p1 so that the num-
ber of path-switchings is minimized. For a certain transfer start
time-slot p and a certain transfer end time-slot j, we can op-
timize path p1 such that it has the minimum number of path
switchings during time slot [p, q]. In Line 6, we firstly compute
the maximum available fixed bandwidth β1[p, q] of p1 during the
time slot range [p, q] with q − p times of path switchings in the
worst case, which can be used as a reference value to decide if
we should perform a path switching between any two adjacent
time-slots. We use p1[j] to denote path p1 with the maximum
bandwidth in time-slot j, and its bandwidth in the next time-
slot j + 1 is denoted as β′1[j + 1]. If β′1[j + 1] == β1[j + 1]
or β′1[j + 1] ≥ β1[p, q] then there is no need to perform path
switching between time slot j and j + 1 (i.e., we keep the p1[j]
in the time-slot j + 1 and let p1[j + 1] = p1[j]). Otherwise, it
switches path p1[j] to path p1[j + 1] with the widest bandwidth
in time-slot j+1, and increases the number of switchings k1 on
path p1 by 1.

In Lines 13–16, in each time-slot j, after deleting p1[j], it
computes a node-disjoint path set p2[j], which forms p2 with the
maximum bandwidth. Then, we optimize path p2 by reducing
the number of path-switchings k2 during time slot [p, q] using
the method adopted for p1 previously.

After that, the path-switching counts k1 and k2 are minimized
for paths p1 and p2 during transfer period [p, q]. Note that gener-
ally, the number of path-switchings and the path-switching time
points of two path sets p1 and p2 are different.

In Lines 17–22, if the maximum amount of concurrently
transferred data (β1[p, q] · ((t[q+1]− t[p])− τ · k1)+ β2[p, q] ·
((t[q+ 1]− t[p])− τ · k2)) ≥ δ, we can obtain the data transfer
end time t′end. If t′end < tend, it updates tend with the smaller
t′end. After iterating through all time slots, we have the earliest

136 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 2, APRIL 2020

Algorithm 4 Imp2VPFB-1
Input: an HPN graphG(V,E) with an ATB list, source vs, des-

tination vd, data size δ, and path switching delay τ
Output: the earliest transfer end time tend
1: for 0 ≤ i ≤ T − 1 do
2: Compute path p1[i] with the widest bandwidth β1[i] from

vs to vd in time slot i in G;
3: tend =∞, k1 = 0, k2 = 0;
4: for 0 ≤ q ≤ T − 1 do
5: for 0 ≤ p ≤ q do
6: Compute the fixed bandwidth β1[p, q] of p1 among

time-slots [p, q];
7: for p ≤ j ≤ q − 1 do
8: Compute the bandwidth of p1[j] in next time-slot

j + 1, denoted as β′1[j + 1] ;
9: if β′1[j + 1] == β1[j + 1] || β′1[j + 1] ≥ β1[p, q];

then
10: p1[j + 1] = p1[j];
11: else
12: k1 = k1 + 1;
13: for p ≤ j ≤ q do
14: Remove the nodes and links of p1[j] from G to cre-

ate a new G′ in current time-slot j;
15: Use Dijkstra’s algorithm to compute the path with

the widest bandwidth from vs to vd in G′ in current
time slot j, denote the returned path as p2[j] and its
bandwidth as β2[j];

16: Repeat line 6–12 with the subscript 1 replaced by 2,
and return β2[p, q] and k2;

17: if (β1[p, q] ·((t[q+1]−t[p])−τ ·k1)+β2[p, q] ·((t[q+
1]− t[p])− τ · k2)) ≥ δ then

18: δ′ = δ− (β1[p, q] · ((t[q]− t[p])− τ ·k1)+β2[p, q] ·
((t[q]− t[p])− τ · k2));

19: t′end = t[q] + δ′/(β1[p, q] + β2[p, q]);
20: if t′end < tend then
21: tend = t′end;
22: return tend.

transfer end time tend.
Since the time complexity of Dijkstra’s algorithm is O(|V |2),

the complexity of Imp2VPFB-1 isO(T 3·|V |2) in the worst case.

C. Heuristic Scheduling Algorithm for 2VPVB-0

For 2VPVB-0, the path-switching delay is negligible, so
we can perform path switching at any adjacent time slots
without affecting the transfer time. We design a greedy ap-
proach, Greedy2VPVB-0, whose pseudocode is provided in Al-
gorithm 5. It computes two node-disjoint paths p1 and p2 with
the shortest transfer time (i.e., the maximum sum of variable
bandwidths) for the transfer of data size δ. Each path is com-
posed of a set of paths from source vs to destination vd with
the maximum bandwidth in respective time-slots. In each time-
slot i, it computes two node-disjoint paths p1[i] and p2[i] from
vs to vd, with the maximum bandwidth β1[i] and β2[i] using
Dijkstra’s algorithm, and checks if the data of size δ can be con-
currently transferred during the time-slot range [0, i] (i.e., time
interval [t[0], t[i + 1]]). If it can finish the data transfer, it com-

Algorithm 5 Greedy2VPVB-0
Input: an HPN graphG(V,E) with an ATB list, source vs, des-

tination vd, and data size δ
Output: the earliest transfer end time tend
1: for 0 ≤ i ≤ (T − 1) do
2: β1[i] = bandwidth of the widest path p1[i] from vs to vd

in time slot i in G;
3: Remove the nodes and links of p1[i] from G to create a

new graph G′;
4: β2[i] = bandwidth of the widest path p2[i] from vs to vd

in time slot i in G′;
5: β[i] = β1[i] + β2[i];
6: if δ ≤ β[i] · (t[i+ 1]− t[i]) then
7: tend = t[i] + δ/β[i];
8: Break;
9: else
10: δ = δ − β[i] · (t[i+ 1]− t[i]);
11: i = i+ 1;
12: return tend.

putes the transfer end time tend by path-pair (p1 and p2); other-
wise, it repeatedly increases i by 1. If the data can be completely
transferred during time-slots [0, i], the maximum number of path
switchings needed is i in the worst case, which does not affect
the transfer time. The data size to be transferred over each path
is also proportional to its bandwidth during the data transfer pe-
riod.

Since the time complexity of Dijkstra’s algorithm is O(|V |2),
the time complexity of Greedy2VPVB-0 is O(T · |V |2) in the
worst case.

We would like to point out that an improved algorithm for
2VPVB-0 is not designed. For 2VPVB-0, it is obvious that the
data transfer should start at t[0] since the path-switching delay
is negligible without further delay for changing bandwidths.

