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Simplified KF-based Energy-Efficient Vehicle
Positioning for Smartphones

Kwangjae Sung and Hwangnam Kim

Abstract: Recently, smart mobile devices, such as smartphone and
tablet PC, have become so prevalent. Most of them are equipped
with a set of sensors including a global positioning system (GPS)
receiver, a digital magnetic compass, a gyroscope, and an ac-
celerometer. Unlike traditional vehicle-fixed sensors, smartphone-
embedded sensors can be utilized as a user-friendly and portable
measurement probe for vehicle positioning systems, owing to their
flexibility and mobility. However, GPS modules and inertial navi-
gation system (INS) sensors, such as an accelerometer and a gyro-
scope, on smartphones consume a lot of battery power. Continued
use of the battery for a long time may cause the battery to discharge
immediately. Therefore, one of the main concerns for smartphone-
based GPS/INS positioning algorithms is energy efficiency. Fur-
thermore, low-cost INS sensors on smartphones may result in large
localization errors due to sensor drift and bias. Unlike smartphone-
based GPS/INS positioning algorithms, we use only the GPS re-
ceiver and digital compass without INS sensors. This makes it pos-
sible to offer more accurate positioning results and to save more
energy. However, GPS receivers and digital compasses on smart-
phones may continue to experience positional errors due to multi-
path fading and disturbances in GPS signals and magnetic sources.
Therefore, we propose an enhanced vehicle positioning method that
provides more reliable localization results by fusing measurements
from GPS receiver and digital compass based on a Bayesian fil-
ter, called a simplified Kalman filter (SKF). Compared to existing
Bayes filters, such as Kalman filter (KF), unscented Kalman filter
(UKF), and particle filter (PF), while the SKF is simple and intu-
itive to be implemented, it can achieve competitive positioning ac-
curacy with less computational cost. Experimental results through
various road configurations using the smartphone and test vehicle
in real environments show that the SKF-based vehicle localization
scheme can achieve about 92 % higher energy-efficiency and about
31 % higher positioning accuracy than GPS/INS localization meth-
ods based on the KF, UKF, and PF.

Index Terms: Energy-efficiency, global positioning system (GPS),
Kalman filter, sensor fusion, smartphone, vehicle positioning.
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I. INTRODUCTION

THE accuracy and reliability of the positioning system have
a great impact on the performance of location-based ap-

plications associated with the intelligent transportation systems
(ITSs), including automated toll-collection systems, collision
avoidance warning systems, vehicle routing, etc. In such ITS
applications, global positioning system (GPS) is the simplest
method to observe the position and velocity of the vehicle. How-
ever, vehicle networks can easily be affected by the abrupt and
frequent change in topology. In addition, road environments
in which GPS outliers frequently occur due to multipath GPS
signals can seriously degrade the positioning system’s perfor-
mance.

Land vehicle positioning using vehicle-fixed sensors to im-
prove GPS accuracy in transportation networks is a mature tech-
nology with numerous commercial applications [1]. There have
been many researches fusing GPS positional information with
measurements from inertial navigation system (INS) sensors,
such as accelerometer and gyroscope [2]–[5]. It is shown in [6]
and [7] that information obtained from the digital camera and
laser scanner can be integrated with the GPS/INS positioning
system and digital road maps. To provide an accurate estimate of
the vehicle position, GPS/INS positional data are combined with
measurements gained from the radio localization system [8], [9].

Recently, one of the challenges of vehicle positioning tech-
nology is to extend the positioning system using vehicle-fixed
sensors to implementations that take advantage of sensor mea-
surements of smart mobile devices with high mobility and flex-
ibility, such as smartphones and tablet PCs [10]–[12]. In gen-
eral, most of mobile devices are equipped with a set of sen-
sors including GPS modules and INS sensors, and have included
more and more features. Furthermore, the mobile devices play
an important role in users’ daily routines, and the number of
them in active use keeps increasing. For this reason, they can be
utilized as a user-friendly positioning device and measurement
probe for vehicle navigation systems. Promising applications of
smartphone-based GPS/INS systems can be found in the fields
of advanced driver-assistance systems [13], traffic state estima-
tion [14], fleet management [15], and insurance telematics [16].

Smartphone-based positioning can be particularly relevant to
insurance telematics, where vehicle information about driving
trips collected with smartphone built-in sensors is used to pro-
vide driver feedback and adjust premiums. For example, insur-
ers can use GPS position measurements to estimate the vehicle’s
location and can utilize INS measurements to detect harsh brak-
ing. Also, an accurate estimate of the smartphone position can
be employed to reduce driver distraction by facilitating position-
dependent limitations for smartphone functionality while driv-
ing [17].
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For mobile devices, the power supply is a main concern. Due
to relatively light weight and small size of mobile devices, their
power supply depends mostly on the battery. For smartphones,
location-based applications (LBAs) require substantial battery
power due to high energy consumption of GPS modules and INS
sensors. If they request continuous positioning for a long time,
the battery may be discharged soon. In addition, inexpensive
INS sensors in smartphones can have very inaccurate positional
accuracy due to drift errors and biases. The sensor drift errors
indicate that small errors in INS measurements are gradually in-
corporated into larger errors as time progresses. To avoid these
issues with regard to INS sensors, we use only the GPS receiver
and digital compass without INS sensors. This makes it pos-
sible to provide more accurate localization results and to save
more battery power required for the vehicle localization, com-
pared to smartphone-based GPS/INS localization algorithms.

However, low-cost micro electro mechanical systems
(MEMS) sensors, such as GPS receiver and digital compass on
smartphones, can still produce large positioning errors. This is
probably because GPS outliers can happen due to the multipath
and obstruction of GPS signals in urban environments, and the
accuracy of digital compass is subject to degradation in the pres-
ence of nearby magnetic sources or disturbances.

Therefore, we propose an enhanced vehicle positioning
method that offers more reliable localization results by fusing
measurements from GPS receiver and digital compass based on
a Bayesian filter, called a simplified Kalman filter (SKF). The
SKF algorithm is not a fundamentally novel Kalman filter (KF),
but it can provide the formal simplicity for the standard KF by
assuming that the measurement model is equal to identity ma-
trix. This assumption makes the SKF simple and intuitive to im-
plement; for example, unlike the standard KF, it can estimate the
model state without the calculation of the Kalman gain. Also,
the SKF can provide positive effects for saving computational
cost, because the number of the computations to be required
for state estimation in the SKF is smaller than that of the stan-
dard KF. While providing these benefits over the KF, the SKF
can accomplish estimation performance comparable to conven-
tional Bayes filters, such as KF, unscented Kalman filter (UKF),
and particle filter (PF). Our vehicular positioning algorithm is
performed in two different phases: prediction (dead reckoning)
and update. During the dead reckoning phase, the position of
the vehicle is estimated using traveled distance (displacement)
calculated by two GPS positions and heading information from
digital compass. In the update step, the position of the vehicle is
corrected by integrating both positional information obtained by
the prediction phase and positional data of the vehicle observed
by GPS through the SKF.

To validate the performance for our localization algorithm
based on the SKF, we implemented the algorithm on a smart-
phone and carried out various road tests using a test vehicle in
real environments. Experimental results show that our position-
ing approach can achieve competitive positioning results with
less energy, compared to smartphone-based GPS/INS position-
ing approaches based on the KF, UKF, and PF.

