
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

46 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

A Hybrid Link Protection Scheme for Ensuring
Network Service Availability in Link-state Routing

Networks
Haijun Geng, Han Zhang, Xingang Shi, Zhiliang Wang, Xia Yin, Ju Zhang, Zhiguo Hu, and Yong Wu

Abstract: The internet is playing an increasingly crucial role in
both personal and business activities. In addition, with the emer-
gence of real-time, delay sensitive and mission-critical applications,
stringent network availability requirement is put forward for inter-
net service providers (ISPs). However, commonly deployed intra-
domain link-state routing protocols react to link failures by glob-
ally exchanging link state advertisements and recalculating rout-
ing table, inevitably causing significant forwarding discontinuity
after a failure. Therefore, the loop-free criterion (LFC) approach
has been widely deployed by many ISPs for coping with the single
network component failure scenario in large internet backbones.
The success of LFC lies in its inherent simplicity, but this comes
at the expense of letting certain failure scenarios go unprotected.
To achieve full failure coverage with LFC without incurring signif-
icant extra overhead, we propose a novel link protection scheme,
hybrid link protection (HLP), to achieve failure resilient routing.
Compared to previous schemes, HLP ensures high network avail-
ability in a more efficient way. HLP is implemented in two stages.
Stage one provides an efficient LFC based method (MNP-e). The
complexity of the algorithm is less than that of Dijkstra’s algo-
rithm and can provide the similar network availability with LFC.
Stage two provides backup path protection (BPP) based on MNP-e,
where only a minimum number of links need to be protected, using
special paths and packet headers, to meet the network availabil-
ity requirement. We evaluate these algorithms in a wide spread of
relevant topologies, both real and synthetic, and the results reveal

Manuscript received November 7, 2018; approved for publication by
Mubashir Husain Rehmani, Division III Editor, November 8, 2019.

This work is partially supported by the National Key Research and Devel-
opment Program of China (No.2018YFB1800401), the National Natural Sci-
ence Foundation of China (No.61702315), Open Foundation of State Key Lab-
oratory of Networking and Switching Technology (Beijing University of Posts
and Telecommunications)(SKLNST-2018-1-19), the National Natural Science
Foundation of China (No.61872226) and the Natural Science Foundation of
Shanxi Province, China (No.201701D121052).

H. Geng is with the School of Software Engineering, Shanxi University, Open
Foundation of State Key Laboratory of Networking and Switching Technology,
email: ghj123025449@163.com.

H. Zhang is with the School of Cyber Space and Technology, Beihang Uni-
versity, email: zhhan@buaa.edu.cn.

X. Shi and Z. Wang are with the Institute for Network Sciences and Cy-
berspace, Tsinghua University, and Beijing National Research Center for In-
formation Science and Technology, email: {shixg, wzl}@cernet.edu.cn.

X. Yin is with the Department of Computer Science and Technology, Tsinghua
University, and Beijing National Research Center for Information Science and
Technology, email: yxia@tsinghua.edu.cn.

J. Zhang is with the School of Software Engineering, Shanxi University, Open
Foundation of State Key Laboratory of Networking and Switching Technology,
email: zj4090@139.com.

Z. Hu is with the School of Computer and Information Technology, Shanxi
University, email: huzhiguotj@sxu.edu.cn.

Y. Wu is with the School of Software Engineering, Shanxi University,
email: wuyong@sxu.edu.cn.

Z. Wang is the corresponding author.
Digital Object Identifier: 10.1109/JCN.2019.000056

that HLP can achieve high network availability without introduc-
ing conspicuous overhead. HLP not only needs around 10% time of
that of full protection, but also provides full protection capabilities
that full protection provide.

Index Terms: Incremental shortest path first, loop-free, multipath
routing, network availability, network link failure

I. INTRODUCTION

WITH the rapid development of the internet, more and
more mission-critical and real-time applications, such as

VoIP and video streaming, raise stringent network availability
requirement [1], [2]. Unfortunately, network availability is of-
ten reduced by unexpected failures as well as routine opera-
tions [3]. Traditional routing algorithms, such as open shortest
path first (OSPF) and Intermediate system-to-intermediate sys-
tem (IS-IS), are mostly concerned with finding shortest paths
towards each destination, and thus cannot provide good connec-
tivity under frequent network failures. On detecting a failure,
they start a global link-state advertisement and then recompute
routes, inevitably causing network outage [4], [5]. This high-
lights the need for mechanisms that possess fast and efficient
recovery capability [6]–[9].

Two categories of solutions are proposed to deal with this
problem. The first category uses reactive methods to acceler-
ate the convergence of link-state routing protocol through tuning
several parameters [10]. However, the risk of introducing insta-
bility in the network makes it less attractive, especially in the
face of frequent momentary link failures. The other one adopts
proactive schemes which compute backup paths in advance, so
that packets can be forwarded over those precompute paths after
the detection of a link failure. Existing proactive schemes can
be further divided into two sub-categories, by whether special
cooperation/signaling between routers are required for packet
forwarding. Cooperation-free schemes compute multiple next-
hops for each destination, and each router independently selects
an appropriate next-hop for standard packet forwarding, where
care must be taken such that the induced forwarding paths must
be loop-free. The benefit is that they can provide not only re-
dundant backup links, but also other features such as load bal-
ancing and high throughput, while the problem is, they often
can only protect a limited number of links. For example, recent
studies [11] show that almost 40% links cannot be protected by
loop free alternates (LFA) [12], a scheme adopted by the IP
fast-reroute (IPFRR) [13] framework. The other sub-category
of schemes compute, for a link to protect, a multi-hop repair

1229-2370/19/$10.00 c© 2019 KICS

HAIJUN GENG et al.: A HYBRID LINK PROTECTION SCHEME FOR ENSURING ... 47

path that is agreed by all routers on that path. Thus special co-
operation mechanisms have to be employed to reroute packets
along that path. All these proactive schemes introduce consid-
erable computation overhead, while only the latter sub-category
can provide full coverage for a large network, at the cost of ad-
ditional cooperation cost.

In this paper, we propose a novel scheme called hybrid link
protection (HLP), which meets the network availability require-
ment without inducing significant overhead by extending and
combining the two kinds of proactive schemes above. HLP con-
sists of two stages. Stage one provides MNP-e, where a highly
efficient incremental shortest path first (i-SPF) based algorithm
is proposed to help a node find all the LFC next-hops for each
destination, both locally and independently. Based on the ex-
isting work on this research area, we for the first time pro-
pose an algorithm whose complexity is less than that of Dijk-
stra algorithm and without degrading the network availability of
LFC. Then, in stage two, based on the argument that uneven
link failure probability or importance should be taken into ac-
count, backup path protection (BPP) selects a minimum number
of links according to the network availability requirement, and
computes the corresponding multi-hop backup paths to protect
them. In this way, HLP can attain the benefits of both kinds of
schemes mentioned above, and achieves them with much less
overhead. In this way, HLP can attain the benefits of both kinds
of schemes mentioned above, and achieves them with much less
overhead.

Our main contributions are summarized as follows:
• We propose HLP to effectively protect failed links. HLP can

provide full network protection in a very efficient way.
• We design MNP to compute multiple loop-free next-hops for

link protection, where only a single SPT need to be con-
structed on each router. This, both in theory and practice,
is much faster than existing algorithms that need to construct
multiple SPTs.

• We design MNP-e (an extension of MNP) to compute mul-
tiple loop-free next-hops for link protection, theoretical anal-
ysis indicates that the computation complexity of MNP-e is
less than that of constructing a shortest path tree, and MNP-
e can provide the similar network availability with LFC. We
theoretically prove the correctness of MNP-e algorithm.

• We argue that different link failures have different contribu-
tion to the network availability, and propose BPP to protect
a minimal number of links to meet the network availability
requirement.

• We evaluate the performance of our algorithm against other
link protection schemes in a unified framework, using both
real and synthetic topologies with different network availabil-
ity requirements. Compared with other solutions, HLP can not
only ensure good network availability, but also cannot intro-
duce conspicuous overhead.

• These advantages make HLP a good candidate for both tra-
ditional telecommunication networks andemerging complex
networks that require failure repair and load balancing in a
highly dynamic environment.
The remainder of this paper is organized as follows. Section II

introduces the related works. Section III presents the details
of HLP’s architecture. Section IV describes the MNP-e and its

properties in detail. Section V introduces BPP. Section VI eval-
uates MNP-e and HLP in a variety of network topologies, and
finally Section VII concludes the paper.

II. RELATED WORKS

Nowadays, network failures have become routine events
rather than exceptions. Many schemes have been proposed to
deal with this problem from different aspects, from physical
level methods such as optical routing protection, to IP level ap-
proaches.

IETF has drafted a framework named IPFRR [12]–[14],
which aims to provide fast recovery from network failures. The
basic idea is that, when a node detects the failure of a link di-
rectly connected to itself, it can immediate switch to backup
paths that are specifically computed for this failure. Based on
this basic framework, current solutions fall into two categories.
The first category computes multiple next-hops for each desti-
nation such that, even if routers independently select them in a
hop-by-hop manner for detouring the failed links, loop-free can
still be guaranteed, and thus packet routing/forwarding can be
done as usual, i.e., no further cooperation or signaling mecha-
nisms are needed. The second category compute a multi-hop
repair path for any link to be protected, and requires explicit co-
operation/signaling between routers to ensure packets are indeed
routed along this path when necessary.