D. Heuristic Scheduling Algorithms for 2VPVB-1

For 2VPVB-1, the path-switching delay is non-negligible.
Moreover, performing a path switching at different time points
(i.e., at the end of one time-slot or at the beginning of its suc-
ceeding time-slot) may lead to different performances if the path
bandwidths are different across two adjacent time-slots. It is fa-
vorable to perform path-switching in the time-slot with a smaller
bandwidth between two adjacent time slots, as data transfer is
suspended during the period of path switching.

D.1 Greedy 2VPVB-1 Algorithm

We design a polynomial-time greedy algorithm, Greedy2VPVB-1,
whose pseudocode is provided in Algorithm 6. Starting from
time-slot 0 to T − 1, in each time-slot i, it computes two node-
disjoint paths p1[i] and p2[i] with the maximum bandwidths
β1[i] and β2[i] using Dijkstra’s algorithm, respectively. Taking
path p1 as an example, path-switching in time-slot i falls in sev-
eral cases: i) When β1[i] ≥ β1[i − 1] and β1[i] ≥ β1[i + 1], it
does not perform path-switching and the transferred data size
is β1[i] · (t[i + 1] − t[i]), ii) when β1[i] < β1[i − 1] and
β1[i] < β1[i + 1], there are two path switchings (i.e., both the
beginning and the end of time-slot i), and the transferred data

HOUet al.: BANDWIDTH SCHEDULING FOR BIG DATA TRANSFER WITH TWO ... 137

Algorithm 6 Greedy2VPVB-1
Input: an HPN graphG(V,E) with an ATB list, source vs, des-

tination vd, data size δ and path switching delay τ
Output: the earliest transfer end time tend
1: for 0 ≤ i ≤ T − 1 do
2: β1[i] = the widest bandwidth of path p1[i] from vs to vd

in time slot i in G;
3: Remove the nodes and links of p1[i] from G to create a

new graph G′ in time slot i;
4: β2[i] = the widest bandwidth of path p2[i] from vs to vd

in time slot i in G′;
5: β[i] = β1[i] + β2[i];
6: for 0 ≤ i ≤ T − 1 do
7: if δ ≤ β[i] · (t[i+ 1]− t[i]) then
8: tend = t[i] + δ/β[i];
9: Break;
10: else
11: if β[i] ≥ β[i+ 1] then
12: δ = δ − β[i] · (t[i+ 1]− t[i]);
13: else
14: if (β[i] < β[i− 1]) and (i 6= 0) then
15: δ = δ − β[i] · (t[i+ 1]− t[i]− 2 · τ);
16: else
17: δ = δ − β[i] · (t[i+ 1]− t[i]− τ);
18: return tend.

size is β[i] · (t[i + 1] − t[i] − 2 · τ), and iii) when β1[i] >
β1[i − 1] and β1[i] < β1[i + 1], it performs the path switch-
ing at the end of time-slot i, and when β1[i] < β1[i − 1] and
β1[i] > β1[q+1], it performs path switching at the beginning of
time-slot i. The transferred data size in both subcases of case iii)
above is β[i] · (t[i+ 1]− t[i]− τ). On path p2, it performs path
switching between two adjacent time-slots in the same way.The
data size to be transferred by each path is also proportional to its
bandwidth during the data transfer period. The time complexity
of Greedy2VPVB-1 is O(T · (|V |2 + T)).

D.2 Improved Algorithm for 2VPVB-1

In Greedy2VPVB-1, we perform path switching in the time-
slot with lower bandwidth, but frequent path switchings may
cause a considerable overhead. We design an improved algo-
rithm to reduce the number of path switchings, referred to
Imp2VPVB-1, whose pseuducode is provided in Algorithm 7.

In Line 3, it initializes the number of path-switchings in each
time slot for each path. We use k1[i] and k2[i] to denote the
number of path switchings on p1[i] and p2[i] in time slot i, re-
spectively. We also use δ′ to denote the remaining data size at
time point t[i] (i.e., the beginning of time-slot i), and use δ′[j]
to denote the size of data transferred in time-slot j.

In Lines 4–32, it iterates through each time slot and check if
the data transfer can be finished.

While in Lines 5–19, for each i, it checks if the remain-
der data size can be transferred in this time slot. If data trans-
fer can be completed in time-slot i, it computes the transfer
end time according to different path-switching scenarios: i)
When the path-switching time of two paths in time-slot i is
the same (i.e., k1[i] = k2[i]), the transfer time is updated to

Algorithm 7 Imp2VPVB-1
Input: an HPN graphG(V,E) with an ATB list, source vs, des-

tination vd, data size δ, and path switching delay τ
Output: the earliest transfer end time tend
1: for 0 ≤ i ≤ T − 1 do
2: Find a path-pair p1[i] and p2[i] with the the widest band-

width β1[i] and β2[i], respectively, from vs to vd in time
slot i;

3: δ′ = δ, k1[] = 0, k2[] = 0;
4: for 0 ≤ i ≤ T − 1 do
5: for 0 ≤ j ≤ i do
6: δ′[j] = β1[j] · ((t[j + 1] − t[j]) − k1[j] · τ) + β2[j] ·

((t[j + 1]− t[j])− k2[j] · τ);
7: δ′ = δ′ − δ′[j];
8: if δ′ ≤ 0 then
9: δ′ = δ′ + δ′[i];
10: if k1[i] = k2[i] then
11: tt = t[i] + k1[i] · τ + δ′/(β1[i] + β2[i]);
12: else
13: if k1[i] > k2[i] then
14: δ′ = δ′ − (k1[i]− k2[i]) · β2[i];
15: tt = t[i] + k1[i] · τ + δ′/(β1[i] + β2[i]);
16: else
17: δ′ = δ′ − (k2[i]− k1[i]) · β1[i];
18: tt = t[i] + k2[i] · τ + δ′/(β1[i] + β2[i]);
19: tend = t[0] + tt;
20: Break;
21: Compare data[i, i+1] using different schemes in Table 1,

and select the one with maximum data[i, i+ 1];
22: if p1[i+ 1] 6= p1[i] then
23: if β1[i+ 1] > β1[i] then
24: k1[i] = k1[i] + 1;
25: else
26: k1[i+ 1] = k1[i+ 1] + 1;
27: if p2[i+ 1] 6= p2[i] then
28: if β2[i+ 1] > β2[i] then
29: k2[i] = k2[i] + 1;
30: else
31: k2[i+ 1] = k2[i+ 1] + 1;
32: return tend.