The rest of this paper is organized as follows. Section II de-
scribes a summary of related work. Next, Section III shows a
description of the overall system architecture. A description of

the SKF is presented in Section IV. Our positioning algorithm
based on the SKF is described in Section V. Section VI shows
experimental setups and results for our positioning system. Fi-
nally, Section VII provides conclusions of this paper.

II. RELATED WORK

Because of the high energy consumption of GPS modules
and the use of various positioning sensors including INS sen-
sors (e.g., accelerometer and gyroscope) on mobile devices, the
energy efficiency in the localization algorithm based on GPS is
a key issue that should be considered. Due to the severity of
the issue, energy-efficient positioning techniques have been ex-
tensively studied in substantial literature. The main concern of
such researches is to provide an accurate position estimate while
using minimal energy.

The dynamic tracking activates the GPS receiver when it is
considered that the updated GPS positional information would
have a great impact on the positioning accuracy. This can be
classified into two general categories: dynamic selection and
dynamic prediction.

For dynamic prediction, the uncertainty in the positioning is
estimated by the sensor that generally consumes less energy than
GPS [18]. For instance, the accelerometer can be employed to
detect the movement of the mobile device. If the mobile device
is not moving, the positioning process is not performed until the
movement is detected [19], [20].

For dynamic selection, the positioning method switches be-
tween GPS and less power-intensive navigation system, such as
localization system based on Wi-Fi, by taking into account the
location and time dependence of the localization accuracy re-
quired by LBAs and the performance of the navigation system.
For instance, the positioning accuracy required by navigation
applications is generally increased when cars enter the intersec-
tion [21]. Also, the positional measurement obtained by GPS
may be inaccurate especially in urban environments [22].

By considering the change in the accuracy requirement, the
mobile device is able to select the navigation system that can
strike the right balance between energy efficiency and posi-
tioning accuracy. For example, Sommer et al. [23] proposes an
energy-aware positioning scheme that adapts the duty cycle of
the GPS receiver for a trade-off between the localization accu-
racy and energy consumed for the continuous positioning. This
scheme infers positioning errors through dead-reckoning using
magnetometer and accelerometer, and employs the GPS receiver
if the errors are above a given threshold. The threshold is deter-
mined by considering movement patterns and the current battery
power. SmartDC [24] uses a mobility prediction-based adap-
tive GPS duty-cycling scheme that takes advantage of prediction
mechanisms for regularities in the target movement.

For dynamic tracking, the lower sampling rate of the GPS
module can reduce the energy consumption per time. However,
the hot, warm, and cold start-up conditions of GPS can increase
the total power consumption needed per GPS sample in the mo-
bile device [21].

To enhance the energy efficiency of the vehicular positioning
system based on the mobile device, there are several additional
approaches applied to the navigation system. For instance, the
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positioning filter can be performed by the map-matching (MM)
algorithm. When the MM algorithm is used, the vehicle position
estimation that deviates from adjacent road segments can be lo-
cated within the limits of road segments. For the MM algorithm,
the improvement of the positioning performance generally relies
on the density of road segments; that is, the high road density
would cause severe degradation in the localization accuracy of
the MM approach. Therefore, the characteristics of MM need
to be taken into consideration when the GPS sampling method
with high energy efficiency is designed [25]. The MM enables
less power-intensive INS sensors to be used for the vehicle po-
sitioning for a long time, since it can mitigate the increase in the
positioning error caused by INS sensors.

Furthermore, MM-based positioning methods can be per-
formed without GPS. CTrack [26] is a low-energy localization
approach for mobile devices that executes the MM employ-
ing raw positioning data gained from cellular (GSM) base sta-
tion fingerprints. Because CTrack uses cellular fingerprints in-
stead of power-hungry GPS and Wi-Fi, the marginal energy con-
sumption by the MM is zero. Also, this scheme uses measure-
ments obtained by low-power sensors, such as digital compass
and accelerometer, available on smartphones. semMatch [27] is
an energy-efficient MM-based navigation system that uses INS
sensors on the smartphone instead of GPS to identify the dif-
ferent road semantics, such as speed bumps, turns, and tunnels.
This enhances the accuracy and efficiency of the MM by lever-
aging the vehicle’s ambient road semantics combined with the
semantics-enriched digital map in a mathematically-principled
way to overcome coarse-grained, noisy, and sparse input local-
ization information (e.g., cellular-positioning data and low sam-
pling rate GPS measurements).

However, the MM requires substantial time and cost to create
the digital road map; for example, the road maps is generated
employing professional approaches based on satellite imagery
and exploiting the crowdsourcing via GPS traces collected by
drivers with mobile devices. Furthermore, even the best maps
can include omissions and errors for road segments and can be
out of date because the world around them is changing.

Another strategy is to execute the cooperative localization by
sharing sensing data, such as GPS and INS measurements, mea-
sured from neighboring smartphones. This can provide satisfac-
tory positioning accuracy, while consuming less power by de-
creasing the number of GPS updates [28].

RAPS [20] is an energy-efficient positioning algorithm for ur-
ban environments with the poor GPS performance due to mul-
tipath effects. It uses an adaptively duty-cycled accelerome-
ter to detect the user movement and utilizes Bluetooth to save
more energy and to minimize position uncertainty by sharing the
newly updated position among neighboring smartphones. Addi-
tionally, it uses the received signal strength (RSS) blacklisting
of celltower to detect GPS unavailability and to avoid GPS acti-
vation only in the case where GPS is unavailable. However, the
celltower-RSS blacklist should be prepared for the algorithm.
Furthermore, the positional information sharing through Blue-
tooth communication can cause security concerns.

CEET [29] is a cooperative positioning approach that lever-
ages the coexistence of communication modules, such as Blue-
tooth and Wi-Fi, on nearby mobile devices grouped in a cluster.
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Fig. 1. Architecture of SKF-based vehicle positioning algorithm.

Table 1. Notation and features of positioning algorithms.

Notation Description Bayes filtering phase System model
P1 GPS/DC Prediction B
P2 ACC+DC Prediction A
P3 ACC+GYR Prediction A

PU1 GPS/DC+GPS Prediction and update B
PU2 ACC+DC+GPS Prediction and update A
PU3 ACC+GYR+GPS Prediction and update A

One cluster consists of a dynamically selected group head and
regular group members, which communicate with each other
by Bluetooth. To avoid the continuous use of communication
modules on individual mobile devices, the group head on behalf
of the cluster carries out the localization and then shares local-
ization results with regular members that belong to the cluster.
Also, the head serves as a gateway between the server and clus-
ter members.

However, the cooperative localization, which is proposed to
deal with a problem with the serious energy consumption re-
quired by Wi-Fi and GPS positioning, is appropriate for large
scale navigation systems in which drivers are expected to move
around in groups.