Firstly, we will describe some schemes that can provide hop-
by-hop loop-free routing are applicable in IPFRR (i.e., in the
first category). Equal-cost multipath routing (ECMP) [15] al-
lows packets to be forwarded along multiple paths of equal
cost, which can be specifically tuned by network operators.
However, ECMP cannot offer good reliability since it is lim-
ited to cases where equal cost paths exist. Loop-free alter-
nate (LFA) [12] proposes several basic criteria for selecting
a proper next-hop, including loop-free criterion (LFC), node
protection condition (NPC) and downstream criterion (DC), to
guarantee loop-freeness. However, naively verifying these crite-
ria requires multiple shortest-path trees (SPT), and the cost in-
creases proportionally to the degree of a node (one SPT for each
neighbor). Routing deflection [16] relaxes DC by taking nodes
two hops away into account, at the cost of greater implemen-
tation complexity. TBFH [17] achieves faster computation by
tightening DC, but still needs to construct multiple SPTs. Per-
mutation Routing [18], [19] treats routers as a sequence of re-
sources, and creates permutations of these resources that of-
fer several forwarding alternatives, where each permutation is
equivalent to a SPT and the time complexity is proportional to
the number of permutations they want. Several algorithms [20]–
[22] compute a directed acyclic graph (DAG) for each destina-
tion to avoid loops, so in a network with |V | nodes, their time
complexity is in the order of |V | times the cost of computing a
single DAG, which is already more complicated than computing
a SPT. More next-hops can be found at the cost of increasingly
sophisticated DAGs, but there is no guarantee to find an alternate
next-hop for each destination (or each link). FIR [21] improves
the protecting capability against a single link failure by com-
puting different alternates for packets from different incoming
ports, at the cost of an increased computation overhead, and a re-

48 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

stricted scenario, i.e., only for protecting a link. In [23], authors
show that improving LFA failure case coverage is feasible with-
out touching the physical topology and the forwarding paths in
any ways, or requiring any new features from the IP data and the
control planes that are essentially fixed by what is available in
commercial network gear today. FIFR++ approach [24] employ
progressive link metric increments in conjunction with FIFR and
proves that FIFR++ is loop-free while protecting against single
link failures. Authors in [25] present DMPA-e by incorporat-
ing hop count, a topology dependent metric. However, DMPA-e
cannot achieve full failure coverage against single network com-
ponent failures. Then, we will describe some schemes that uses
explicit cooperation/signaling schemes to route packets along a
multi-hop repair path. Multi-topology routing [26], [27] com-
pute multiple routes based on backup network topologies tai-
lored for specific failures, either by removing the corresponding
links or by increasing their associated weights. Routers can con-
trol which topology the routers should be employed by chang-
ing additional bits in the packet header. Path splicing [28]
creates a set of slices for the network based on random link-
weight perturbations, and end system can control which slices
the routers should use by embedding control bits in packet head-
ers. Node/link-independent configurations of a topology are also
computed to make the routing resilient under any single link
fault [29].

The capability, as well as the complexity, of these algorithms
is proportional to the number of alternative configurations they
want to employ. Failure-carrying packets (FCP) [30] carries link
failure information in the IP packet header to allow routers to
diagnose problems and select alternate paths. However, this
scheme also requires considerable overhead to find the new
working path when receiving a packet carrying root-cause fail-
ure messages. Not-via [14] proposes a framework to use special
not-via addresses to provide link protection by such multi-hop
paths. Authors in [31] propose the scheme to cope with single
network component failure in segment routing networks. Au-
thors in [32] propose how to deploy LFA into software defined
networks (LFASDN). And they suggest to build an augmented
fat-tree topology which allows LFA to protect against all single
link and node failures. TOD [4] proposes tunneling on demand
(TOD) to handle one or dual link failures, but needs an addi-
tional signaling protocol to establish tunnels. Authors in [33]
presented the STATIC-ROUTING-RESILIENCY problem and
explored the power of static fast failover routing in a variety of
models. And also the schemes can provide resiliency against k-1
failures, with limited path stretch. A few studies [11], [34] com-
pare the computation complexity and network protection capa-
bility of the above two categories of schemes. Since both of them
need intensive computation, it is argued that not-via address is
better, in the sense that it provides higher network protection
coverage [34]. In this paper, we focus on protection schemes
that (1) are computationally efficient, (2) provide high network
protection coverage, and (3) preserve as much as possible the
benefits that multiple next-hop solutions have, such as no co-
operation/signaling and load balancing. Therefore, we propose
a novel link protection scheme, hybrid link protection (HLP),

1D is average node degree of the network.
2m is the number of slice.

to achieve failure resilient routing. Our previously published
paper [35] gives some preliminary ideas about HLP. HLP is im-
plemented in two stages. Stage one performs a multipath rout-
ing algorithm, which is similar to the paper [16]. However, the
time complexity of the stage one increases proportionally to the
degree of a node, which makes it impractical to deploy on the
internet. Therefore, we improved the stage one of HLP in our
published paper [36]. In [36], stage one provides an efficient
LFC based method (MNP). The time complexity of MNP does
not depend on the degree of the calculating router. However,
MNP cannot compute all the feasible backup next-hops which
are conformed to LFC. This paper mainly concerns on how to
overcome the drawbacks of [35] and [36]. In this paper, we for
the first time propose an algorithm (MNP-e) in the stage one
whose complexity is less than that of Dijkstra algorithm and
without degrading the network availability of LFC. A compari-
son of several existing fast reroute solutions and ours are sum-
marized in Table 1.

III. OVERVIEW OF HYBRID LINK PROTECTION

A. Network Model

We first explain the basic network model used in this pa-
per. We represent the network by a undirected connected graph
G = (V,E), where V and E are respectively the set of nodes
and links in the network. Each link (u, v) ∈ E has a cost
L(u, v), and is further characterized by a failure probability
r(u, v). L(u, v) = ∞ if u and v are not neighbors, and the link
failure events are statistically independent of each other. We use
Tc to denote the shortest path tree rooted at node c, D(Tc, x)
to denote the descendants of node x (x is included) in the Tc.
T ′c(c, x) is a shortest path tree rooted at node c when the edge
(c, x) ∈ Tc change its weight to−L(c, x). D(T ′c(c, x), x) to de-
note the descendants of node x (x is included) in the T ′c(c, x).

The main objective of HLP is to achieve high network avail-
ability by efficiently protecting links. We formally define the
network availability A(G) as follows, and use it as a main met-
ric to evaluate the protection capability of different schemes.

The end-to-end availability of a source-destination (s-d) pair
is defined as the probability that the packets can be correctly
forwarded from s to d. Assume that there exist n different for-
warding paths from s to d, the ith which is denoted by pi(s, d).
We also use Pi(s, d) to represent the set of links on the pi(s, d).
Further, let the event that pi(s, d) works be denoted by Ai(s, d),
whose probability can be expressed as [37]:

P (Ai) =
∏

∀(m,n)∈Pi(s,d)

r(m,n). (1)

According to the Inclusion-Exclusion principle [38], the end-
to-end availability of a source-destination pair can be expressed
as:

A(s, d) =

n∑
k=1

(−1)(k−1)Sk, (2)

where Sk denote the sum of the probabilities that a unique set of
k paths from s to d are simultaneously working, which is further
expressed as [37]:

HAIJUN GENG et al.: A HYBRID LINK PROTECTION SCHEME FOR ENSURING ... 49

Table 1. Comparison of different routing algorithms.

Algorithm Key enhancements Drawbacks Loop holes Simulator used Time complexity

ECMP [15]

(1) Allows packets to be
forwarded along multiple

paths of equal cost
(2) Compatible with current routing protocol

(3) Can offer load balancing

Cannot deal with all
single link failure scenarios Yes OSPFD O(|E|· lg(|V |))

LFA [12]

(1) Allows packets to be forwarded
to alternative neighbors

which are conformed to LFA
(2) Compatible with current routing protocol

(3) Can offer load balancing
(4) Does not require any support

from other routers

Cannot deal with all
single link failure scenarios Yes Own computation framework

which is conducted on a PC D·O(|E|· lg(|V |))1

TBFH [17]
(1) Combine fast rerouting

and load balancing
(2) Compatible with current routing protocol

(1) Cannot deal with all
single link failure scenarios

(2) Cannot calculate all
the next hops that satisfy LFA

Yes Own computation framework
which is conducted on a PC 2·O(|E| · lg(|V |))

FCP [30]

(1) Eliminate the convergence
process completely

(2) Can deal with all
single link failure scenarios

(1) Need to modify
the current routing protocol

(2) Need to modify
the header of packet

(3) Cannot offer load balancing

No OSPFD Authors do not analyze the
time complexity of the algorithm

Path splicing [28]

(1) Combine multiple routing trees
to each destination over

a single network topology
(2)Compatible with current routing protocol

(1) Cannot deal with all
single link failure scenarios

(2) Cannot offer load balancing
Yes Own computation framework

which is conducted on a PC m·O(|E|· lg(|V |))2

TOD [4]