tt = t[i] + k1[i] · τ + δ′/(β1[i] + β2[i]), ii) when the number
of path-switchings of p1[i] is larger than the number of path-
switchings of p2[i] (i.e., k1[i] > k2[i]), the transfer time is up-
dated to tt = t[i] + k1[i] · τ + δ′/(β1[i] + β2[i]), and iii) when
the number of path-switchings of p1[i] is smaller than the num-
ber of path-switchings of p2[i] (i.e.,k1[i] < k2[i]), the transfer
time is updated to tt = t[i]+k2[i] ·τ+δ′/(β1[i]+β2[i]). Since
path switching may be performed at the end of one time-slot or
at the beginning of its preceding time-slot, the value of k1[i] and
k2[i] could be 0, 1, 2 (the value could be 0 and 1 if i is the first
or the last transfer time-slot). In Fig. 4, we illustrate different
path switching cases in time-slot 1 for p1, where the number of
path switchings k1[1] is 0, 1, 1, and 2 in Figs. 4(a), 4(b), 4(c),
and 4(d), respectively. For convenience, we set the time-slot to
be 1 time unit, and path-switching delay to be 0.1 time unit.

If the data movement can be completed before time point

138 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 2, APRIL 2020

6

4

2

0 1 2 3

b

t

switch

switch

τ τ

6

4

2

0 1 1.1 2 3

b

t

switch

switch

6

4

2

0 1 1.9 2 3

b

t

switch

switch

6

4

2

0 1 1.1 1.9 2 3

b

t

switch

switch

0.9 2.1

2.1

(a)

(b)

0.9

(c)

(d)

τ τ

τ τ

τ τ

Fig. 4. Illustration of path switchings in time slot 1 on p1: (a) k1[1] = 0, (b)
k1[1] = 1, (c) k1[1] = 1, and (d) k1[1] = 2.

t[i+ 1] (i.e., in time-slot i), we compute the remaining data size
δ′ at time point t[i] and the transfer end time according to both
the path-switching counts of the two node-disjoint paths:

i) when k1[i] = k2[i], the concurrent transfer end time is tt =
t[i] + k1[i] · τ + δ′/(β1[i] + β2[i]);

ii) when k1[i] > k2[i], then tt = t[i]+k1[i] · τ +(δ′− (k1[i]−
k2[i]) · β2[i])/(β1[i] + β2[i]);

iii) when k1[i] < k2[i], then tt = t[i]+k2[i] · τ +(δ′− (k2[i]−
k1[i]) · β1[i])/(β1[i] + β2[i]).

In Line 21, if the data transfer has not yet been completed
in time-slot i, it continues to transfer in the next time-slot i +
1. We compute the maximum amount of data to be transferred
in time-slot [i, i + 1] by analyzing possible path-pairs and their
switching schemes. We first define several notations to facilitate
the explanation of our path switching scheme:
• p1[i],p2[i]: Two node-disjoint paths with maximum band-

width in the current time-slot i.
• β1[i],β2[i]: Bandwidth of p1[i] and p2[i], respectively.
• β1[i + 1],β2[i + 1]: Bandwidth of p1[i + 1] and p2[i + 1],

respectively.
• p′1[i+1]: Path with the widest bandwidth after deleting p2[i]

in time slot i+ 1.
• p′2[i+1]: Path with the widest bandwidth after deleting p1[i]

in time slot i+ 1.

• β′1[i+ 1]: Bandwidth of path p′1[i+ 1].
• β′2[i+ 1]: Bandwidth of path p′2[i+ 1].
• data[i, i + 1]: Amount of data movement during time-slot
[i, i+ 1].

To improve the bandwidths of path-pair in time-slot i+1 and
avoid path switching delay between these two time-slots, we
design six different types of path switching schemes between
time-slot i and i + 1 as shown in Table 1, and select the one
with the largest amount of data movement data[i, i + 1]. For
each scheme, the amount of data movement data[i, i + 1] is
calculated as the sum of transferred data by two paths during
time-slot [i, i+ 1].

In Table 1, we consider the following path switching scenar-
ios:

i) When the bandwidth sum of two paths retains their origi-
nally computed value in time-slot i+1, we further consider
two cases: Type 1 keeps both originally computed paths in-
variable in i+1 time-slot while Type 2 exchanges two paths
in i+ 1 time-slot.

ii) When path p1 does not switch between time-slot i and i+1
(i.e., in time-slot i + 1, we still use path p1[i], although
the bandwidth of this path may be changed), we reduce the
path switching delay of p1 and further consider two cases:
Type 3 computes a new path p′2[i + 1] disjoint from p1[i]
while Type 4 keeps originally computed path p2[i + 1] in-
variable in i+ 1 time-slot.

iii) When path p2 does not switch between time-slot i and i+1
(i.e., in time-slot i + 1, we still use path p2[i], although the
bandwidth of this path may be changed), we reduce the path
switching delay p2 and further consider two cases: Type 5
computes a new path p′1[i + 1] disjoint from p2[i] while
Type 6 keeps originally computed path p1[i + 1] invariable
in i+ 1 time-slot.

In each case, we compute the amount of moved data
data[i, i+1] during time-slot [i, i+1]. The calculation formulas
are provided in Table 1. After comparing the amount of moved
data data[i, i + 1] in all these schemes, we select an optimal
scheme with the largest amount of moved data during time-slot
[i, i+ 1].

In Lines 22–31, according to the selected path switching
scheme, we compute the number of path switchings on each path
in time-slots i and i+ 1 for the next round of calculation.

Since the time complexity of Dijkstra’s algorithm is O(|V |2),
the time complexity of Imp2VPVB-1 isO(T · |V |2+T 2), where
T is the total number of new time slots in the ATB list, and |V |
is the number of nodes.

V. PERFORMANCE EVALUATION

For performance evaluation, we implement the proposed al-
gorithms and conduct i) proof-of-concept experiments on an em-
ulated SDN testbed based on the Mininet [6] system, and ii) ex-
tensive simulations in randomly generated networks as well as a
real-life HPN topology.

HOUet al.: BANDWIDTH SCHEDULING FOR BIG DATA TRANSFER WITH TWO ... 139

Table 1. Different path switching schemes.