While the dynamic tracking that uses INS sensors to detect
the movement of the mobile device is running, it cannot turn
off sensors. Therefore, the energy consumed by the sensors can
be higher than that needed for such an occasional positioning.
Furthermore, low-cost INS sensors on smartphones can result in
large localization errors due to sensor drift and bias, and they
can consume more energy than the digital compass [30]. Unlike
existing approaches using INS sensors, we employ the digital
magnetic compass instead of INS sensor. This enables our lo-
calization approach to provide more accurate positioning and to
save more energy. Unlike MM-based localization schemes, our
method does not use the digital road map that requires the high
costs due to maintenance and device installment. Also, in con-
trast to cooperative localization, our scheme is performed inde-
pendently without belonging to specific groups for the vehicular
localization and can offer reliable localization results with low
computational cost by fusing sensor measurements based on the
SKF.
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III. SYSTEM ARCHITECTURE

Fig. 1 presents the architecture of our positioning algorithm
proposed in this paper. The individual components of the archi-
tecture implemented on the smartphone (iPhone 5S) are com-
posed of the sensor fusion and localization algorithm. The sen-
sor fusion part consists of low-cost sensors on the smartphone,
including GPS receiver and digital compass. The localization
algorithm based on the SKF, Bayesian filtering proposed in this
paper, estimates the vehicle position by integrating measure-
ments obtained from the sensors using the system model that is
modeled on the vehicle motion on the road. The system model
is described in more detail in Section V.A.

Table 1 represents the notation and main features for the po-
sitioning algorithms employed in this paper. In Table 1, while
ACC, GYR, DC, and GPS represent the use of an accelerometer,
a gyroscope, a digital compass, and a GPS receiver, respectively,
GPS/DC (i.e., P1) indicates a positioning approach that predicts
the vehicle position using measurements obtained from GPS and
the digital compass. The Bayesian filter for the vehicular po-
sitioning algorithm can be composed of two different phases:
prediction (dead reckoning) and update. The prediction phase
typically predicts the vehicle location using both the traveled
distance (displacement) calculated according to the magnitude
of the acceleration measured by the accelerometer and the head-
ing angle obtained by the accelerometer, gyroscope, and digital
compass, as in P2 and P3. On the other hand, P1 in the predic-
tion phase predicts the position of the vehicle using the traveled
distance calculated by two GPS positions and the heading infor-
mation from the digital compass. During the update phase, the
vehicle position obtained from the prediction phase is corrected
by fusing it and the position measurement from GPS.

As can be seen in Fig. 1 and Table 1, the localization ap-
proaches can be classified into two categories depending on the
execution phase of the Bayes filtering employed in each ap-
proach: localization algorithms operated in only the prediction
phase (P1, P2, and P3) and localization schemes performed in
both prediction and update phases (PU1, PU2, and PU3). The
system model used in the positioning algorithm varies accord-
ing to the type of the sensor that the algorithm uses. While lo-
calization approaches using the accelerometer are based on Sys-
tem Model A (Section V.A.1), algorithms employing GPS/DC
calculate the position of the vehicle through System Model B
(Section V.A.2). In this paper, the positioning algorithms that
we actually propose to improve the performance of the vehicle
positioning are approaches P1 and PU1, and other approaches
P2, P3, PU2, and PU3 are used to evaluate the performance of
methods P1 and PU1. Since P1 and PU1 do not use INS sensors
(accelerometer and gyroscope) that are subject to drift errors and
require much time and energy for the position estimate, they can
provide more accurate positioning results and can save more en-
ergy and time than P2, P3, PU2, and PU3.

IV. SIMPLIFIED KALMAN FILTER (SKF)

Suppose we have a linear discrete-time system given as fol-
lows:

xk = Fk−1xk−1 + wk−1

zk = Hkxk + vk

wk ∼ N (0, Qk)

vk ∼ N (0, Rk). (1)

where the matrix Fk−1 is the state transition model that is ap-
plied to the previous state xk−1, and the matrix Hk is the mea-
surement model that maps the state xk into the measurement
zk. The matrices Fk−1 and Hk define the nonlinear system.
The process noise wk−1 and measurement noise vk are white,
zero-mean, and uncorrelated, and they have covariance matrices
Qk and Rk, respectively.

The SKF algorithm is not a fundamentally new KF for system
state estimation, but it can provide formal simplicity for the stan-
dard KF by assuming that the measurement matrix Hk is equal
to identity matrix I , as it often is in the linear system. This as-
sumption makes the SKF simple and intuitive to implement. For
example, unlike the standard KF, the SKF only needs the a priori
state estimate x̂k|k−1, measurement zk, and covariance matrices
Pk|k−1 and Rk for x̂k|k−1 and zk without the calculation of the
Kalman gain to estimate the state xk. Furthermore, if Hk = I ,
then the SKF is functionally equivalent to the standard KF. That
is, the output of the SKF equals that of the standard KF when
Hk = I . For the SKF, the a priori state estimate x̂k|k−1 and
its covariance Pk|k−1 are determined in the same manner as the
standard KF, but the a posteriori estimate x̂k|k and its covari-
ance Pk|k−1 are obtained by combining x̂k|k−1 with zk by the
weighted sum. Suppose that we combine the estimate x̂k|k−1

and the measurement zk using the weight Wp for x̂k|k−1 and
weight Wm for zk to get the estimate x̂k|k as follows:

x̂k|k = Wpx̂k|k−1 +Wmzk. (2)

Note that x̂k|k−1 and zk are both unbiased since x̂k|k−1 is the
output of the standard KF and E[vk] = 0. Therefore, if x̂k|k
is to be unbiased, the relationship between Wp and Wm can be
expressed as

Wp +Wm = I. (3)

From (2) and (3), the a posteriori state estimate x̂k|k is given
by

x̂k|k = Wpx̂k|k−1 + (I −Wp)zk. (4)
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A. Optimal Weights Wp and Wm

From (4), the covariance Pk|k of the a posteriori state esti-
mate x̂k|k can be represented by

Pk|k =E[(xk − x̂k|k)(xk − x̂k|k)
T

]

=E{[xk −Wpx̂k|k−1 − (I −Wp)zk]

×[xk −Wpx̂k|k−1 − (I −Wp)zk]
T }

=E{[xk − zk −Wp(x̂k|k−1 − zk)]

×[xk − zk −Wp(x̂k|k−1 − zk)]
T }

=E{[vk −Wp(xk − x̂k|k−1 + vk)]

×[vk −Wp(xk − x̂k|k−1 + vk)]
T }

=E{[vk −Wp(ek|k−1 + vk)]

×[vk −Wp(ek|k−1 + vk)]
T }

=E[vkv
T
k − vk(ek|k−1 + vk)

T
WT
p

−Wp(ek|k−1 + vk)vTk

+Wp(ek|k−1 + vk)(ek|k−1 + vk)
T
WT
p ]

=E[vkv
T
k − (vke

T
k|k−1 + vkv

T
k )WT

p

−Wp(ek|k−1v
T
k + vkv

T
k ) +Wp(ek|k−1e

T
k|k−1

+ ek|k−1v
T
k + vke

T
k|k−1 + vkv

T
k )WT

p ]

=Rk−RkWT
p −WpRk+Wp(Pk|k−1+Rk)WT

p , (5)

where zk = xk + vk, the a priori estimate error ek|k−1 = xk −
x̂k|k−1, and we use the fact that E[ek|k−1v