(1) Propose a model
for interface specific routing

(2) Can deal with all
single link failure scenarios

(1) Need to modify
the current routing protocol

(2) Need to modify
the header of packet

(3) Cannot offer load balancing

No Own computation framework
which is conducted on a PC O(|E|·|E|· lg(|V |))

LFASDN [32]

(1) Provide loop detection for LFAs
in OpenFlow-based networks

(2) Can deal with all
single link failure scenarios

(1) Only for SDN network
(2) Cannot offer load balancing No Own computation framework

which is conducted on a PC
Authors do not analyze the

time complexity of the algorithm

MNP [36]

(1) Can calculate the majority of the next
hops that satisfy LFA

(2) Compatible with current routing protocol
(3) Can offer load balancing

(1) Cannot deal with all
single link failure scenarios

(2) Cannot calculate all the next
hops that satisfy LFA

Yes Own computation framework
which is conducted on a PC O(|E|· lg(|V |))

MNP-e [25]

(1) Can calculate all the next
hops that satisfy LFA
(2) Compatible with

current routing protocol
(3) Can offer load balancing

Cannot deal with all
single link failure scenarios Yes Own computation framework

which is conducted on a PC O(|E|· lg(|V |))

HLP

(1) Efficiently combine two
categories of routing protection algorithms

(2) Compatible with current routing protocol
(3) Can offer load balancing

(4) Can deal with all
single link failure scenarios

Need to use special
address (e.g., not-via address) No Own computation framework

which is conducted on a PC O(|E|· lg(|V |))

Sk =
∑

i<j<···<k

P (Ai ∩Aj · · · ∩Ak)

=
∑

i<j<···<k

 ∏
(m,n)∈Pi(s,d)∪Pj(s,d)∪···∪Pk(s,d)

r(m,n)

 .

Then, the network availability can be computed as

A(G) =

∑
s,d∈V,s 6=d

A(s, d)

|V | · (|V | − 1|)
. (3)

B. Basic Architecture

The main objective of our hybrid link protection (HLP)
scheme is to explore path diversity and pre-compute backup
paths, so that when link failures happen, a working path can
be instantly activated to avert these links. HLP is implemented
in two stages. Stage one computes multiple next-hops for each
destination based on LFC, where loop-freeness of the induced

forwarding path can be guaranteed. Links remaining unpro-
tected with stage one are handled in stage two, where BPP first
identify such links and computes their individual contribution to
the network availability (i.e., A(G)). Then it greedily selects a
minimum number of key links to meet the network availability
requirement, and computes the corresponding multi-hop backup
paths.

In HLP, the node that detects a link failure is called the fail-
ure detecting node (FDN). When a packet arrives at the FDN
and its default next-hop is not available any longer due to the
failure, FDN first checks whether there are multiple next-hops
computed by stage one for the corresponding destination, and
chooses any feasible one to forward the packet, if it exists. Oth-
erwise, it uses a special header (e.g., using not-via address [14],
source route, or any other appropriate signaling mechanism)
to route the packet along the multihop repair path computed
by BPP. Subsequent nodes receiving packets with the special
header then directly forward it along the BPP path. At the same
time, HLP initiates a control plane state synchronization, and
re-execute stage one and BPP after a consensus on the network
state is achieved by all nodes.

50 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

IV. EFFICIENT LOOP-FREE CRITERION BASED
SCHEMES

A. Problem Description

Since each router carries out its computation independently,
in the rest of the paper, the algorithm will be described with
respect to a particular node c that performs such kind of compu-
tation.

The object of c is to compute a candidate set of next-hops
Nc(v) for each destination v (v 6= c), so that when packets des-
tined to v arrive at c, c can select a next-hop from Nc(v) to
forward these packets to. In particular, we use Bc(v) to rep-
resent the best/default candidate, which lies along the shortest
path from c to v, and save it as the first entry in Nc(v) (i.e.,
Bc(v) = Nc(v)[0]).

The node c builds a shortest path tree Tc rooted at itself, con-
taining all the nodes in the network as potential destinations.
We use Cc(v) to denote the cost of the path from c to a spe-
cific node v in Tc, which is also the lowest cost from c to v
in the network. If the node c and v have direct links, then we
have Cc(v) = L(c, v). The parent of v in Tc is represented
by Pc(v). Since Tc is the shortest path tree, it is easy to verify
that Bc(v) = Bc(Pc(v)) = Bc(Pc(Pc(v))) = · · ·, that is, c will
choose the same best next-hop for a node (i.e., a destination) and
its descendants in Tc. To compute other next-hops in Nc(v), we
start with a simple rule called loop free criterion (LFC) [12] ,
which can be expressed as follows:

Theorem 1: For packets destined to a destination v, node c
(c 6= v) can forward them to its neighboring node x if

Cx(v) < Cx(c) + Cc(v). (4)

The resulting paths are loop-free and will reach the destination
correctly.

If we naively compute Cx(v) on node c by constructing a
SPT with x as its root, we will have to construct a SPT for each
neighbor of c, and the cost will be particularly high if the degree
of c is high.

However, for the actual deployment on the internet, a LFC-
based scheme should introduce a small additional burden on the
current deployed routing protocol. This paper is dedicated to
finding an efficient LFC-based scheme which is suitable for de-
ploying on an ISP network. In particular, we focus on the fol-
lowing problem: Given a computing node c and Tc, can we find
an efficient LFC-based algorithmic technique and the algorithm
conforms to the following two conditions: (1)The time complex-
ity of the algorithm is less than constructing a shortest path tree.
(2) It can provide the same network availability with LFC. In
this paper we propose two LFC-based methods, multiple next-
hop protection (MNP) and an extension of multiple next-hop
rotection (MNP-e). We will describe both of the algorithms and
their properties in detail in the following sections.

B. MNP

The problem proposed above can be come down to how to
cleverly compute Cx(v) in the Tc. One of our contributions lies
in the following rule, which is slightly more strict than the LFC
rule:

c

b a

v u

9

2

23

7

Fig. 1. An example for explaining the Theorem 2.

Theorem 2: Given any two nodes u and v (u, v 6= c) in the
shortest path tree Tc, let Dc(v, u) = Cc(u) − Cc(Bc(u)) +
L(u, v). If

Dc(v, u) < CBc(u)(c) + Cc(v). (5)

We say u can contribute to v, and add Bc(u) to Nc(v). If pack-
ets destined to v are always forwarded by c to the next-hops in
Nc(v), the resulting paths are loop-free and will reach the desti-
nation.

Proof: CBc(u)(v) is the cost from Bc(u) to v in the SPT
TBc(u), and is also the lowest cost from Bc(u) to v in the net-
work. Since Cc(u)− Cc(Bc(u)) + L(u, v) is the cost of a path
from Bc(u) to u to v, it must be no smaller than CBc(u)(v), so
CBc(u)(v) ≤ Cc(u)−Cc(Bc(u))+L(u, v) < CBc(u)(c)+Cc(v).
This satisfies (4) in Theorem 1, and thus the statement is true.

2

The condition in (5) is a little more strict than that in (4),
however, checking whether it is satisfied by two nodes u and v
can be accomplished in a much simpler way as follows. When
constructing the SPT Tc, whenever we insert a new node u, we
only need to verify (5) against a node v that is u’s neighbor and
is already in Tc, since if u and v are not neighbors, L(u, v) =∞
and it is not possible to satisfy (5). In this way, we can compute
Nc(v) for any node v by constructing a single SPT, which is
much faster than other multipath algorithms.

We will use an example to illustrate the Theorem 2. Fig. 1 is a
shortest path tree rooted at c. In this figure, note that Dc(v, u) =
Cc(u)−Cc(Bc(u))+L(u, v) = 9+2 = 11, while CBc(u)(c)+
Cc(v) = 2 + 10 = 12. Therefore, we can get Dc(v, u) <
CBc(u)(c) + Cc(v). From Theorem 2, we say u can contribute
(its best next-hop a) to v. From Theorem 2, we can see that node
c can use a as a validate next hop to v.

B.1 Algorithm

The detailed procedure of our MNP is provided in Algo-
rithm 1, whose overall logic is very similar to the classic Dijkstra
algorithm.

We assign a visited attribute to each node, so that only when
a node is already in the tree, its visited attribute is true, and
false otherwise. At the beginning, the costs of all nodes ex-
cept c are set to infinity, and their visited attribute is set to
false. Then the root node c is added to the SPT and set as the

HAIJUN GENG et al.: A HYBRID LINK PROTECTION SCHEME FOR ENSURING ... 51

current node (lines 1–6). To expand the SPT, we go through
several iterations. In each iteration, we examine the unvisited
nodes and select one to add to the tree.