Type Path-pair in
time-slot i

Path-pair in
time-slot i+ 1

Compare paths between time-slot [i, i+ 1] Switch time point Data movement during time-slot [i, i+ 1]

1

p1[i] p1[i+1]
p1[i+1]=p1[i] no switching β1[i](t[i+1]-t[i])+β1[i+1](t[i+2]-t[i+1])

p1[i+1]6=p1[i] β1[i+1]>β1[i] end of i β1[i](t[i+1]-t[i]-τ)+β1[i+1](t[i+2]-t[i+1])
β1[i+1]<β1[i] beginning of i+1 β1[i](t[i+1]-t[i])+β1[i+1](t[i+2]-t[i+1]-τ)

p2[i] p2[i+1]
p2[i+1]=p2[i] no switching β2[i](t[i+1]-t[i])+β2[i+1](t[i+2]-t[i+1])

p2[i+1]6=p2[i] β2[i+1]>β2[i] end of i β2[i](t[i+1]-t[i]-τ)+β2[i+1](t[i+2]-t[i+1])
β2[i+1]<β2[i] beginning of i+1 β2[i](t[i+1]-t[i])+β2[i+1](t[i+2]-t[i+1]-τ)

2

p1[i] p2[i+1]
p2[i+1]=p1[i] no switching β1[i](t[i+1]-t[i])+β2[i+1](t[i+2]-t[i+1])

p2[i+1]6=p1[i] β2[i+1]>β1[i] end of i β1[i](t[i+1]-t[i]-τ)+β2[i+1](t[i+2]-t[i+1])
β2[i+1]<β1[i] beginning of i+1 β1[i](t[i+1]-t[i])+β2[i+1](t[i+2]-t[i+1]-τ)

p2[i] p1[i+1]
p1[i+1]=p2[i] no switching β2[i](t[i+1]-t[i])+β1[i+1](t[i+2]-t[i+1])

p1[i+1]6=p2[i] β1[i+1]>β2[i] end of i β2[i](t[i+1]-t[i]-τ)+β1[i+1](t[i+2]-t[i+1])
β1[i+1]<β2[i] beginning of i+1 β2[i](t[i+1]-t[i])+β1[i+1](t[i+2]-t[i+1]-τ)

3

p1[i] p1[i] p1[i+1]=p1[i] no switching β1[i](t[i+1]-t[i])+β1[i+1](t[i+2]-t[i+1])

p2[i] p
′
2[i+1]

p
′
2[i+1]=p2[i] no switching β2[i](t[i+1]-t[i])+β

′
2[i+1](t[i+2]-t[i+1])

p
′
2[i+1]6= p2[i]

β
′
2[i+1]>β2[i] end of i β2[i](t[i+1]-t[i]-τ)+β

′
2[i+1](t[i+2]-t[i+1])

β
′
2[i+1]<β2[i] beginning of i+1 β2[i](t[i+1]-t[i])+β

′
2[i+1](t[i+2]-t[i+1]-τ)

4

p1[i] p1[i] p1[i] intersects p2[i+1] 0

p1[i]
disjoint
p2[i+1]

p1[i+1]=p1[i] no switching β1[i](t[i+1]-t[i])+β1[i+1](t[i+2]-t[i+1])

p2[i] p2[i+1]
p2[i+1]=p2[i] no switching β2[i](t[i+1]-t[i])+β2[i+1](t[i+2]-t[i+1])
p2[i+1]
6=p2[i]

β2[i+1]>β2[i] end of i β2[i](t[i+1]-t[i]-τ)+β2[i+1](t[i+2]-t[i+1])
β2[i+1]<β2[i] beginning of i+1 β2[i](t[i+1]-t[i])+β2[i+1](t[i+2]-t[i+1]-τ)

5 p1[i] p
′
1[i+1]

p
′
1[i+1]=p1[i] no switching β1[i](t[i+1]-t[i])+β

′
1[i+1](t[i+2]-t[i+1])

p
′
1[i+1]6=p1[i]

β
′
1[i+1]>β1[i] end of i β1[i](t[i+1]-t[i]-τ)+β

′
1[i+1](t[i+2]-t[i+1])

β
′
1[i+1]<β1[i] beginning of i+1 β1[i](t[i+1]-t[i])+β

′
1[i+1](t[i+2]-t[i+1]-τ)

p2[i] p2[i] p2[i+1]=p2[i] no switching β2[i](t[i+1]-t[i])+β2[i+1](t[i+2]-t[i+1])

6 p1[i] p1[i+1]

p1[i+1] intersects p2[i] 0

p1[i+1]
disjoint
p2[i]

p1[i+1]=p1[i] no switching β1[i](t[i+1]-t[i])+β1[i+1](t[i+2]-t[i+1])
p1[i+1]
6=p1[i]

β1[i+1]>β1[i] end of i β1[i](t[i+1]-t[i]-τ)+β1[i+1](t[i+2]-t[i+1])
β1[i+1]<β1[i] beginning of i+1 β1[i](t[i+1]-t[i])+β1[i+1](t[i+2]-t[i+1]-τ)

p2[i] p2[i] p2[i+1]=p2[i] no switching β2[i](t[i+1]-t[i])+β2[i+1](t[i+2]-t[i+1])

A. Experiment-based Performance Evaluation

A.1 Mininet Testbed Setup

The Mininet emulation tool has been widely used for con-
structing a virtual network topology [9]. It is also suitable for
evaluating the performance of scheduling algorithms as the
overhead introduced by the scheduling process in Mininet emu-
lation is marginal compared to the scheduling algorithm running
time, and is almost negligible in large cases [11].

Based on the Mininet system, we emulate each switch in
the virtual network topology using a virtual instance of Open
vSwitch [7], and choose OpenDaylight [8] as the OpenFlow
controller, which is a Java-based modular open platform for cus-
tomizing and automating networks of any size and scale. We de-
ploy a small virtual network testbed emulating a 7-site wide-area
network, as shown in Fig. 5. On this testbed, we set the band-
width capacity of each link between two OpenFlow switches
to be 10 Gb/s, and the path switching delay is measured to be
τ = 0.1 s.

A.2 Performance Comparison

A.2.a Illustration of a Scheduling Instance. For illustration, we
first conduct a scheduling experiment on the emulated testbed
over a period of total 4 time slots, among which the smallest
one is of 1 time unit. The available bandwidths of the network
links across [0, 3] time slots are provided in Table 2.