T
k ] = 0, E[vkv

T
k ] =

Rk, and E[ek|k−1e
T
k|k−1] = Pk|k−1, since x̂k|k−1 and zk are

both unbiased, and ek|k−1 and vk are independent.
We can minimize the trace of Pk|k with respect to Wp using

results related to matrix calculus from [31] as follows:

∂Tr(Pk|k)

∂Wp
= −2Rk + 2Wp(Pk|k−1 +Rk). (6)

Setting (6) to zero, the optimal value of Wp is calculated by

Wp = Rk(Pk|k−1 +Rk)
−1
. (7)

Rearranging (3) and (7), we find that

Rk(Pk|k−1+Rk)
−1

+Wm

= I

= (Pk|k−1+Rk)(Pk|k−1+Rk)
−1
. (8)

From (8), the optimal value of Wm is denoted by

Wm = Pk|k−1(Pk|k−1 +Rk)
−1
. (9)

B. A Posteriori Estimate Error Covariance Pk|k

The inverse of (Pk|k−1 +Rk) always exists since both covari-
ance matrices are positive definite. We can substitute (7) into (5)

to find the covariance of the a posteriori estimate as follows:

Pk|k = Rk −Rk(Pk|k−1 +Rk)
−1
Rk

= Rk − [(Pk|k−1 +Rk)R−1
k ]
−1
Rk

= Rk − (Pk|k−1R
−1
k + I)

−1
Rk

= Rk − [R−1
k (Pk|k−1R

−1
k + I)]

−1

= Rk − (R−1
k +R−1

k Pk|k−1R
−1
k )
−1
. (10)

Using the matrix inversion lemma [32], the second term can
be expressed as follows:

(R−1
k +R−1

k Pk|k−1R
−1
k )
−1

= Rk−RkR−1
k (P−1

k|k−1+R−1
k RkR

−1
k )
−1
R−1
k Rk. (11)

Substituting (11) into (10), Pk|k is given by

Pk|k = Rk − [Rk −RkR−1
k (P−1

k|k−1 +R−1
k RkR

−1
k )
−1
R−1
k Rk]

= Rk − [Rk − (P−1
k|k−1 +R−1

k )
−1

]

= (P−1
k|k−1+R−1

k )
−1
. (12)

C. Alternative Form of A Posteriori State Estimate x̂k|k

Equations (7) and (9) can be substituted into (2) to provide an
alternative equation for x̂k|k as follows:

x̂k|k = Rk(Pk|k−1 +Rk)
−1

x̂k|k−1

+ Pk|k−1(Pk|k−1 +Rk)
−1

zk. (13)

From the matrix inversion lemma [32], the inverse of
(Pk|k−1 +Rk) can be expressed as follows:

(Pk|k−1 +Rk)
−1

= R−1
k −R

−1
k (P−1

k|k−1 +R−1
k )
−1
R−1
k (14)

= P−1
k|k−1 − P

−1
k|k−1(R−1

k + P−1
k|k−1)

−1
P−1
k|k−1. (15)

From both (14) and (15), (13) is denoted by

x̂k|k =Rk[R−1
k −R

−1
k (P−1

k|k−1 +R−1
k )
−1
R−1
k ]x̂k|k−1

+ Pk|k−1[P−1
k|k−1 − P

−1
k|k−1(R−1

k + P−1
k|k−1)

−1
P−1
k|k−1]zk

=[I − (P−1
k|k−1 +R−1

k )
−1
R−1
k ]x̂k|k−1

+ [I − (P−1
k|k−1 +R−1

k )
−1
P−1
k|k−1]zk

=[(P−1
k|k−1 +R−1

k )
−1

(P−1
k|k−1 +R−1

k )

− (P−1
k|k−1 +R−1

k )
−1
R−1
k ]x̂k|k−1

+ [(P−1
k|k−1 +R−1

k )
−1

(P−1
k|k−1 +R−1

k )

− (P−1
k|k−1 +R−1

k )
−1
P−1
k|k−1]zk

=(P−1
k|k−1 +R−1

k )
−1
P−1
k|k−1x̂k|k−1

+ (P−1
k|k−1 +R−1

k )
−1
R−1
k zk. (16)

Using (12), the alternative form of the a posteriori state esti-
mate x̂k|k can be expressed as

x̂k|k = Pk|k(P−1
k|k−1x̂k|k−1 +R−1

k zk). (17)
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D. Relationship with Standard Kalman Filter

This section shows that the alternative expression for the state
estimate of the SKF is the same as the expression of the standard
KF when Hk = I . In order to do this, a few lemmas are needed
to establish.

Lemma 1: If the measurement matrix Hk = I , then the
Kalman gain Kk satisfies the equation

Kk = Pk|k−1(Pk|k−1 +Rk)
−1
. (18)

Proof: From the Kalman gain of the standard KF, we see
that

Kk = Pk|k−1H
T
k S
−1
k

= Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1
, (19)

where Sk is the covariance of the measurement residual zk −
Hkx̂k|k−1. When Hk = I , (19) can be written as

Kk = Pk|k−1(Pk|k−1 +Rk)
−1
.

2

Lemma 2: If the measurement matrix Hk = I , then the a
posteriori state estimate x̂k|k satisfies the equation

x̂k|k = (I −Kk)x̂k|k−1 +Kkzk. (20)
Proof: From the a posteriori state estimate x̂k|k of the

standard KF, we obtain

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1)

= (I −KkHk)x̂k|k−1 +Kkzk. (21)

When Hk = I , (21) can be expressed as

x̂k|k = (I −Kk)x̂k|k−1 +Kkzk.

2

Lemma 3: If the measurement matrix Hk = I , then the a
posteriori estimate covariance Pk|k satisfies the equation

Pk|k = (P−1
k|k−1 +R−1

k )
−1
. (22)

Proof: From the a posteriori estimate covariance Pk|k of
the standard KF, we see that

Pk|k = (I −KkHk)Pk|k−1. (23)

From (19), (23) is given by

Pk|k =Pk|k−1

− Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1
HkPk|k−1. (24)

Taking the inverse of both sides of this equation and applying
the matrix inversion lemma to this equation, we find that

P−1
k|k =[Pk|k−1

− Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1
HkPk|k−1]

−1

=P−1
k|k−1 + P−1

k|k−1Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk

−HkPk|k−1P
−1
k|k−1Pk|k−1H

T
k )
−1
HkPk|k−1P

−1
k|k−1

=P−1
k|k−1 +HT

k R
−1
k Hk. (25)
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Fig. 2. Schematic of vehicle model.

Inverting both sides of (25), the a posteriori estimate covari-
ance Pk|k is given by

Pk|k = (P−1
k|k−1 +HT

k R
−1
k Hk)

−1
. (26)

When Hk = I , (26) can be written as

Pk|k = (P−1
k|k−1 +R−1

k )
−1
. (27)

2

With the above lemmas, the alternative expression for the
state estimate can be derived. Rearranging (18) and (20) re-
sults in the same as (13). After some algebraic operations, the
alternative expression can be expressed as (17).