To determine which node will be added to the tree, for each
unvisited node u, we first compute a tentative parent pc(u)
and a tentative cost tcc(u) with respect to the tree as follows.
Considering some visited node p in the tree, the cost of the
shortest path starting from c, going through p, to the unvisited
node u is cc(p) + L(p, u). Among all possible p’s, the one
achieves the smallest value of the cost cc(p)+L(p, u) is chosen
as the tentative parent of u, i.e., pc(u), where node ID of p is
used as a tie breaker. The corresponding tentative cost is just
tcc(u) = cc(pc(u)) + L(pc(u), u), which represents the lowest
cost from c to u, using existing shortest paths in the tree. In our
implementation, we save u together with its pc(u) and tcc(u) in
a priority queue Q using the ENQUEUE operation: if u already
exists in Q, it will be updated only when its new tentative cost
is smaller, or if the cost is the same but its new tentative parent
has a smaller ID. In each iteration, only unvisited neighbors of
the current node need to update their tentative parent and cost
in Q (lines 18–21), since visited nodes are already in the tree,
and have been assigned a permanent cost and parent.

At the beginning of each iteration, an unvisited node v with
the lowest tentative cost will be popped out from the priority
queue Q by the EXTRACTMIN operation, where node ID is
again used for tie breaking. It is then added to the tree, marked as
visited, and used as the current node in the iteration, while its
attributes like cost and parent are also set to a permanent value
(lines 8–12). The corresponding best next-hop Bc(v) is selected
(lines 13–16), and more candidates are added to the next-hop set
Nc(v) according to (5) (lines 22–24). Note that when checking
v against its neighbor u, Nc(u) can also be updated using the
dual form of (5) (lines 25–26).

B.2 Example

We use a simple step-by-step example to illustrate how MNP
works, as shown in Fig. 2, where node c dynamically constructs
the SPT and computes the next-hops for all other destinations.

Since Pc(b) = Pc(a) = Pc(d) = c, we can get Bc(b)=b,
Bc(a) = a, and Bc(d) = d when b, a and d are added to the
tree. When node e is added to the tree, e will choose b as its
parent, and we get Bc(e) = Bc(b) = b. 1

When e is added to the tree, Bc(a)=a and Cc(e)+Ca(c)=9,
so Dc(e, a) = Cc(a) − Cc(Bc(a)) + L(a, e) = 4. Since
Dc(e, a) < Cc(e) + Ca(c), therefore a can contribute to e, so
Bc(a)=a is added to Nc(e).

Because Bc(e) = b, Cc(a)+Cb(c) = 7, Dc(a, e) = Cc(e)−
Cc(Bc(e)) + L(e, a) = 7. Since Dc(a, e) = Cc(c) + Cb(c), so
e cannot contribute to c.

Similarly, when e is added to the tree, Bc(d)=d and Cc(e)+
Cd(c)=10, so Dc(e, d) = Cc(d) − Cc(Bc(d)) + L(d, e) = 5.
Since Dc(e, d) < Cc(e) + Cd(c) , d can contribute to e, so
Bc(d)=d is added to Nc(e).

Because Bc(e) = b, Cc(d)+Cb(c) = 7, Dc(d, e) = Cc(e)−
Cc(Bc(e))+L(e, d) = 8. Since Dc(d, e) > Cc(d)+Cb(c) and
e cannot contribute to d.

1The best next-hop Bc(·) is just the first element in the next-hop set Nc(·).

Algorithm 1 MNP.
Input:

Network graph G = (V,E) and Tc

Output:
Nc(v), (∀v ∈ V ∧ v 6= c)

1: for v ∈ V do
2: Cc(v)←∞
3: v.visited← false
4: end for
5: c.visited← true
6: Cc(c)← 0
7: ENQUEUE(Q,< c, c, 0 >)
8: while Q is not empty do
9: < v, p, tc >←EXTRACTMIN(Q)
10: if v 6= c then
11: v.visited← true
12: Pc(v)← p
13: Cc(v)← tc
14: if Pc(v) = c then
15: Bc(v)← d
16: end if
17: if Pc(v) 6= c then
18: Bc(v)← Bc(p);
19: end if
20: end if
21: for each neighbor u of v do
22: if u.visited = false then
23: newdist← Cc(v) + L(v, u)
24: if newdist <= Cc(u) then
25: ENQUEUE(Q,< u, v, newdist >)
26: end if
27: end if
28: if u.visited = true ∧Bc(u) 6= Bc(v) then
29: if u contributes to v then
30: Add Bc(u) to Nc(v)
31: end if
32: if v contributes to u then
33: Add Bc(v) to Nc(u)
34: end if
35: end if
36: end for
37: end while
38: return Nc(v), (∀v ∈ V ∧ v 6= c)

B.3 Complexity Analysis

MNP maintains a priority queue Q, which stores the nodes
together with their cost and parent. Let N denote the number
of nodes which must change their cost or parent attributes (or
both), M be the number of links that may cause any node in the
queue to change its cost (which is performed by the decrease-
key operation of the priority queue). Let enQ be the time needed
by ENQUEUE to enqueue a node, exQ be the time needed by
EXTRACTMIN to extract the node, and dkQ be the time needed
by ENQUEUE (decrease-key) to update a node which is existing
in the queue.

Theorem 3: The complexity of Algorithm 1 is O(|E|·lg(|V|))

52 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

Bc(b)=b
Nc(b)={b}

Bc(a)=a
Nc(a)={a}

Bc(d)=d
Nc(d)={d} Bc(e)=b

Nc(e)={b,a,d}

Nc(a)={a,b}

Fig. 2. Step by step construction of the SPT rooted at node c and the next-hop sets.

c

d

ba e

55

4

3

1

4

c

d

ba e

55

4

3

(a) (b)

Nc(d)={e}

Fig. 3. An example for explaining the drawback of MNP.

when the queue is implemented as a heap.
Proof: Because each node must be enqueued into and ex-

tracted from the queue exactly once, and each link can cause at
most one decrease-key operation, the total queue operation time
in Algorithm 1 is at in O(N ·enQ +N ·exQ +M ·dkQ). Beside
queue operations, some manipulations are called at most twice
for each of the M links, i.e., changing their next-hop sets, while
other operations are called once for each of the N nodes to set
their attributes. Each of them can be implemented in constant
time, and they cost O(N + M) in total. So the time complex-
ity of Algorithm 1 is still in O(N ·enQ + N ·exQ + M ·dkQ).
Since there are at most S nodes in the queue, enQ = O(1),
exQ = lg(N) and dkQ = O(1) when the queue is implemented
as a heap, and the total time complexity is in O(|M |lg|N |). By
substituting N by |V | and M by |E|, the complexity of Algo-
rithm 1 is now O(|E| · lg(|V |)). 2

C. An Extension of MNP (MNP-e)

Fig. 3 gives an example to explain the drawback of MNP.
Fig. 3(a) is a simple network topology which consists of 5 node
and 6 edges. Fig. 3(b) is a shortest path tree rooted at node c.
From Fig. 3(b), we can get Cb(d) = 5 < Cc(d) = 7, therefore
node b is a feasible backup next-hop from c to d. However, we
cannot find this feasible backup next-hop employing MNP. This
drawback is due to that node d only considers its neighbors’ best
next-hop as its potential backup next-hop. The time complexity
of MNP does not depend on the degree of the calculating router.
However, the network availability of MNP is lower than that of
the LFC. Based on the existing work on this research area, we
for the first time propose an algorithm whose complexity is less

Fig. 4. Shortest path tree rooted at A before link change.

than that of Dijkstra’s algorithm and without degrading the net-
work availability of LFC.

We will first discuss incremental shortest path first (i-SPF)
algorithm, which is the foundation of MNP-e algorithm. The
OSPF and IS-IS routing protocols which are widely deployed in
today’s internet calculate a shortest path tree (SPT) from each
router to other routers in an autonomous system (AS). Lots
of commercial routers have adopted dynamic SPT algorithms
which employ the structure of the previously computed SPT
rather than recomputed an new SPT from scratch when the net-
work topology changes. The reason is that when network topol-
ogy changes, the new computed SPT does not differ conspicu-
ously from the old one.

The i-SPF algorithm is carried out as following steps:
(1) Finding all the potentially affected nodes and marking them
floating.
(2) Computing the potential new distance, parent and the differ-
ence between the old distance and the potential new distance4
for the potentially affected nodes.
(3) In each iteration, a node with the smallest 4 (least positive
or most negative) is selected, and then a subtree, instead of only
one node, is appended to the new SPT. All of the above nodes
are marked anchored.

Perhaps the most intuitive way to demonstrate iSPF is through
an example. Consider the network topology depicted in Fig. 4,
which is composed of 6 nodes and 8 links. The letter besides
the node is its label. The solid lines are the links in the shortest
path tree which is rooted at node A, while the dotted lines are
the links not in the above shortest path tree. The number inside

HAIJUN GENG et al.: A HYBRID LINK PROTECTION SCHEME FOR ENSURING ... 53

Fig. 5. Shortest path tree rooted at A when the weight of (A,C) is changed to
2.