In this experiment, one bulk data transfer request r0−6 with
data size δ = Gbits, source s0, and destination s6 is submitted.
We calculate two node-disjoint paths using different algorithms
in deferent scheduling models, i.e., 2VPFB-0, 2VPFB-1, and

Sw-1

Sw-2

Sw-3

Sw-4Host 1

Host 2

Host 4

Host 3

MGMT link

10Gb/s link
OpenFlow controller

Host 0

Sw-0

Sw-5

Sw-6

Host 5

Host 6

Fig. 5. A Mininet emulated network testbed.

2VPVB-1. The corresponding scheduling results are provided
in Tables 3, 4, and 5, respectively.

From Table 3, we observe that the proposed Imp2VPFB-0 al-
gorithm outperforms Greedy2VPFB-0 by 20% in the scheduling
model of 2VPFB-0 in terms of earliest completion time (ECT).

From Table 4, we observe that the proposed Imp2VPFB-1 al-
gorithm outperforms Greedy2VPFB-1 by 25% in the scheduling
model of 2VPFB-1 in terms of ECT.

From Table 5, we observe that the proposed Imp2VPVB-
1 algorithm outperforms Greedy2VPVB-1 by about 3% in the
scheduling model of 2VPFB-1 in terms of ECT. Note that
Imp2VPVB-1 only reduces the number of switching times com-
pared with Greedy2VPVB-1.

140 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 2, APRIL 2020

Table 2. Link bandwidths in Gb/s across [0,3] time slots on the network testbed in Fig. 5.

Time slots
Links

S0 − S1 S0 − S2 S1 − S3 S1 − S4 S2 − S3 S2 − S5 S3 − S4 S3 − S5 S3 − S6 S4 − S6 S5 − S6

0 4 3 3 4 2 4 1 2 4 1 1
1 2 3 2 3 3 1 1 2 1 2 1
2 7 8 10 6 8 2 10 10 8 6 6
3 5 7 5 9 6 2 2 5 2 5 10

Table 3. Scheduling results of different algorithms for request r0−6 in the scheduling model of 2VPFB-0 on the testbed.

Algorithms Time slots Paths Bandwidths
(Gb/s)

Transfer
bandwidths (Gb/s) ECT (s)

Greedy2VPFB-0

0 p1 : S0 − S1 − S3 − S6 3

3 3.33

p2 : S0 − S2 − S5 − S6 1

1 p1 : S0 − S1 − S4 − S6 2
p2 : S0 − S2 − S3 − S6 1

2 p1 : S0 − S2 − S3 − S6 8
p2 : S0 − S1 − S4 − S6 6

3 p1 : S0 − S1 − S4 − S6 5
p2 : S0 − S2 − S3 − S5 − S6 5

Imp2VPFB-0 2 p1 : S0 − S2 − S3 − S6 8 14 2.71
p2 : S0 − S1 − S4 − S6 6

Table 4. Scheduling results of different algorithms for request r0−6 in the scheduling model of 2VPFB-1 on the emulated network testbed.

Algorithms Time slots Paths Bandwidths
(Gb/s)

Transfer
bandwidths (Gb/s) Switching times ECT (s)

Greedy2VPFB-1

0 p1 : S0 − S1 − S3 − S6 3

3 p1, p2
both 3 3.63

p2 : S0 − S2 − S5 − S6 1

1 p1 : S0 − S1 − S4 − S6 2
p2 : S0 − S2 − S3 − S6 1

2 p1 : S0 − S2 − S3 − S6 8
p2 : S0 − S1 − S4 − S6 6

3 p1 : S0 − S1 − S4 − S6 5
p2 : S0 − S2 − S3 − S5 − S6 5

Imp2VPFB-1 2 p1 : S0 − S2 − S3 − S6 8 14 0 2.71
p2 : S0 − S1 − S4 − S6 6

Table 5. Scheduling results of different algorithms for request r0−6 in the scheduling model of 2VPVB-1 on the emulated network testbed.

Algorithms Time slots Paths Bandwidths
(Gb/s)

Transfer
bandwidths (Gb/s) Switching times ECT (s)

Greedy2VPVB-1

0 p1 : S0 − S1 − S3 − S6 3 4

p1, p2
both 2 2.26

p2 : S0 − S2 − S5 − S6 1

1 p1 : S0 − S1 − S4 − S6 2 3
p2 : S0 − S2 − S3 − S6 1

2 p1 : S0 − S2 − S3 − S6 8 14
p2 : S0 − S1 − S4 − S6 6

Imp2VPVB-1

0 p1 : S0 − S1 − S3 − S6 3 4

p1 1
p2 1 2.23

p2 : S0 − S2 − S5 − S6 1

1 p1 : S0 − S1 − S4 − S6 2 3
p2 : S0 − S2 − S5 − S6 1

2 p1 : S0 − S1 − S4 − S6 6 14
p2 : S0 − S2 − S3 − S6 8

A.2.b Performance Evaluation With Varying Data Sizes. For a
thorough performance evaluation, we conduct more emulation-
based experiments with varying data sizes on the testbed. Each
of these experiments spans across total 10 time slots, among
which, the smallest one is of 1 time unit, and the link bandwidth
between any two switches is initialized to be the link capacity
of 10 Gb/s, as determined by each switch’s line card speed. The
available bandwidths of the network links across [0, 9] time slots
are provided in Table 6.

We repeat the scheduling experiments under different data
sizes increasing from 10 Gbits to 100 Gbits with a step of
10 Gbits. The transfer end time measurements in different
scheduling models are plotted in Figs. 6, 7, and 8, respectively.
In all these experiments, we observe that the proposed algo-
rithms consistently outperform the other algorithms in compari-
son.

B. Simulation-based Performance Evaluation

B.1 Simulation Setup

For performance evaluation, we generate a set of networks
containing different numbers of nodes and links of random
bandwidths within an appropriate range. We randomly select a
source node vs and a destination node vd in each network. There
are 100 time slots in total and the start time t[0] = 0. The link
bandwidths follow a normal distribution: b = bmax · e−

1
2 (x)

2

,
where bmax is set to be 100 Gb/s, which is the capacity of most
production backbone networks nowadays, and x is a random
variable within the range of [0, 1].

We investigate the scheduling performance of the proposed
algorithms as network size scales up in Section V.B.2, and as
both network size and data volume increase simultaneously, as
faced by many big data applications, in Section V.B.3.

HOUet al.: BANDWIDTH SCHEDULING FOR BIG DATA TRANSFER WITH TWO ... 141

Table 6. Link bandwidths in Gb/s across [0, 9] time slots on the emulated network testbed in Fig. 5.