Note that the use of the SKF to estimate the state provides
three practical advantages: 1) Compared to the standard KF, the
SKF is simple and intuitive to implement, since it does not re-
quire the calculation of the Kalman gain; 2) the SKF results in
positive effects for saving computational time, since the num-
ber of the computations to be needed for the state estimation in
the SKF is smaller than that of the standard KF; and 3) while
having these advantages, the SKF can achieve the estimation
performance comparable to the traditional Bayes filters, such as
KF, UKF, and PF. The performance of the SKF in terms of the
state estimate and computing is discussed in Section VI.

V. POSITIONING ALGORITHM

The following four sections describe the system model and
positioning algorithm used for this paper.

A. System Model

The schematic of the vehicle model used in this paper is
shown in Fig. 2. The position and velocity of the vehicle at time
k is described by the linear state space xk =

[
xk yk vk

]T
,

where (xk, yk) is x-axis and y-axis position in the navigation
frame, and vk is the vehicle velocity. The navigation frame is
the local geodetic frame in which it is defined that x-axis, y-axis,
and z-axis point east, true north, and up direction, respectively.
Note that z-axis information is not considered for land-vehicle
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navigation. Thus, the state xk just has x-axis and y-axis posi-
tioning information. The angles α and γ represent the heading
of the vehicle at time steps k − 1 and k, respectively. Also, the
angle β represents a counterclockwise angle between the state
vectors xk−1 and xk, and the value of d indicates the traveled
distance of the vehicle between time steps k − 1 and k. The
vehicle model can be divided into two submodels by whether
the accelerometer is used or not: System model A and system
model B.

A.1 System Model A

In the vehicle model used to represent the vehicle motion with
MEMS sensors, such as accelerometer, gyroscope, and digital
compass, the position and velocity of the vehicle can be deter-
mined by

xk = xk−1 + d sin(α) cos(β)− d cos(α) sin(β) (28)
yk = yk−1 + d sin(α) sin(β) + d cos(α) cos(β) (29)

vk = vk−1 + ak−1∆t+
ak − ak−1

2
∆t, (30)

where ∆t is the update interval of the accelerometer (∆t =
0.01s in this paper), and d = vk−1∆t + vk−vk−1

2 ∆t. In the
above equations, a constant acceleration of ak is determined by
accelerometer, and the values of α and β are measured by ac-
celerometer, gyroscope, or digital compass. Since ∆t is very
small and negligible, we assume that the vehicle has the value
of ak in time from k − 1 to k, i.e., ak = ak−1. Therefore, ak
can be denoted by vk−vk−1

∆t , and the propagation equations for
the position and velocity of the vehicle can be expressed as

xk = xk−1 + d′ sin(α) cos(β)− d′ cos(α) sin(β) (31)
yk = yk−1 + d′ sin(α) sin(β) + d′ cos(α) cos(β) (32)
vk = vk−1 + ak∆t, (33)

where d′ = vk−1∆t+ ak
2 ∆t2.

Applying the sine and cosine rule to (31) and (32) and substi-
tuting α− β with γ, both (31) and (32) are given by

xk = xk−1 + d′ sin(γ) (34)
yk = yk−1 + d′ cos(γ). (35)

By assuming that the constant acceleration of ak is normally
distributed with zero-mean and covariance Qk, the state transi-
tion model and measurement model of the vehicle motion can
be written as

xk = Fk−1xk−1 +Gk−1ak

= Fk−1xk−1 + wk−1 (36)

zk =
[
xk yk vk

]T
= Hkxk + vk, (37)

where Hk is 3 × 3 identity matrix

Fk−1 =

1 0 sin(γ)∆t
0 1 cos(γ)∆t
0 0 1

 (38)

Algorithm 1 SKF-based PU1 method.
• Consider the following system from System Model B

xk = Fk−1xk−1 +Gk−1d+ wk−1

zk = Hkxk + vk
wk−1 ∼ N (0, Qk−1)
vk ∼ N (0, Rk)

• Initialize SKF
x̂0|0 = E[x0]

P0|0 = E[(x0 − x̂0|0)(x0 − x̂0|0)T ]
• Estimate the state and error covariance at each time step
− Time update (prediction phase)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1

x̂k|k−1 = Fk−1x̂k−1|k−1 +Gk−1d
−Measurement update (update phase)

Pk|k = (P−1
k|k−1 +R−1

k )
−1

x̂k|k = Pk|k(P−1
k|k−1x̂k|k−1 +R−1

k zk)

and

Gk−1 =
[

sin(γ)
2 ∆t2 cos(γ)

2 ∆t2 ∆t
]T
. (39)

In (36) and (37), process noise wk−1 and measurement
noise vk are all zero-mean white noise with covariance
Gk−1Qk−1G

T
k−1 and Rk, respectively, and measurement zk in-

cludes the position and velocity information of the vehicle mea-
sured by GPS. This system model can be used to estimate the
positional data of the vehicle in the approaches using the ac-
celerometer among the positioning methods described in Sec-
tion III (i.e., P2, P3, PU2, and PU3). However, the methods P2
and P3 not using GPS positional data calculate the position and
velocity of the vehicle through only the state transition model
(36) without using the measurement model (37).

A.2 System Model B

Unlike System Model A, the vehicle motion can be modeled
using only the digital compass and GPS without the INS sen-
sors (accelerometer and gyroscope) in System Model B. Since
System Model B does not use the accelerometer, its state space
does not include the velocity information of the vehicle, i.e.,
xk =

[
xk yk

]T
, and the value of d can be determined by the

distance between two positional data obtained from the GPS re-
ceiver at time steps k−1 and k, using the haversine formula [33].
Also, the values of α and β can be determined by the digital
compass. The state transition model and measurement model in
System model B can be written as

xk = Fk−1xk−1 +

[
cos(β) − sin(β)
sin(β) cos(β)

][
d sin(α)
d cos(α)

]
+ wk−1

= Fk−1xk−1 +Gk−1d+ wk−1 (40)
zk = Hkxk + vk, (41)

where wk−1 ∼ N (0, Qk−1), vk ∼ N (0, Rk), and both Fk−1

and Hk are 2 × 2 identity matrix. The measurement zk is
determined by the positional data of the vehicle observed by
GPS. Applying the sine and cosine rule to (40) and substi-
tuting α − β with γ, Gk−1 in (40) are denoted by Gk−1 =
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[
sin(γ) cos(γ)

]T
. System Model B can be employed to es-

timate the vehicle position in the localization methods P1 and
PU1. However, the method P1 performed in only the prediction
phase of the Bayes filtering calculates the position of the vehi-
cle through only the state transition model (40) without using
the measurement model (41).

B. SKF-based Positioning Algorithm.

Positioning errors obtained by low-cost INS sensors, such as
accelerometer and gyroscope, due to sensor drift are typically
larger than those obtained from GPS receiver and digital com-
pass. The sensor drift error means that small errors of INS sen-
sors are gradually integrated into larger errors as time passes.
Therefore, in order to solve issues related to inaccuracies that
INS sensors inevitably suffer, the integrated GPS/DC method
(i.e., P1) is proposed in this paper. This scheme employs the
traveled distance calculated by two GPS positions obtained from
GPS receiver at time steps k − 1 and k and the heading infor-
mation from the digital compass as inputs for the state transition
model in the prediction phase of the Bayes filtering.