Fig. 6. Shortest path tree rooted at A when the weight of (A,C) is changed to
-8

the circle is the shortest distance from node A to that node.
At some point, the weight of the edge (A,C) is changed

from 8 to 2. Nodes from B to F are all affected nodes and
are marked as floating. Only the root node A is marked as
anchored. For all the floating nodes, we check whether they
have links to the anchored nodes, and calculate the new dis-
tance and the change (4) in distance, which gives queue
{(B, 7, 0), (C, 2, 6), (E, 10, 0)} where the third value is the 4.
In the next iteration, (C, 2, 6) will be considered first since it has
the largest 4. C will be marked as anchored. Since C has an
outing edge to E and B, the new distance and 4 of B and E
is calculated, which gives queue {(B, 6, 1), (E, 7, 3)}. Then E
is selected, instead of only marking E as anchored, the original
subtree rooted at E is considered together. Therefore the node
F is selected and marked as anchored at the same time. Since
E has an outing edge to D, the new distance and 4 of D is
calculated, which gives queue {(B, 6, 1), (D, 9, 2)}. Since node
D has the largest potential shortest distance decrease, node D is
marked as anchored. In the next iteration, node B is selected.
The new shortest path tree is depicted in the Fig. 5.

Here we will describe a special example, when a single link
changes its weight to the opposite number. For example, the
weight of the edge (A,C) is changed from 8 to −8. Only the
root node A is marked as anchored. For all the floating nodes,
we check whether they have links to the anchored nodes, and

calculate the new distance and the change (4) in distance, which
gives queue {(B, 7, 0), (C, 2, 16), (E, 10, 0)} where the third
value is the 4. In the next iteration, (C, 2, 16) will be con-
sidered first since it has the largest 4. C will be marked as
anchored. Since C has an outing edge to E and B, the new
distance and 4 of E and B is calculated, which gives queue
{(B,−4, 11), (E,−3, 13)}. Then E is selected, instead of only
marking E as anchored, the original subtree rooted at E is con-
sidered together. Therefore the node F is selected and marked
as anchored at the same time. Since E has an outing edge to D,
the new distance and 4 of D is calculated, which gives queue
{(B,−4, 11), (D,−1, 12)}. Since node D has the largest poten-
tial shortest distance decrease, node D is marked as anchored.
In the next iteration, node B is selected. The new shortest path
tree is given in the Fig. 6.

We have already known that Dijkstra’s algorithm is not appli-
cable with the networks whose link have negative weights. From
the above example, when the link (A,C) change its weight to
−L(A,C), the correct new shortest path tree can be constructed
using i-SPF. Theorem 4 indicates that this is not a special case.

Theorem 4: For any neighboring node x of c, the i-SPF al-
gorithm can get the correct new SPT T ′c(c, x).

Proof: We will use inductive reasoning to prove this theo-
rem.
(1) We first prove the base case. When the weight of edge
(c, x) is changed from L(c, x) to −L(c, x). The potential par-
ent for node x is c, the potential cost for node x is −L(c, x),
the potential cost change for node x is −2·L(c, x). The node x
will be enqueued into the Q using ENQUEUE operation. Af-
ter this operation, the queue has one element in the form of
(x, (c,−L(c, x),−2·L(c, x))). Because there is no node can de-
crease its cost by more than −2·L(c, x). Therefore, all of the
descendants of node x will be placed in the correct positions
during the first iteration.
(2) The inductive step is the same as in the [39], so we omitted
the content. 2

Theorem 5: For any node v(v 6= c, v 6= x) and x is neigh-
boring node of c, if v /∈ D(Tc, x) and v ∈ D(T ′c(c, x), x), then
we can get Cx(v) < Cc(v) + Cc(x).

Proof: From Theorem 4, the i-SPF can get the cor-
rect new shortest path tree T ′c(c, x). Assuming that Bc(v) =
y, y 6= x in the Tc, we have Cc(v) = Cc(y) + Cy(v). Since
v ∈ D(T ′c(c, x), x), we can obtain C ′c(v) = Cc(x) + Cx(v),
where C ′c(v) is the cost from node c to node v in the T ′c. Because
the weight of link (c, x) in the T ′c(c, x) is −L(c, x), we can get
C ′c(v) = Cx(v) − L(c, x)(1). According to that v /∈ D(Tc, x)
and v ∈ D(T ′c(c, x), x) , we can obtain C ′c(v) < Cc(v) (2).
Combining the (1) with (2), we have Cx(v) < Cc(v) + L(c, x).
Because Cc(x) = L(c, x), we can get Cx(v) < Cc(v) +Cc(x).

2

From Theorem 5, we can see that if the shortest path from
neighboring node x to d is not going through node c. The node
d must be the descendant of node x in the new shortest path tree
when the weight of (c, x) is changed to −L(c, x). Contrarily,
if the node c is included in the shortest path from neighboring
node x to d. The node d must not be the descendant of node x in
the new shortest path tree when the weight of (c, x) is changed
to −L(c, x).

54 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

c

d

ba

e

5

3

3

3

76

(a)

c

ba

5

3

c

ba

5

3

d

3

e

3

(b)

c

ba

5

3

c

ba

5

-
3

d

3

e

6

(c)

c

ba

5

3

d

7

c

ba

-
53

e

3

(d)

Fig. 7. An example for explaining the Theorem 5 and Theorem 6: (a) Topology, (b) Tc, (c) T ′
c(c, a), and (d) T ′

c(c, b).

Theorem 6: For any node v(v 6= c, v 6= x), if v /∈ D(Tc, x)
and v ∈ D(T ′c(c, x), x), then we can get Nc(v) = Nc(v) ∪ x.

Proof: From the Theorem 1 and Theorem 5, we can see
that the node x is a viable backup next-hop from node c to node
v, therefore we have Nc(v) = Nc(v) ∪ x. 2

We will use an example to explain the Theorem 5 and The-
orem 6. Fig. 7(a) is a simple network topology. Fig. 7(b) is
a shortest path tree rooted at node c, while Fig. 7(c) and 7(d)
respectively represent the new SPT when the link (c, a) and
(c, b) is changed to −3 and −5. Because e /∈ D(Tc, a) and
e ∈ D(T ′c(c, a), a), we can see that node a can be a vi-
able backup next-hop from c to e. Due to d /∈ D(Tc, b), and
d ∈ D(T ′c(c, b), b) , and also we can get node b can be a viable
backup next-hop from c to d in the same way.

C.1 Algorithm

We will elaborate the algorithm in detail in this section. Ac-
cording to the above discussions, Algorithm 2 is proposed to
compute the backup next-hop set which satisfies the LFC rule.
The inputs of the MNP are the network topology G = (V,E)
and Tc, and the output is the backup next-hop set from node c
to all other nodes in the network. The MNP requires several
iterations. In each iteration, at the beginning, the visited at-
tribute of all nodes except c are set to false (Algorithm 2 lines
2–6). We change the weight of the link (c, x) to −L(c, x), and
compute the weight change for (c, x) (Algorithm 2 lines 7–9),
which is stored in variable4. The shortest cost from c to v and
the visited attribute of node v are updated accordingly, where
v is the descendant of x in the Tc (Algorithm 2 lines 10–13).
For v ∈ D(Tc, x), for each of its unvisited neighbor u, we com-
pute the new tentative cost of u. The node u will be inserted into
the Q if its new tentative cost is smaller than the old value (Al-
gorithm 2 lines 14–23). At the beginning of each iteration, an
unvisited node v with the lowest tentative cost will be popped
out from the priority queue Q by the EXTRACTMIN operation,
where node ID is used as tie breaking. It is then added to the
tree, marked as visited, and used as the current node in the
iteration, while its attribute like cost is also set to a permanent
value (Algorithm 2 lines 25–27). The corresponding node x is
added to the next-hop set Nc(v) according to Theorem 6 (Algo-
rithm 2 line 28). For each unvisited neighbor u of v, we compute
the new tentative cost of u. The node u will be inserted into the
Q if its new tentative cost is smaller than the old value (Algo-
rithm 2 lines 29–36). At last, we will restore the weight of the

link (c, x) (Algorithm 2 line 38).

C.2 Theoretical Analysis

In this section, we will show the performance of the algorithm
MNP-e. From Theorem 7, we can see that the computational
complexity of MNP-e is less than that of constructing a shortest
path tree. From theorem 8, we can see that the MNP can com-
pute all the backup next-hop set which satisfies the LFC Rule.
We will describe the Theorem 7 and Theorem 8 in detail, and
also their correctness is proved.

Theorem 7: The computational complexity of MNP-e is less
than O(|E|lg|V |) when the queue is implemented as a Heap

Proof: To compute all the backup next-hop set from node
c to other nodes in the network. The MNP-e need to run k times
i-SPF algorithm, where k is the number of neighbors of node
c. Let Ni and Mi respectively indicate the number of nodes that
must adjust their costs or parents and the number of edges which
attached to these nodes when the weight of link (c, i) is changed
to 0. Therefore the computational complexity of the Algorithm
MNP-e is

∑k
i=1 Mi·lgNi ≤

∑k
i=1 Mi·lg|V | = O(|E|lg|V |).

Since Ni < |V |, therefore the computational complexity of
MNP-e is less than that of SPF. 2

Theorem 8: Algorithm MNP-e can compute all the backup
next-hop set that satisfies the LFC rule.