Time slots
Links

S0 − S1 S0 − S2 S1 − S3 S1 − S4 S2 − S3 S2 − S5 S3 − S4 S3 − S5 S3 − S6 S4 − S6 S5 − S6

0 3 3 3 1 1 1 2 3 2 2 2
1 2 3 1 3 3 2 1 1 3 2 3
2 6 10 9 10 7 9 8 6 10 8 8
3 10 6 7 10 7 6 10 6 6 8 9
4 8 10 10 7 6 9 7 8 10 10 8
5 9 8 8 10 9 7 8 8 6 10 10
6 9 10 8 10 8 6 10 6 10 7 7
7 8 10 8 6 9 6 8 7 9 8 10
8 10 8 8 10 8 7 6 9 10 6 9
9 9 7 6 8 7 10 7 7 7 10 6

Size of data (Gb)

10 20 30 40 50 60 70 80 90 100

T
ra

n
s
fe

r
e
n

d
 t
im

e
 (

s
)

2

3

4

5

6

7

8

9

10
Greedy2VPFB-0

Imp2VPFB-0

Fig. 6. Performance comparison for 2VPFB-0 as data
sizes vary on the testbed.

Size of data (Gb)

10 20 30 40 50 60 70 80 90 100

T
ra

n
s
fe

r
e
n

d
 t
im

e
 (

s
)

2

3

4

5

6

7

8

9

10
Greedy2VPFB-1

Imp2VPFB-1

Fig. 7. Performance comparison for 2VPFB-1 as data
sizes vary on the testbed.

Size of data (Gb)

10 20 30 40 50 60 70 80 90 100

T
ra

n
s
fe

r
e
n

d
 t
im

e
 (

s
)

2

3

4

5

6

7

8

9

10

Greedy2VPVB-1

Imp2VPVB-1

Fig. 8. Performance comparison for 2VPVB-1 as
data sizes vary on the testbed.

B.2 Evaluation of Scheduling Performance for 2VPFB-0/1 and
2VPVB-1 with Varying Network Sizes

For performance evaluation, we randomly generate 15 dif-
ferent large-scale networks, indexed from 1 to 15, as shown
in Table 7. In these randomly generated networks, we set the
data volume for transfer to be 1000 GByte. In each of these
network instance, we run Greedy2VPFB-0/1, Imp2VPFB-0/1,
Greedy2VPVB-1, and Imp2VPVB-1 for 10 times with differ-
ent random seeds, and measure each algorithm’s average per-
formance and standard deviation.

For 2VPFB-0/1, we plot the mean and standard deviation of
the data transfer end time obtained by Greedy2VPFB-0/1 and
Imp2VPFB-0/1 in Figs. 9 and 10, respectively. We observe
that Imp2VPFB-0/1 achieve about 10–20% and 12–35% per-
formance improvement on average over Greedy2VPFB-0/1, re-
spectively.

We also evaluate the performance of Greedy2VPVB-1 and
Imp2VPVB-1 for 2VPVB-1 in the same set of networks, and
plot the performance measurements in Fig. 11. We observe that
Imp2VPVB-1 also consistently outperforms Greedy2VPVB-1
in all the cases with about 5% performance improvement.

We would like to point out that bandwidth is the dominat-
ing factor that determines data transfer end time for a given
data volume in a given network. We notice that the algo-
rithm performance improvement for 2VPVB-1 is less signifi-
cant than 2VPFB-0/1. This is because Greedy2VPVB-1 has al-
ready considered maximum data transfer in every time slot, and
Imp2VPVB-1 only reduces the number of path switchings be-
tween different time-slots, hence yielding a limited performance
gain. For 2VPFB-0, Imp2VPFB-0 may postpone data transfer to
a later time-slot to use a higher bandwidth than Greedy2VPFB-
0; while for 2VPFB-1 with path-switching delay, Imp2VPFB-1

further reduces the number of path switchings between different
time-slots to improve the performance over Greedy2VPFB-0.

B.3 Evaluation of Scheduling Performance for 2VPFB-0/1 and
2VPVB-1 With Varying Network Sizes and Data Volumes

We randomly generate 15 different large-scale networks.
The data size to be transferred varies within a range from
1000 Gbytes to 3000 Gbytes.

For 2VPFB-0/1, in each of these 15 large-scale networks and
for each data size, we run Imp2VPFB-0/1 and Greedy2VPFB-
0/1 for 10 times, and plot the average data transfer end time in
Figs. 12 and 13. We observe that Imp2VPFB-0/1 outperforms
Greedy2VPFB-0/1 in all of the cases with about 10–20% and
12–35% performance improvement on average, respectively.

We also evaluate the performance of Imp2VPVB-1 and
Greedy2VPVB-1 for 2VPVB-1 in the same set of networks,
and plot their performance measurements in Fig. 14. Sim-
ilarly, Imp2VPVB-1 outperforms Greedy2VPVB-1 in all
the cases with about 5% performance improvement. Since
Greedy2VPVB-1 has already considered maximum data trans-
fer in every time slot, and Imp2VPVB-1 attempts to reduce the
number of path switchings, the performance gain is limited.

These simulation results show that transfer end time is largely
determined by data volume, not network size, and are qualita-
tively similar to those in Section V.B.2.

B.4 Performance Comparison for 2VPFB-0/1 and 2VPVB-1 in
ESnet5

To further evaluate the performance of the proposed algo-
rithms, we conduct scheduling experiments using the topology
of a real-life HPN, ESnet5 of U.S. Department of Energy [34],
with 57 nodes and 65 links, as shown in Fig. 15. We vary the vol-

142 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 2, APRIL 2020

Table 7. Index of 15 large-scale simulated networks.

Index of network size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of nodes 40 50 60 70 80 90 100 120 150 200 230 260 290 320 350
Number of links 80 100 120 140 160 180 200 240 300 400 450 500 520 540 560

Size of network

2 4 6 8 10 12 14

T
ra

n
s
fe

r
e
n

d
 t

im
e
 (

m
in

u
te

s
)

30

40

50

60

70

80

90

100
Greedy2VPFB-0

Imp2VPFB-0

Fig. 9. Performance comparison for 2VPFB-0 as net-
work size vary.

Size of network

2 4 6 8 10 12 14

T
ra

n
s
fe

r
e
n

d
 t

im
e
 (

m
in

u
te

s
)

10

20

30

40

50

60

70

Greedy2VPFB-1

Imp2VPFB-1

Fig. 10. Performance comparison for 2VPFB-1 as
network size vary.