However, the low-cost MEMS sensors still cause the position
estimation of the vehicle to have large errors. Thus, we propose
the other approach GPS/DC+GPS (i.e., PU1) as a positioning
algorithm for improving the accuracy of the position estimate.
The GPS/DC+GPS method can provide more reliable localiza-
tion results by fusing noisy vehicle position data obtained from
GPS/DC and measurements of the vehicle position gained by
the GPS receiver via the Bayesian filter. A pseudo-code descrip-
tion of the positioning algorithm SKF-based PU1 using System
Model B is given by Algorithm 1. In next section, we will focus
on the stability analysis for this algorithm.

Since SKF-based PU1 is focused on enhancing the accuracy
of the position estimate in the case where GPS signals are avail-
able and the initial position of the vehicle for the positioning
in our methods can provide reasonable accuracy, it may have
two limitations. One limitation is that the positioning algorithms
may have large errors during GPS blockage. The other limita-
tion is that the positioning approaches can provide reliable accu-
racy when the vehicle’s initial position for the position estimate
closely matches the actual position. If the initial position of the
vehicle deviates from the actual position, the performance of the
algorithms may deteriorate.

C. Stability Analysis

Vehicle networks can easily be affected by the abrupt and fre-
quent change in topology. Furthermore, the performance of the
positioning algorithm may be disappointing in road environment
where GPS outliers due to the multipath or obstruction of GPS
signals frequently appear. In this transport network, to consider
whether SKF-based PU1 can provide the stable performance for
the vehicle state estimation, we need to investigate the stability
of SKF-based PU1. From (2) and Algorithm 1, SKF-based PU1
can be written as the following discrete-time state equation.

x̂k|k = WpFk−1x̂k−1|k−1 +WpGk−1d+Wmzk

ẑk = Hkx̂k|k−1. (42)

SKF-based PU1 is defined as a stable positioning system, if

Fig. 3. Positioning system implemented with smartphone and DGPS receivers
inside road test vehicle and DGPS antennas outside road test vehicle.
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Fig. 4. Results of road tests for prediction algorithms P1, P2, and P3.

all the eigenvalues of WpFk−1 in (42) are less than one in mag-
nitude (i.e., |eig(WpFk−1)| < 1). Since all the eigenvalues
of Wp = Rk(Pk|k−1 +Rk)

−1 always have the magnitude less
than one, and Fk−1 is identity matrix, SKF-based PU1 is asymp-
totically stable.

VI. EXPERIMENTAL RESULT

In this section, we focus on the performance evaluation of
our localization approaches P1 and PU1 proposed in this paper.
A set of experiments of road segments in real traffic conditions
were performed to validate whether our algorithms can provide
an accurate estimate of the vehicle position, using the differen-
tial global positioning system (DGPS) and MEMS sensors as
in [34], [35].

A. Experimental Setup

Our positioning algorithm was implemented on the smart-
phone (iPhone 5S) equipped with MEMS sensors, including
3-axis accelerometer (STMicroelectronics LIS331DLH), gy-
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Table 2. Performance parameters (specifications) of accelerometer
(STMicroelectronics LIS331DLH), gyroscope (STMicroelectronics

L3G4200DH), and digital compass (AKM AK8975).

Parameter Accelerometer Gyroscope Digital compass
Measurement range ±8.0 g ±2000 dps ±1229 µT

Sensitivity 3.9 mg/digit 70 mdps/digit 0.3 µT/LSB
Bias ±20 mg ±75 dps ±1000 LSB

Data rate 1 KHz 800 Hz 8 Hz
Power consumption 0.625 mW 18.3 mW 1.09 mW

Table 3. Performance parameters (specifications) of GPS receiver (Broadcom
BCM4750).

Parameter GPS receiver
Sensitivity -162 dBm

Tracked satellites GPS, GLONASS
Tracked channels 24

Positioning accuracy 2 m
Operation Mobile station based (MSB) mode

TTFF 0.5 s
Positioning rate Up to 2 Hz

Power consumption 15 mW

Table 4. Performance parameters (specifications) of DGPS receivers (Trimble
R8s and Leica ATX-1230 GG).

Parameter Trimble R8s Leica ATX-1230 GG
RTK compatible Yes Yes

Tracked satellites
GPS, GLONASS, SBAS,

GPS, GLONASS, SBAS
Galileo, BeiDou

Tracked channels 440 72
Static 10 mm + 1 ppm (horizon), 5 mm + 0.5 ppm (horizon),

positioning accuracy 20 mm + 1 ppm (vertical) 10 mm + 0.5 ppm (vertical)
RTK 8 mm + 1 ppm (horizon), 10 mm + 1 ppm (horizon),

positioning accuracy 15 mm +1 ppm (vertical) 20 mm +1 ppm (vertical)
TTFF 8 s 50 s

Positioning rate Up to 20 Hz Up to 20 Hz
Power consumption 3.2 W 4.6 W

roscope (STMicroelectronics L3G4200DH), digital compass
(AKM AK8975), and GPS receiver (Broadcom BCM4750).
The update interval of the positioning sensors (accelerometer,
gyroscope, and digital compass) and GPS receiver on the smart-
phone was 0.01 s and 1 s, respectively. The performance param-
eters of MEMS sensors are shown in Table 2 and Table 3. Since
the Broadcom BCM4750 chip is an assisted GPS (A-GPS) chip,
the GPS-based positioning on iPhone5S is operated in the mo-
bile station based (MSB) mode where the location information
of the device is calculated with the assistance of cellular and Wi-
Fi network data. In Table 3, the time to first fix (TTFF) indicates
the time required for the GPS receiver to acquire the signals and
status information for satellites and to calculate the device’s po-
sition, when the GPS receiver is turned on.

Furthermore, we used a pair of DGPS receivers to obtain a
reference trajectory: Trimble R8s and Leica ATX-1230 GG. The
update rate of the DGPS receivers was 1 Hz. The performance
parameters of DGPS receivers are summarized in Table 4. In
Table 4, the real-time kinematic (RTK) refers to a technique that
uses the carrier-based ranging to improve the positioning accu-
racy of satellite-based navigation systems.

Fig. 3 shows the configuration of the positioning system im-
plemented with the smartphone and DGPS receivers inside the
road test vehicle and DGPS antennas outside the road test ve-
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Table 5. Position estimation result for prediction methods.

Method Mean positioning error Mean computational time
P1 117.150652 m 0.000077 s
P2 544.036897 m 0.000216 s
P3 556.796462 m 0.000216 s
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Fig. 6. Road configurations for experimental evaluation: (a) Teheran Street, (b)
intersection, (c) normal road, and (d) tunnel.

hicle. The reference trajectory of the test vehicle could be de-
termined by the average value of the positional information ob-
tained from the two DGPS receivers. This value was used to
evaluate the positioning accuracy of localization methods by
comparing it as assumed ground truth with the vehicle position
estimated by positioning approaches.

B. Performance Analysis for P1

To verify the performance of the prediction method P1, the
results obtained from its position estimate are analyzed through
comparisons with those obtained by different prediction meth-
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Table 6. Experimental road scenarios.