Proof: We will prove the theorem by contradiction. Sup-
posing that there is a node v(v 6= c, v 6= x), v /∈ D(Tc, x) and
Cx(v) < Cc(v), when the MNP-e is terminated. For any node
x ∈ N(c), if Cx(v) < Cc(v), then v ∈ D(T ′c, x). Therefore,
according Theorem 2, we can get x ∈ Nc(v) , this contradicts
the assumptions. 2

V. BACKUP PATH PROTECTION ALGORITHM

A. Problem Formulation

The multiple next-hops found by MNP can be utilized to de-
tour around failed links. However, there is no guarantee that
such backup next-hops can always be found, and thus the protec-
tion capability of MNP is limited (so do the other cooperation-
free mechanisms). To further improve the network availability,
we propose backup path protection (BPP) to find backup paths
when MNP fails to do so. Since forwarding along such paths
needs additional cooperation/signaling mechanisms, we want to
utilize them as little as possible.

HAIJUN GENG et al.: A HYBRID LINK PROTECTION SCHEME FOR ENSURING ... 55

Algorithm 2 MNP-e(G, c).
Input:

Network graph G = (V,E) and Tc

Output:
Nc(v), (∀v ∈ V ∧ v 6= c)

1: for x ∈ Neighbor(c) do
2: for v ∈ V do
3: v.visited← false
4: C ′c(v)← Cc(v)
5: end for
6: c.visited = true
7: weight← L(c, x)
8: L(c, x)← −L(c, x)
9: 4← weight− L(c, x)
10: for m ∈ D(Tc, x) do
11: C ′c(m)← C ′c(m)−4
12: m.visited = true
13: end for
14: for v ∈ D(Tc, x) do
15: for each neighbor u of v do
16: if u.visited = false then
17: newdist← C ′c(v) + L(v, u)
18: if newdist < C ′c(u) then
19: ENQUEUE(Q,< u, newdist >)
20: end if
21: end if
22: end for
23: end for
24: while Q is not empty do
25: < v, tc >← EXTRACTMIN(Q)
26: v.visited← true
27: C ′c(v)← tc
28: Add x to Nc(v)
29: for each neighbor u of v do
30: if u.visited = false then
31: newdist← C ′c(v) + L(v, u)
32: if newdist < C ′c(u) then
33: ENQUEUE(Q,< u, newdist >)
34: end if
35: end if
36: end for
37: end while
38: L(c, x)← weight
39: end for
40: return Nc(v), (∀v ∈ V ∧ v 6= c)

Given a network G(V,E) and the set of next-hops computed
by MNP, our objective is to find a set of links and the corre-
sponding backup paths, such that the network availability re-
quirement (A(G) ≥ R, where R is a parameter chosen by net-
work designers or operators) can be satisfied, while the number
of such links is minimized.

B. Algorithm

Algorithm 3 illustrates the framework of BPP. In the first step,
each node in the network independently identifies its key links,

Algorithm 3 BPP.
Input:

Nc(v), (∀v ∈ V ∧ v 6= c) obtained from Algorithm 2
Output:

The links need to be protected by multi-hop backup method
1: for d ∈ V do
2: if v 6= d ∧ |Nv(d)| = 1 then
3: e← (v,Bv(d))
4: e.P ← e.P ∪ (v, d)
5: add e to KeyLinks(v)
6: end if
7: end for
8: collect KeyLinks(v) from each v ∈ V
9: K = ∪v∈V KeyLinks(v)
10: for e ∈ K do
11: merge e.P
12: compute e’s contribution4(e) by (6)
13: end for
14: sort K in the descendent order of4(e)
15: K ′ = ∅
16: compute A(G)
17: while A(G) < R and K 6= ∅ do
18: select the first link e from K
19: A(G)← A(G) +4(e)/(|V | ∗ (|V | − 1))
20: add e to K ′

21: remove e from K
22: end while
23: distribute K ′ to each node in the network
24: return K ′

which are links that cannot be protected by MNP. 2 A key link
e is also associated with the forwarding paths that go through it,
denoted by e.P (Algorithm 3 lines 1–7). After MNP, these paths
can be constructed using the next-hop sets on each node. We
note that, here we only consider paths starting from the comput-
ing node instead of from any node in the network, and we will
discuss how it affects the checking of the constraint A(G) ≥ R
later.

After that, the key links independently identified by each node
are aggregated on a central node into a set K. The sets of asso-
ciated forwarding paths of the same key link e are merged into
a single e.P , and the contribution of protecting e to the network
availability,4(e), is computed based on e.P . Then the key links
in K are sorted in a descendent order according to their contri-
bution4(e) (Algorithm 3 lines 8–14).

The procedure of computing4(e) based on e.P is as follows.
Given a network G(V,E), the contribution to the network avail-
ability of protecting a key link e is defined as:

4(e) =
∑

∀(s,d)∈e.P

A∗(s, d)−A(s, d), (6)

where A(s, d) is the end-to-end availability of a path (s, d) in
G, as defined in Section III.A, while A∗(s, d) is the end-to-end
availability of a path (s, d) after e is protected by the backup
path computed by BPP. The backup path BPP computes for a

2A link e = (v,Bv(d)) is identified as a key link if |Nv(d)| = 1.

56 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

Topology Size

20 40 60 80 100 120 140 160 180 200

C
o
m

p
u
ti
n
g
 T

im
e
 (

u
s
)

101

102

103

OSPF

LFC

TBFH

MNP

DMPA-e

MNP-e

Fig. 8. Computation time on generated topologies when average node degree=4.

link e is simply the new shortest path in the graph G\e. When
computing A∗(s, d), we augment G by adding a pseudo link
(s, d) between s and d to get a new graph G∗. The availabil-
ity r(s, d) of this pseudo link is just the product of the avail-
ability of all links along the new shortest path, and A∗(s, d) is
computed in the same way as A(s, d) using (2), but on the aug-
mented graph G∗ instead of G.

In this way, we model the different contribution to the net-
work availability of protecting different key links. Then we sim-
ply select the key links from K one by one, in the order of
their contributions, until the network availability requirement
A(G) ≥ R is satisfied, or the set K is exhausted (Algorithm 3
lines 15–22). Finally, these key links are distributed to all nodes
in the network, so that these nodes can reach a consensus on pro-
tecting which links using special cooperation/signaling mecha-
nisms. The backup path can be easily computed by each node,
and can also be distributed by the central node (Algorithm 3
line 23).

Finally, we explain when computing e.P , the associated for-
warding paths of e, why we only add those paths that start
from the computing node v (Algorithm 3 line 4) and the im-
pact it brings on satisfying the network availability constraint.
The reason we do this is simply for reducing the computational
complexity, since enumerating all paths in the network that go
through e will be |V | times more time consuming. On the other
hand, since 4(e) =

∑
∀(s,d)∈e.P A∗(s, d)−A(s, d) is com-

posed of the individual contribution of each path (s, d) ∈ e.P ,
i.e., A∗(s, d) − A(s, d), which cannot be negative, we can only
underestimate the contribution of protecting e by conservatively
adding paths to e.P . Thus, when BPP considers A(G) ≥ R to
be already satisfied, the constraint is indeed satisfied.

VI. PERFORMANCE EVALUATION

As our main motivation of this paper is to achieve good com-
putational efficiency and high network availability, the objective
of our performance evaluation is twofold:

i) To indicate the effectiveness of MNP-e, we compare MNP-
e with the standard OSPF and some cooperation-free mecha-
nisms mentioned in Section II, including LFC [12], TBFH [17],
MNP and DMPA-e [25]. The time complexity of other schemes

Average Degree of The Topology

5 10 15 20 25 30 35 40

C
o
m

p
u
ti
n
g
 T

im
e
 (

u
s
)

102

103

104

OSPF

LFC

TBFH

MNP

DMPA-e

MNP-e

Fig. 9. Computation time on generated topologies when topology size=200.

Average Degree of The Topology

5 10 15 20 25 30 35 40

C
o
m

p
u
ti
n
g
 T

im
e
 (

u
s
)

102

103

104

105

OSPF

LFC

TBFH

MNP

Fig. 10. Computation time on generated topologies when topology size=1000.

Average Degree of The Topology

2 3 4 5 6 7 8 9 10

N
e
tw

o
rk

 A
v
a
ila

b
ili

ty

0.85

0.9

0.95

1

OSPF

LFC

TBFH

MNP

DMPA-e

MNP-e

Fig. 11. Network availability on generate topologies when topology size=300.

mentioned in the related works are much more complex, so they
are not compared here.

ii) To demonstrate the improvements achieved by HLP, which
combines MNP-e and BPP, we compare HLP with the strategy
that uses full protection with multi- hop backup paths. For the
latter one, we use the incremental OSPF algorithm to compute
a multi-hop repair path for each link. Other cooperation mecha-
nisms mentioned in Section II not only need to modify the cur-

HAIJUN GENG et al.: A HYBRID LINK PROTECTION SCHEME FOR ENSURING ... 57

Average Degree of The Topology

2 3 4 5 6 7 8 9 10

N
e
tw

o
rk

 A
v
a
ila

b
ili

ty

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

OSPF

LFC

TBFH

MNP

DMPA-e

MNP-e

Fig. 12. Network availability on generate topologies when topology size=800.

Table 2. Parameters for BRITE.

Model N HS LS
Waxman 20-1000 1000 100

m NodePlacement GrowthTypem alpha
2-10 Random Incremental 0.35
beta BWDist BwMin BwMax
0.65 Heavy Tail 100.0 1024.0

rent routing protocol but also have high time complexity, so they
are not directly compared here.