Size of network

2 4 6 8 10 12 14

T
ra

n
s
fe

r
e
n

d
 t

im
e
 (

m
in

u
te

s
)

20

22

24

26

28

30

32
Greedy2VPVB-1

Imp2VPVB-1

Fig. 11. Performance comparison for 2VPVB-1 as
network size vary.

Size Of D
ata (G

Byte)

3000
2500

2000
1500

1000

15
13

11
9

Size Of Network

7
5

3
1

0

20

60

40

T
ra

n
s
fe

r
E

n
d

 T
im

e
 (

m
in

u
te

s
)

Greedy2VPFB-0

Imp2VPFB-0

Fig. 12. Performance comparison of the algorithms
for 2VPFB-0 in large networks as both data size
and network size vary.

Size Of D
ata (G

Byte)

3000
2500

2000
1500

1000

15
13

11
9

Size Of Network

7
5

3
1

100

50

0

T
ra

n
s
fe

r
E

n
d

 T
im

e
 (

m
in

u
te

s
)

Greedy2VPFB-1

Imp2VPFB-1

Fig. 13. Performance comparison of the algorithms
for 2VPFB-1 in large networks as both data size
and network size vary.

Size Of D
ata (G

Byte)

3000
2500

2000
1500

1000

15
13

11
9

Size Of Network

7
5

3
1

40

20

0

T
ra

n
s
fe

r
E

n
d

 T
im

e
 (

m
in

u
te

s
)

Greedy2VPVB-1

Imp2VPVB-1

Fig. 14. Performance comparison of the algorithms
for 2VPVB-1 in large networks as both data size
and network size vary.

vs v
d

SEAT

BOST

ATLA

HOUS

ELPA

LOSA

DENV

STAR

KANS

SALT

LAKE

SACR

WASH

NEWY

CHIC

Fig. 15. The topology of ESnet5.

ume of data within a range from 1150 GBytes to 2750 GBytes
in the experiments. The corresponding performance measure-
ments for 2VPFB-0/1 in ESnet are plotted in Figs. 16 and 17,
and the performance measurements for 2VPVB-1 in ESnet are
plotted in Fig. 18. These results show that the improved al-
gorithms consistently achieve better performance than greedy
heuristic algorithms.

Again, the simulation results from ESnet show that data size
is the dominating factor that determines transfer end time in
a given network, and are qualitatively similar to those in Sec-

tion V.B.2.

VI. CONCLUSION

We investigated a bandwidth scheduling problem with two
variable node-disjoint paths of fixed and variable bandwidth in
dedicated networks, in each of which, we further considered two
subcases according to the negligibility of path switching delay.
We proved these four problem variants to be NP-complete, and
designed a heuristic for each. The performance superiority of
the proposed heuristics was verified by extensive simulation re-
sults in a large set of simulated and real-life networks in compar-
ison with greedy strategies. It is of our future interest to incor-
porate and test these scheduling algorithms in the control plane
of existing HPNs.

REFERENCES
[1] N. S. V. Rao, W. R. Wing, S. M. Carter, and Q. Wu, “UltraScience net: Net-

work testbed for large-scale science applications,” IEEE Commun. Mag.,
vol. 43, no. 11, pp. 12–17, 2005.

[2] X. Zheng, M. Veeraraghavan, N.S.V. Rao, Q. Wu, and M. Zhu,
“CHEETAH: Circuit-switched high-speed end-to-end transport architec-
ture testbed,” IEEE Commun. Mag., vol. 43, no. 11, pp. 11–17, 2005.

HOUet al.: BANDWIDTH SCHEDULING FOR BIG DATA TRANSFER WITH TWO ... 143

Size of data (GByte)
1150 1550 1950 2350 2750

T
ra

n
s
fe

r
e
n

d
 t

im
e
 (

m
in

u
te

s
)

5

10

15

20

25

30

35

Greedy2VPFB-0

Imp2VPFB-0

Fig. 16. Performance comparison for 2VPFB-0 in
ESnet5.

Size of data (GByte)
1150 1550 1950 2350 2750

T
ra

n
s
fe

r
e
n

d
 t

im
e
 (

m
in

u
te

s
)

5

10

15

20

25

30

35
Greedy2VPFB-1

Imp2VPFB-1

Fig. 17. Performance comparison for 2VPFB-1 in
ESnet5.

Size of data (GByte)
1150 1550 1950 2350 2750

T
ra

n
s
fe

r
e
n

d
 t

im
e
 (

m
in

u
te

s
)

5

10

15

20

25

30

35

Greedy2VPVB-1

Imp2VPVB-1

Fig. 18. Performance comparison for 2VPVB-1 in
ESnet5.

[3] “OSCARS: On-demand secure circuits and advance reservation system,”
[Online] Available: http://www.es.net/oscars

[4] “Internet2 advanced layer 2 service,” [Online] Available:
https://goo.gl/4iAbQn

[5] A. Hou et al. “Bandwidth scheduling with multiple variable node-disjoint
paths in high-performance networks,” in Proc. IEEE IPCCC, 2016.

[6] “Mininet: An instant virtual network on your laptop (or other pc),” [On-
line] Available: http://mininet.org/

[7] “Open vSwitch: An open virtual switch,” [Online] Available:
http://openvswitch.org/

[8] “SDN controller,” [Online] Available: http://www.opendaylight.org/
[9] P. Christoph, F. Simone, B. Olivier, and B.Olivier, “Experimental evalua-

tion of multipath TCP schedulers,” in Proc. ACM SIGCOM CSWS, 2014.
[10] I. Monga, E. Pouyoul, and C.Guok, “Software-defined networking for big-

data science - Architectural models from campus to the WAN,” in Proc.
IEEE SCC, 2012.

[11] M. Aktas, G. Haldeman, and M. Parashar, “Scheduling and flexible con-
trol of bandwidth and in-transit services for end-to-end application work-
flows,” Future Generation Comput. Syst., vol. 56, pp. 284–294, 2016.

[12] M.Aktas, G. Haldeman, and M. Parashar, “Flexible scheduling and con-
trol of bandwidth and in-transit services for end-to-end application work-
flows,” in Proc. IEEE NDM, 2014.

[13] J. Wang, M. Qiu, and B. Guo, “High reliable real-time bandwidth schedul-
ing for virtual machines with hidden Markov predicting in telehealth plat-
form,” Future Generation Comput. Syst., vol. 49, pp. 68–76, 2015.

[14] Y. Wang et al. “On periodic scheduling of fixed-slot bandwidth reserva-
tions for big data transfer,” in Proc. IEEE LCN, 2015.