Road Mean Number
Duration

GPS signal
configuration vehicle speed of lanes condition

(a) Teheran Street
1.1 m/s 8 480 s

bad
(region including (multipath
many tall buildings) GPS signals)
(b) Intersection 3.4 m/s 8 50 s good
(c) Normal road 11.5 m/s 8 137 s good

(d) Tunnel 9.3 m/s 6 35 s
worst (blocked
GPS signals)

Table 7. Average localization error for positioning algorithms.

Road Positioning Average positioning error (m)
configuration algorithm KF SKF UKF PF

(a) Teheran Street
PU1 7.028 7.028 7.035 7.047
PU2 8.281 8.281 8.311 8.307
PU3 20.119 20.117 20.120 20.130

(b) Intersection
PU1 6.636 6.636 6.653 6.646
PU2 6.157 6.154 6.176 6.177
PU3 8.731 8.730 8.758 8.726

(b) Normal road
PU1 3.598 3.598 3.623 3.609
PU2 4.943 4.943 3.945 3.944
PU3 6.015 6.016 7.021 7.019

Table 8. Average computational time for positioning algorithms.

Bayesian filtering
Average computational time (sec)
PU1 PU2 PU3

KF 0.000093 0.000240 0.000237
SKF 0.000088 0.000221 0.000223
UKF 0.000101 0.00738 0.000745
PF 0.001826 0.054642 0.055842

ods P2 and P3, in terms of the localization accuracy and compu-
tational time.

Fig. 4 shows a map that consists of the road segments used to
evaluate the performance of P1. The yellow, violet, and green
lines represent the results of the position estimate obtained by
P1, P2, and P3, respectively. The red line indicates the reference
trajectory as an assumed ground truth, which is determined by
two DGPS receivers.

Table 5 represents the average positioning error and computa-
tional time obtained from the experimental result of the predic-
tion algorithms in road segments represented in Fig. 4. In this
paper, the positioning error denotes the distance difference be-
tween the position value of the test vehicle obtained from DGPS
receivers and the vehicle position calculated by the position-
ing algorithms in Table 1, which is measured in meters. Also,
the computational time refers the wall-clock time in seconds re-
quired to perform the localization methods on the smartphone.
As can be shown in Table 5, the value of the positioning error
obtained by P1 is much smaller than that obtained from P2 and
P3. We can analyze in more detail the value of positioning error
by observing Fig. 5, which indicates the value of the positioning
error over time for each method. In this figure, the values of the
positioning error of all the methods rise starting from 200 s due
to sensors drift errors, especially in P2 and P3. The values of the
localization error in Fig. 5 denote that P1 has higher positioning
accuracy than P2 and P3 in the same road section.

Furthermore, as can be seen in Table 5, the average value of
the computational time obtained from P1 is much smaller than
that of P2 and P3. These results indicate that P1 is more ap-

propriate for the real-time processing of the vehicle position-
ing with high accuracy, compared to P2 and P3. Unlike P2 and
P3, because P1 does not leverage INS sensors (accelerometer
and gyroscope) that are subject to sensor drift errors and require
much time for the position estimate, it can offer more accurate
positioning results and can save more computational time than
P2 and P3.

C. Performance Analysis for SKF-based PU1

In this subsection, the performance of SKF-based PU1 is
compared with positioning algorithms PU2 and PU3 based on
Bayesian filters, such as KF, UKF, SKF, and PF, in terms of the
positioning accuracy and computational time.

Fig. 6 shows several road configurations used to evaluate the
performance of SKF-based PU1: Teheran Street (a), an inter-
section (b), a normal road (c), and a tunnel (d). Teheran Street
(a) represents the road environment in which outliers in GPS
measurements can be easily caused by the multipath effect and
frequent blocking on GPS signals due to many tall buildings.
Therefore, the test vehicle in this road environment is slowly
moving to avoid the problems due to the poor GPS signal con-
dition. The intersection (b) indicates curved road where the ve-
hicle is moving at low speed with good GPS signal, and the
normal road (c) indicates straight road configuration with good
GPS signal condition. On the contrary, the tunnel (d) reflects
the road condition where the GPS signal is completely blocked.
Table 6 summarizes the main features of the different road sce-
narios used in our experiments.

C.1 Performance Evaluation of SKF

Table 7 represents the average positioning error obtained from
positioning algorithms PU1, PU2, and PU3 based on Bayesian
filters in road configurations in Fig. 6. As can be seen in Ta-
ble 7, the values of the vehicle positioning error from the SKF
closely match those from the KF for all the road scenarios, since
both SKF and KF are functionally equivalent when Hk = I as
described in Section IV. Moreover, since the positioning algo-
rithms used for the vehicle navigation in this paper are based on
a linear system model as described in Section V.A, the accuracy
of the position estimate calculated using both KF and SKF can
provide a more accurate value than that of both UKF and PF that
are typically suitable for nonlinear system environments. These
results denote that while the SKF is simple and intuitive to im-
plement, it can achieve competitive performance compared to
KF, UKF, and PF.

Table 8 indicates the average value of the computational
time for positioning algorithms PU1, PU2, and PU3 based on
Bayesian filters. For all the positioning approaches, the differ-
ence between the average values of the computational time re-
quired for the estimate of the vehicle position using the SKF and
other filtering approaches except PF is not so significant. Never-
theless, as shown in Fig. 7, which shows cumulative distribution
function (CDF) distribution for the average value of the compu-
tational time for filtering methods using PU1, particularly in the
zoomed view of this figure, the use of the SKF is still beneficial.
These results indicate that the SKF is more appropriate for the
vehicle navigation system that requires faster real-time process
compared with KF, UKF, and PF.
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Fig. 7. Positioning result for Bayesian filters KF, SKF, UKF, and PF used in positioning method PU1: (a) CDF of the computational time and (b) zoomed view of
the computational time CDF.

As shown in Algorithm 1, the SKF algorithm can provide the
formal simplicity for the KF that requires less computational
time than UKF and PF. For example, the model state in the SKF
is estimated without the calculation of the Kalman gain used in
the KF. Therefore, the SKF requires less computational cost than
the KF, because the number of the computations required for the
state estimation in the SKF is smaller than that of the KF.

C.2 Performance Evaluation of PU1

To verify the validity of PU1, the positioning results of PU1
are compared with those of PU2 and PU3. As shwon in Table 7,
apart from PU2 in intersection scenario, the positioning errors
of PU1 for all Bayes filters and road configurations are smaller
than those of PU2 and PU3. Although PU2 has the localization
performance comparable to PU1, it consumes more energy for
the position estimate due to the use of the additional INS sen-
sor (i.e., accelerometer) than PU1. Thus, PU2 may not be suit-
able to be implemented on mobile devices (e.g., smartphone and
tablet PC) that require the high energy-efficiency. The energy-
efficiency of positioning algorithms is addressed in more detail
in the next subsection.