To evaluate our algorithm, we use the real Abilene network
(11 nodes, 14 links), and four other ISP topologies inferred by
Rocketfuel [40], including Exodus (79 nodes, 147 links), Telstra
(108 nodes, 153 links), Tiscali (161 nodes, 328 links), and Sprint
(315 nodes, 972 links). We also generate synthetic topologies
with BRITE [41], using parameters as listed in Table 2. For sim-
ilarity, we use a simple model to characterize link failure events.
The fail probability of each link e is randomly generated in the
range from 0 to 0.02. All the simulations are conducted on a PC
with Intel i5 CPU at 1.7 GHz and 1.5 G Memory.

A. MNP and MNP-e

A.1 Computation Time

The computation time of MNP, MNP-e, OSPF, LFC, and
TBFH on different ISP topologies is listed in Table 3, where the
number is the time averaged on all nodes in the corresponding
network, and the lower, the better. It is obvious that MNP-e’s
performance is higher than that of OSPF, MNP, and DMPA-e’s
performance is close to that of OSPF. They both outperform the
other two schemes, especially when the network is larger. For
example, in the Sprint topology, OSPF uses 140.23 µs, MNP-e
uses 137.34 µs, MNP uses 150.12 µs, DMPA-e use 153.57 µs,
while TBFH and LFC’s complexity are two and six times higher,
respectively.

The impact of the network topology on the computing time is
further illustrated in Figs. 8, 9, and 10 using synthesized topolo-
gies generated by BRITE. Figs. 8, 9, and 10 depict the corre-
sponding computation time of each scheme , in a log-scale man-
ner, when the topology size or the average node degree of the

Table 3. Computation time for real topologies.

Network Computation time (µs)
OSPF LFC TBFH MNP DMPA-e MNP-e

Real Abilene 6.82 7.27 6.97 6.83 6.87 6.52

Measured
Exodus 44.36 128.29 88.76 50.23 52.67 42.34
Telstra 49.45 163.43 100.34 54.34 56.73 46.23
Tiscali 79.45 398.34 183.56 83.45 85.67 75.34
Sprint 140.23 906.78 368.12 150.12 153.57 137.34

Table 4. Network availability for real topologies.

Network Network availability (%)
OSPF LFC TBFH MNP DMPA-e MNP-e

Real Abilene 93.27 97.12 94.45 96.89 96.89 97.12

Measured
Exodus 84.54 91.25 86.76 90.01 90.06 91.25
Telstra 85.34 93.23 87.34 92.11 92.57 93.23
Tiscali 82.12 92.65 84.45 90.89 91.54 92.65
Sprint 81.76 93.25 83.45 90.13 90.97 93.25

topology changes, respectively. When the topology size or the
average node degree increases, the average computation time in-
creases accordingly, indicating a similar trend as that in Table 3.
Figs. 9 and 10 respectively illustrate the computing time with
different average node degree when the topology size is 300 and
800. We can see that the average node degree has a remark-
able influence on LFC but has little influence on other four al-
gorithms. MNP-e has the highest performance among all of the
algorithms. The reason is that on each node LFC have to com-
pute a SPT for each neighbor, while OSPF, MNP, and DMPA-e
only need to compute a SPT, TBFH need to compute nearly two
SPTs. The computation time of MNP-e is lower than construct-
ing a SPT. In a large network with dense connections, i.e., when
|V | = 800 with an average node degree of 10, LFC and TBFH
may be several orders slower than MNP-e, DMPA-e, and MNP,
whose performance keep close to OSPF.

A.2 Network Availability

Table 4 provides the network availability provided by each
protection scheme, on the five real ISP topologies. From the re-
sults, we can see that MNP-e has an clear advantage over MNP,
TBFH, DMPA-e, and OSPF, which can provide the same per-
formance with LFC.

We also investigate how the protecting capabilities of the five
schemes vary, when the topology density increases. As shown
in Figs. 11 and 12, when the average node degree increases,
all schemes provide better protection results, while MNP-e can
provide the same performance with LFC. MNP-e and LFC are
always much better than MNP, OSPF, and TBFH.

B. HLP

Figs. 13, 14, and 15 show the computation time of HLP, nor-
malized by the computing time achieved by a full protection
with multi-hop backup paths, on different topologies (the n in
HLP-n is the average degree of the topology). The largest net-
work availability we test is 99.99%, which is close to the theo-
retical maximum value, 100%. HLP has a clear advantage over
full-protection. For example, HLP typically needs around 10%
time of that of full protection. The advantage of HLP over the
naive full-protection verifies the effect of intelligently selecting
a small number of links according to their contribution to the
network availability, And also the advantage of HLP over full-
protection verifies the effect of taking the advantage of the much
less computational intensive MNP-e.

58 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

Network Availability

0.94 0.95 0.96 0.97 0.98 0.99 1

N
o
rm

a
liz

e
d
 C

o
m

p
u
ta

ti
o
n
 T

im
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

HLP-Exodus

HLP-Telstra

HLP-Sprint

HLP-Tiscali

Fig. 13. Normalized computation time on real and measured topologies.

Network Availability

0.94 0.95 0.96 0.97 0.98 0.99 1

N
o
rm

a
liz

e
d
 C

o
m

p
u
ta

ti
o
n
 T

im
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

HLP-2

HLP-4

HLP-6

HLP-8

HLP-10

Fig. 14. Normalized computation time on generated topologies when topology
size=300.

Network Availability

0.94 0.95 0.96 0.97 0.98 0.99 1

N
o
rm

a
liz

e
d
 C

o
m

p
u
ta

ti
o
n
 T

im
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

HLP-2

HLP-4

HLP-6

HLP-8

HLP-10

Fig. 15. Normalized computation time on generated topologies when topology
size=800.

Figs. 16, 17, and 18 show more details. In the figures, we
plot the number of key links that each scheme must use multi-
hop backup paths to protect, under different levels of network
availability requirement. The y-axis (backup-links) is the ratio
of the number of protected key links to the number of all links
in the network. When the topology size or the density increases,
the performance of HLP improves more upon other schemes.

Network Availability

0.94 0.95 0.96 0.97 0.98 0.99 1

B
a
c
k
u
p
-l
in

k
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

HLP-Exodus

HLP-Telstra

HLP-Sprint

HLP-Tiscali

Fig. 16. Backup-links for real and measured topologies.

Network Availability

0.94 0.95 0.96 0.97 0.98 0.99 1

B
a
c
k
u
p
-l
in

k
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

HLP-2

HLP-4

HLP-6

HLP-8

HLP-10

Fig. 17. Backup-links for generated topologies when topology size=300.

Network Availability

0.94 0.95 0.96 0.97 0.98 0.99 1

B
a
c
k
u
p
-l
in

k
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

HLP-2

HLP-4

HLP-6

HLP-8

HLP-10

Fig. 18. Backup-links for generated topologies when topology size=800.

The reason is that more multiple next-hops are found in MNP-e,
which effectively reduces the number of links to be protected in
BPP.

VII. CONCLUSION

Traditional intra-domain routing protocols react to network
failures by globally exchanging link state advertisements and re-
calculating routing table. This mechanism will greatly increase

HAIJUN GENG et al.: A HYBRID LINK PROTECTION SCHEME FOR ENSURING ... 59

the convergence time, resulting in large number of packets are
discarded when network failures occur. Therefore, lots of rout-
ing protection schemes have been proposed to enhance net-
work availability to support mission-critical and real-time ap-
plications in the internet. However, all of the aforementioned
algorithms cannot strike a good balance between the implemen-
tation of efficiency and network availability. Unlike the above
works, however, our main concerns are computational efficiency
and network availability, as these are critical for the algorithm.
Therefore, we presented HLP as a novel link protection scheme
to achieve high network availability for link-state routing net-
works. We described how HLP improves network availability by
combining MNP-e and BPP. HLP first computes multiple next-
hops for source-destination pairs, then selects a minimum num-
ber of links to protect, so that it can meet network availability
requirement without inducing significant overhead. Evaluation
results on real and synthetic networks show that HLP can pro-
vide high network availability with low overhead. We believe
networks can be made more efficient and reliable by adopting
this mechanism. In the future, we will focus our research on
designing effective link failures models. We are convinced that
our work will be more fruitful under more accurate prediction
of link failure event. We will also study how to deploy the HLP
scheme in the hybrid software defined network architecture.

REFERENCES
[1] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “Sentinel: Failure recov-

ery in centralized traffic engineering,” IEEE/ACM Trans. Netw., vol. 27,
no. 5, pp. 1859–1872, 2019.

[2] S. Wang, H. Xu, L. Huang, X. Yang, and J. Liu, “Fast recovery
for single link failure with segment routing in SDNs,” in Proc. IEEE
HPCC/SmartCity/DSS, Aug. 2019, pp. 2013–2018.

[3] J. Bogle, et al., “Teavar: Striking the right utilization-availability bal-
ance in wan traffic engineering,” in Proc. ACM SIGCOMM, Aug. 2019,
pp. 1–15.

[4] Y. Yang, M. Xu, and Q. Li, “Fast rerouting against multi-link failures
without topology constraint,” IEEE/ACM Trans. Netw., vol. 26, no. 1,
pp. 384–397, 2018.