[15] A. Hou, C. Q. Wu, D. Fang, Y. Wang, and M. Wang, “Bandwidth schedul-
ing with multiple fixed node-disjoint paths in high-performance networks,”
in Proc. QSHINE, 2016.

[16] A. Hou, C. Q. Wu, D. Fang, Y. Wang, and M. Wang, “Bandwidth schedul-
ing for big data transfer using multiple fixed node-disjoint paths,” J. Net-
work Comput. Applicat., vol. 85, pp. 47–55, 2017.

[17] M. Aihara, S. Kono, and K. Kinoshita, “Joint bandwidth scheduling and
routing method for large file transfer with time constraint,” in Proc. IEEE
NOMS, 2016.

[18] P.Dharam, C. Q. Wu, and N. S. V. Rao, “Advance bandwidth scheduling
in software-defined networks,” in Proc. IEEE GLOBECOM, 2015.

[19] J. Domzal, Z. Dulinski, and M. Kantor, “A survey on methods to provide
multipath transmission in wired packet networks,” Comput. Networks, vol.
77, pp. 18–41, 2015.

[20] P. Mieghem and F. Kuipers, “On the complexity of QoS routing,” Comput.
Commun., vol. 26, no. 4 pp. 376–387, 2003.

[21] F. Kuipers and P. VanMieghem, “Conditions that impact the complexity of
QoS routing,” IEEE/ACM Trans. Netw., vol. 13, pp. 717–730, 2005.

[22] R. Bhandari, “Optimal diverse routing in telecommunication fiber net-
works,” in Proc. IEEE INFOCOM, 1994.

[23] W. Liang, “Robust routing in wide-area WDM networks,” in Proc. IEEE
IPDPS, 2001.

[24] B. Shen, B. Hao, and A. Sen, “On multipath routing using widest pair of
disjoint paths,” in Proc. IEEE HPSR Workshop, 2004.

[25] M. Dahshan, “Maximum-bandwidth node-disjoint paths,” Int. J. Advanced
Comput. Sci. Applicat., pp. 48–56, 2012.

[26] R. Bhatia, M. Kodialam, and T. V. Lakshman, “Finding disjoint paths with
related path costs,” Springer Science+Business Media, LLC, 2006.

[27] A. Andreas and J. C. Smith, “Exact algorithms for robust k-path routing
problems,” in Proc. GO, 2005.

[28] R. Loh, S. Soh, and M. Lazarescu, “Maximizing bandwidth using disjoint
paths,” in Proc. IEEE AINA, 2010.

[29] D. Sidhu, R. Nair, and S. Abdallah, “Finding disjoint paths in networks,”
in Proc. ACM SIGCOMM, 1991.

[30] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz, “Disjoint multi-
path routing using colored trees,” COMNET, vol. 51, no. 8, pp. 2163–2180,
2007.

[31] Y. Lin and Q. Wu, “Complexity analysis and algorithm design for advance
bandwidth scheduling in dedicated networks,” IEEE/ACM Trans. Netw.,
vol. 21, no. 1, pp. 14–27, 2013.

[32] Y. Lin and Q. Wu, “On design of bandwidth scheduling algorithms for
multiple data transfers in dedicated networks,” in Proc. IEEE/ACM ANCS,
2008.

[33] R. Guerin and A. Orda, “Networks with advance reservations: The routing
perspective,” in Proc. IEEE INFOCOM, 2000.

[34] “ESnet,” [Online] Available: https://www.es.net
[35] L. Zuo and M. M. Zhu, “Concurrent bandwidth reservation strategies for

big data transfers in high-performance networks,” IEEE Trans. Netw. Serv.
Manage, vol. 12, no. 2, pp. 232–247, 2015.

[36] L. Zuo, M. M. Zhu, and C.Q. Wu, “Concurrent bandwidth scheduling for
big data transfer over a dedicated channel,” Int. J. Commun. Networks Dis-
tributed Syst., vol. 21, no. 1, 2014.

[37] L. Zuo, M. M. Zhu, C. Q. Wu, and J. Zurawski, “Fault-tolerant bandwidth
reservation strategies for data transfers in high-performance networks,”
Comput. Networks, vol. 113, pp. 1–16, 2017.

[38] L. Zuo, M. M. Zhu, and C. Q. Wu, “Fast and efficient bandwidth reserva-
tion algorithms for dynamic network provisioning,” J. Network Syst. Man-
age., vol. 23, no. 3, pp. 420–444, 2015.

144 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 2, APRIL 2020

Aiqin Hou received the Ph.D. degree in school of
information science and technology from Northwest
University in 2018. She received the B.S. degree in
Information Theory from XiDian University of China
in 1989. She is currently an Associate Professor with
the School of Information Science and Technology,
Northwest University of China. Her research inter-
ests include big data, high performance network, and
bandwidth scheduling.

Chase Qishi Wu received the Ph.D. degree in Com-
puter Science from Louisiana State University in
2003. He was a research fellow at Oak Ridge National
Laboratory during 2003-2006 and an Assistant and
Associate Professor at University of Memphis during
2006–2015. He is currently a Professor with the De-
partment of Computer Science and the Director of the
Center for Big Data at New Jersey Institute of Tech-
nology. His research interests include big data, dis-
tributed and parallel computing, and computer net-
works.

Liudong Zuo received the Ph.D. degree in Computer
Science from Southern Illinois University Carbondale
in 2015. He received the B.E. degree in Computer
Science from University of Electronic Science and
Technology of China in 2009. He is currently an As-
sistant Professor in Computer Science Department at
California State University, Dominguez Hills. His re-
search interests include computer networks, algorithm
design, and big data.

Xiaoyang Zhang received the M.S. degree in Com-
munication and Information Systems from Northwest
University of China in 2019 and the B.S. degree in
Electronic Science and Technology from Xi’an Uni-
versity of Posts and Telecommunications of China
in 2013. His research interests include bandwidth
scheduling, high-performance networks, and big data
management.

Tao Wang received the M.S. degree in Software Engi-
neering from Northwest University of China in 2019,
and the B.S. degree in Software Engineering from
the Northwest University of China in 2016. He is
now a Assistant Engineer in a software company in
Xi’an, China. His research interests include band-
width scheduling, high-performance networks and
software networks.

Dingyi Fang is currently a Professor with the School
of Information Science and Technology, Northwest
University of China. His current research interests
include mobile computing and distributed computing
systems, network and information security, localiza-
tion, social networks, and wireless sensor networks.