Fig. 8 represents the zoomed view of the vehicle position es-
timate for PU1, PU2, and PU3 based on the SKF in road condi-
tions in Table 6 and Fig. 6. In Fig. 8, positional data obtained
from low-cost GPS receiver on iPhone 5S and two DGPS re-
ceivers (Trimble R8 Model 3 GPS and Leica ATX-1230 GG)
are schematically represented by triangle and placemark square
symbols, respectively. The results of the position estimate of
PU1, PU2, and PU3 are illustrated by diamond, polygon, and
circle symbols, respectively. As can be seen in Fig. 8, PU1 can
provide the higher positioning accuracy compared with mea-
surements of the low-cost GPS receiver and positioning results
of PU3. The improvements in the accuracy of the position es-
timate are much clearer in the figure of the experiments carried
out in Teheran Street [i.e., Fig. 8(a)] where outliers in GPS mea-
surements can be easily caused by the multipath effect and fre-
quent blocking on GPS signals due to many tall buildings.

Since GPS signals are completely blocked in tunnel scenario,
the estimate of positioning error of the positioning methods us-

ing GPS and DGPS receivers is not feasible. Therefore, when
the vehicle goes into tunnel, positioning algorithms using GPS
and DGPS positional information (PU1, PU2, and PU3) are con-
verted into the dead-reckoning algorithm that consists of the ac-
celerometer and digital compass (i.e., P2). Since the sampling
rate of the accelerometer and digital compass is 100 Hz, the
time interval of the vehicle positioning in tunnel is very short, as
shown in Fig. 8(d). Moreover, until the vehicle passes through
tunnel, i.e., until the next valid GPS update, the uncertainty (er-
ror covariance) of the positioning algorithm increases exponen-
tially, since the algorithm cannot update GPS measurements due
to the blockage of the GPS signal, as shown in Fig. 9.

For the computational time, PU1 requires shorter computa-
tional time compared with PU2 and PU3, as shown in Table 8.
This result indicates that PU1 is suitable for the vehicle position-
ing system in vehicle networks featuring the abrupt and frequent
change in topology. Unlike PU2 and PU3, since PU1 does not
employ any INS sensors (accelerometer and gyroscope) that re-
sult in large localization errors due to sensor drift and bias and
require much time for the positioning, it can achieve higher po-
sitioning accuracy and can consume less computational time,
compared to PU2 and PU3.

D. Aspects of Energy-Efficiency

In this subsection, our positioning algorithm PU1 is evalu-
ated in terms of the energy-efficiency. Fig. 10 represents the en-
ergy consumption rate and CPU usage rate of localization ap-
proaches based on Bayesian filters for 10 minutes. The energy
consumption rate and CPU usage rate are obtained from some
statistics recorded in log messages reported after the position-
ing process completion through the specialized tool used to pro-
file iOS applications, known as Instruments [36]. As can be
seen in Fig. 10(a) and Fig. 10(b), the use of INS sensors (ac-
celerometer and gyroscope) and a high CPU usage rate have a
great influence on the energy consumption. Since most smart-
phones use CPU to directly control the sensors, the continuous
use of the INS sensors with higher data rate than digital com-
pass (see Table 2) induces considerable energy overhead and
CPU usage [37]. Therefore, both PU2 and PU3 using the INS
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Fig. 8. Detail of positioning result for localization algorithms PU1, PU2, and PU3 based on SKF in road configurations in Table 6 and Fig. 6: (a) Teheran Street,
(b) intersection, (c) normal road, and (d) tunnel.

sensors lead to higher power consumption and CPU usage than
PU1 not using INS sensors. Furthermore, the PF with a high
percentage of CPU usage consumes more energy than KF, SKF,
and UKF, particularly in PU2 and PU3. These results indicate
that PU1 based on the SKF with a low CPU usage rate is suitable
to be implemented on mobile devices that require high energy-
efficiency.

VII. CONCLUSION

For mobile devices, energy efficiency is one of the main con-
cerns. Location-based services on smartphones require con-
siderable battery power due to high energy consumption of
INS sensors and GPS modules. Prolonged use may accelerate
the battery consumption of your smartphone. We have shown

that smartphone-based GPS/INS localization schemes (PU2 and
PU3) can consume much energy. In addition, INS sensors of
a smartphone can lead to very noisy localization results, since
small errors in INS measurements are gradually integrated into
larger error over time.

To solve the problems with INS sensors, we have introduced
a navigation system that utilizes only the GPS receiver and dig-
ital compass without INS sensor. This can provide better po-
sitioning accuracy and can consume less battery power than
smartphone-based GPS/INS localization algorithms. Nonethe-
less, GPS receiver and digital compass on smartphones can
still cause large localization errors because of GPS outliers due
to multipath and obstruction of GPS signals in urban environ-
ments, and the accuracy of digital compass is vulnerable to sur-
rounding magnetic sources or disturbances.
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Fig. 9. Results of the vehicle position estimate obtained from positioning algorithm PU1 based on SKF in tunnel scenario in Table 6 and Fig. 6: (a) Error covariance
for x-axis position estimate and (b) error covariance for y-axis position estimate.
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Fig. 10. Experimental results in aspect of energy-efficiency for positioning methods PU1, PU2, and PU3 on iPhone 5S: (a) Energy consumption and (b) CPU usage
rate.

For this reason, we have proposed the positioning method that
achieves more reliable positioning accuracy by integrating noisy
measurements obtained from GPS module and digital compass
using the SKF algorithm. The SKF algorithm can provide the
formal simplicity for the KF by assuming that the measure-
ment model H is equal to identity matrix. For instance, the
model state in the SKF is estimated without the calculation of
the Kalman gain used in the KF. Hence, the SKF requires less
computational cost than the KF, since the number of the com-
putations needed for state estimation in the SKF is smaller than
that of the KF. The SKF-based vehicle positioning system con-
sists of two phases: prediction and update. For the prediction
step, the position of the vehicle is obtained through both the
traveled distance computed by two GPS positions and heading
information from digital compass. During the update phase, the
position of the vehicle is corrected by combining both the posi-
tional information obtained by the prediction phase and the GPS
position of the vehicle using the SKF.

To evaluate the performance for our scheme, we have imple-
mented the algorithm on the smartphone and have carried out

various road tests using the test vehicle in real environments.
Experimental results show that the SKF-based localization ap-
proach can provide competitive localization results while using
less energy, compared with smartphone-based GPS/INS posi-
tioning approaches based on conventional Bayes filters, such as
KF, UKF, and PF.

Despite the benefits of the SKF for the vehicle position esti-
mate, the SKF requires the linear state transition model F and
linear measurement model H , and it even assumes that the mea-
surement model is equal to identity matrix. This may limit the
effectiveness of the SKF in some real world situations, in which
nonlinear models appear frequently. That is, when the model
dynamics are nonlinear, or when the measurements are nonlin-
early related to the model state, the SKF has to linearize state
transition and measurement models on the assumption that the
measurement model is equal to identity matrix.

The UKF can overcome the shortcomings of the SKF, which
require linear models and make an unnecessary assumption
about measurement model. The UKF provides a couple of prac-
tical advantages over the SKF: 1) It need not to compute the
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Jacobian or tangent linear model for nonlinear models with a
high computational cost to linearize nonlinear models; and 2) it
estimates the model state through fully nonlinear model oper-
ators using the deterministic sampling scheme that requires no
linearization regarding nonlinear models [38].

As future work, we will improve the UKF to accomplish re-
liable and accurate positioning performance with less computa-
tional cost for nonlinear models, eliminating the need for model
linearization and making no assumption about the measurement
model as in the SKF.
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