[5] P. Kumar, Y. Yuan, C. Yu, N. Foster, and R. Kleinberg, “Semi-oblivious
traffic engineering: The road not taken,” in Proc. USENIX NSDI, Apr.
2018, pp. 1–15.

[6] D. Davis and V. Vokkarane, “Failure-aware protection for many-to-many
routing in content centric networks,” IEEE Trans. Netw. Sci. Eng., no. 99,
pp. 1–16, 2019.

[7] H. Geng, X. Shi, X. Yin, Z. Wang, and S. Yin, “Algebra and algorithms
for multipath qos routing in link state networks,” J. Commun. Networks,
vol. 19, no. 2, pp. 189–200, 2017.

[8] A. Xu, J. Bi, B. Zhang, T. Xu, and J. Wu, “Ustr: A high-performance
traffic engineering approach for the failed link,” in Proc. IEEE ICDCS,
July 2018, pp. 267–277.

[9] K. J. Pai and J. M. Chang, “Dual-cists: Configuring a protection routing on
some cayley networks,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1–12,
2019.

[10] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” ACM SIGCOMM Comput.
Commun. Review, vol. 35, no. 3, pp. 35–44, 2005.

[11] P. Francois and O. Bonaventure, “An evaluation of IP-based fast reroute
techniques,” in Proc. ACM CoNEXT, Oct. 2005, pp. 244–245.

[12] E. A. Atlas and E. A. Zinin, “RFC 5286: Basic specification for IP fast
reroute: Loop-free alternates,” Internet RFCs, 2008.

[13] S. B. M. Shan, “RFC 5714: IP fast reroute framework,” Internet RFCs,
2010.

[14] M. S. S. Bryant, S. Previdi, “Rfc 6981: A framework for IP and MPLS
fast reroute usingnot-via addresses,” Internet RFCs, 2013.

[15] J. Moy, “Rfc 2328: OSPF Version 2,” Internet RFCs, 1998.
[16] X. Yang and D. Wetherall, “Source selectable path diversity via routing de-

flections,” in ACM SIGCOMM Comput. Commum. Review, vol. 36, no. 4,
pp. 159–170, 2006.

[17] P. Mérindol, P. Francois, O. Bonaventure, S. Cateloin, and J. J. Pansiot,
“An efficient algorithm to enable path diversity in link state routing net-
works,” Comput. Netw., vol. 55, no. 5, pp. 1132–1149, Apr. 2011.

[18] H. Q. Vo, O. Lysne, and A. Kvalbein, “Routing with joker links for max-
imized robustness,” in Proc. IEEE IFIP Netw. Conference, May 2013,
pp. 1–9.

[19] H. Q. Vo, O. Lysne, and A. Kvalbein, “Permutation routing for increased
robustness in IP networks,” International Conference on Research in Net-
working, Springer, Berlin, Heidelberg, 2012, pp. 217–231.

[20] Y. Ohara, S. Imahori, and R. Van Meter, “Mara: Maximum alternative
routing algorithm,” in Proc. IEEE INFOCOM, Apr. 2009, pp. 298–306.

[21] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah, “Fast local
rerouting for handling transient link failures,” IEEE/ACM Trans. Netw.,
vol. 15, no. 2, pp. 359–372, 2007.

[22] K.-W. Kwong, L. Gao, R. Guerin, and Z.-L. Zhang, “On the feasibility and
efficacy of protection routing in IP networks,” in IEEE/ACM Trans. Netw.,
vol. 19, no. 5, pp. 1543–1556, 2011.

[23] M. Nagy, J. Tapolcai, and G. Retvari, “Node virtualization for IP level
resilience,” IEEE/ACM Trans. Netw., vol. PP, no. 99, pp. 1–14, 2018.

[24] M. Nagy, J. Tapolcai, and G. Retvari, “Failure-inference-based fast reroute
with progressive link metric increments,” in Proc. IEEE ICCCN, July
2018, pp. 1–7.

[25] H. Geng, X. Shi, Z. Wang, and X. Yin, “A hop-by-hop dynamic distributed
multipath routing mechanism for link state network,” Comput. Commun.,
vol. 116, pp. 225–239, 2018.

[26] G. Apostolopoulos, “Using multiple topologies for IP-only protection
against network failures: A routing performance perspective,” ICS-
FORTH, Greece, Tech. Rep, 2006.

[27] S. Gjessing, “Implementation of two resilience mechanisms using multi
topology routing and stub routers,” in Proc. IEEE AICT-ICIW, Feb. 2006,
p. 29.

[28] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path splicing,”
in Proc. ACM SIGCOMM, Aug. 2008, pp. 27–38.

[29] S. Cho, T. Elhourani, and S. Ramasubramanian, “Independent directed
acyclic graphs for resilient multipath routing,” IEEE/ACM Trans. Netw.,
vol. 20, no. 1, pp. 153–162, 2012.

[30] K. Lakshminarayanan, et al., “Achieving convergence-free routing us-
ing failure-carrying packets,” in Proc. ACM SIGCOMM, Aug. 2007,
pp. 241–252.

[31] F. Hao, M. Kodialam, and T. V. Lakshman, “Optimizing restoration with
segment routing,” in Proc. IEEE INFOCOM, Apr. 2016, pp. 1–9.

[32] W. Braun and M. Menth, “Loop-free alternates with loop detection for fast
reroute in software-defined carrier and data center networks,” J. Network
Syst. Manag., vol. 24, no. 3, pp. 1–21, 2016.

[33] M. Chiesa, et al., “On the resiliency of static forwarding tables,”
IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1133–1146, 2017.

[34] M. Menth, M. Hartmann, R. Martin, T. Čičić, and A. Kvalbein, “Loop-
free alternates and not-via addresses: A proper combination for IP fast
reroute,” Comput. Netw., vol. 54, no. 8, pp. 1300–1315, 2010.

[35] H. Geng, X. Shi, Y. Xia, Z. Wang, Z. Han, and J. Yao, “A hybrid link
protection scheme for link-state routing networks,” in Proc. IEEE IPCCC,
Dec. 2014, pp. 1–2.

[36] H. Geng, X. Shi, X. Yin, Z. Wang, and H. Zhang, “An efficient link pro-
tection scheme for link-state routing networks,” in Proc. IEEE ICC, June
2015, pp. 6024–6029.

[37] R. Terruggia, “Reliability analysis of probabilistic networks,” Ph.D. Dis-
sertation, Univ. Turin, Turin, Italy, 2010.

[38] W. Feller, “An introduction to probability theory and its applications,”
vol. 2, John Wiley and Sons, 1968.

[39] P. Narvez, K. Y. Siu, and H. Y. Tzeng, “New dynamic spt algorithm
based on ball-and-string model,” IEEE/ACM Trans. Netw., vol. 9, no. 6,
pp. 706–718, 2002.

[40] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1,
pp. 2–16, 2004.

[41] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to
universal topology generation,” in Proc. IEEE MASCOTS, Aug. 2001,
pp. 346–353.

60 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 1, FEBRUARY 2020

Haijun Geng received the B.E, M.E., and Ph.D. de-
grees from Yantai University, Capital Normal Uni-
versity and Tsinghua University, in 2008, 2011 and
2015, respectively. He is now working in the School
of Software Engineering, Shanxi University. His re-
search interests include future internet architecture
and largescale internet routing.

Han Zhang received the B.S. degree from Jilin Uni-
versity and Ph.D. from Tsinghua University. He is
now working in the School of Cyber Science and
Technology, Beihang University. His research con-
cerns computer networks, network security, and AI.
He is a member of IEEE.

Xingang Shi received the B.S. degree from Tsinghua
University and the Ph.D. degree from the Chinese
University of Hong Kong. He is now working in the
Institute for Network Sciences and Cyberspace at Ts-
inghua University. His research interests include net-
work measurement and routing protocols.

Zhiliang Wang received the B.E., M.E., and Ph.D.
degrees from Tsinghua University, in 2001, 2003 and
2006, respectively. Currently he is an associate pro-
fessor in the Institute for Network Sciences and Cy-
berspace at Tsinghua University. His research inter-
ests include formal methods and protocol testing, next
generation internet, and network measurement.

Xia Yin received the B.E., M.E., and Ph.D. degrees
from Tsinghua University in 1995, 1997, and 2000,
respectively. She is a Full Professor in Department
of Computer Science and Technology at Tsinghua
University. Her research interests include future inter-
net architecture, formal method, protocol testing and
largescale internet routing.

Ju Zhang received the B.E. and M.E. degrees from
North University of China in 2004 and 2007, respec-
tively. He is now working in the School of Software
Engineering, Shanxi University. His research interests
include routing protocols, network security, and cloud
computing.

Zhiguo Hu received Ph.D. degree from Tongji Uni-
versity, China in 2012. He is now working in the
School of Computer and Information Technology,
Shanxi University. His research interests include net-
work measurement, data mining, and machine lean-
ing.

Yong Wu received the B.E. and M.E. degrees from
Taiyuan University of Technology and Guizhou Uni-
versity in 2005 and 2010, respectively. He is now
working in the School of Software Engineering,
Shanxi University. His research interests include rout-
ing protocols, network security, and cloud comput-
ing.

