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Collaborative Attributes and Resources for
Single-Stage Virtual Network Mapping in Network

Virtualization
Haotong Cao, Hongbo Zhu, and Longxiang Yang

Abstract: Virtual network embedding (VNE) is the virtualized node
and link resources allocation problem in network virtualization en-
vironment, aiming at achieving the simultaneous optimal node and
link mapping assignment per VN. Currently, a large number of
mapping algorithms for VNE exist in the academia. Existing al-
gorithms mostly focus on mapping each virtual network (VN) in
two ordered stages: First virtual node mapping stage and second
virtual link mapping stage, leading to non-optimal VN mapping
assignment. Though multiple one-stage algorithms exist, adopt-
ing either optimization theory or graph theory, they usually in-
volve much more VN assignment calculation time. Hence, these
one-stage algorithms are not suitable for dynamic network sce-
nario. Not to mention practical VNE application. Based on the
background and our gained research results, we propose another
heuristic mapping algorithm VNE-ARS, completing all nodes and
links per VN in one single embedding stage. Each VN embed-
ding assignment can be completed in polynomial time, using our
VNE-ARS. Main network attributes and resources are collabo-
rated, serving as the mapping criterion of our VNE-ARS. In order
to highlight our VNE-ARS strength, we conduct the evaluation ex-
periments. We compare our VNE-ARS algorithm against existing
mapping algorithms.

Index Terms: Heuristic algorithm, mapping algorithm, network at-
tributes, one single stage, two ordered stages, virtual network em-
bedding.

I. INTRODUCTION

Future network based on virtualization technology has been
emphasized [1] as the evolutionary direction of next generation
network in the research community. In the future network vir-
tualization environment, one key technical issue is virtualized
node and link resources allocation. This issue is called as vir-
tual network embedding (VNE) [2], struggling to achieve the si-
multaneous optimal node and link mapping assignment per VN.
To deal with VNE, a large number of mapping algorithms are
studied. Corresponding, review papers on VN embedding al-
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gorithms have been published [3]–[5] in recent years. In VNE
research, two terms, embedding and mapping, can be used in-
terchangeably.

However, most of existing mapping algorithms [4], [6]–[14]
embed the given VN in two ordered and isolated stages: first vir-
tual node mapping stage and second virtual link mapping stage.
This mapping strategy cannot guarantee the optimal or sub-
optimal embedding assignment per VN in many cases. Instead,
only a feasible VN embedding assignment can be achieved. Fol-
lowing this strategy, physical node and link resources cannot be
consumed efficiently in the long term. Not to mention optimiz-
ing VN acceptance performance. Hence, there is a great demand
of developing one-stage mapping algorithms that integrate the
VN mapping in one single stage. Though one-stage mapping
algorithms [3] have been well developed in recent years, origi-
nated from optimization theory [15], [16] or graph theory [17],
[18], another key flaw exists. The key flaw is that this type of
one-stage algorithms have high embedding assignment calcu-
lation time per VN. As VNE is designed for future dynamic
network scenario, it is important to minimize the mapping as-
signment calculation time and guarantee the embedding quality.

Based on our gained knowledge and recent research results,
we propose another single-stage heuristic mapping algorithm in
this paper. In our proposed algorithm, main existing network
attributes and resources [19] are collaborated and quantified as
the mapping criterion for sorting nodes. We conduct the VN
embedding in one single stage, with the assistance of the map-
ping criterion. By extracting these characteristics, our algorithm
is labeled as VNE-ARS. The VNE-ARS has the goals of maxi-
mizing VN acceptance ratio and using physical node and link
resources to their full capacities. Different from previous one-
stage algorithms [3], our VNE-ARS is able to calculate the VN
embedding assignment within polynomial time. That is to say,
our VNE-ARS has a lower VN embedding assignment calcula-
tion time than existing one-stage algorithms [15]–[18]. In ad-
dition, the VN embedding quality of our VNE-ARS improves,
comparing with previous typical two-stages algorithms. There-
fore, our VNE-ARS is suitable for future virtualized resources
application. To further validate our VNE-ARS efficiency, we
conduct the evaluation experiments. For example, our VNE-ARS
has an apparent advantage over its two-stages version, in terms
of VN acceptance ratio results.

We list out main contributions of our paper below:
• A single-stage heuristic embedding algorithm, VNE-ARS, is

proposed in this paper. The VNE-ARS integrates isolated node
embedding and link mapping per VN in one procedure. In
addition, the VN embedding assignment can be calculated in
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polynomial time, using our VNE-ARS. Therefore, VNE-ARS
promises to be applied to future dynamic network scenario.

• In our VNE-ARS, the number of implemented virtual con-
straints is five: CPU, node storage, node location, node de-
ployment time and link bandwidth. While in previous VNE
research [2], [5], only CPU, node location and bandwidth are
implemented as virtual constraints for each requested VN.

• A comprehensive evaluation is conducted in order to high-
light our VNE-ARS strength. The evaluation part consists of
three sub-parts: comparing with VNE-ARS’s sub-algorithms
sub-part, comparing with VNE-ARS’s two-stages version sub-
part, and comparing with existing two-stages heuristic algo-
rithms sub-part.
Remaining sections are organized as follows. Related work

is discussed in Section II. Network model and evaluation met-
rics are presented in Section III. In Section IV, our VNE-ARS
is detailed. Evaluation work is conducted in Section V. At last,
conclusion marks are made.

II. RELATED WORK

In this section, we briefly look back on existing two-stages
algorithms and latest one-stage mapping algorithms.

With respect to existing two-stages mapping algorithms in the
literature, they usually embed each demanded VN in two or-
dered stages: first virtual node embedding stage and second vir-
tual link embedding stage. Greedy node mapping strategy and
shortest path (SP) link mapping strategy are adopted for virtual
node embedding and virtual link embedding, respectively [4],
[5]. Both mapping stages can be completed in polynomial time.
Hence, these algorithms can be evaluated in dynamic network
scenario. Serving as the basis of VN embedding, these two-
stages algorithms have their self-developed node ranking ap-
proaches so as to sort all nodes [5] ahead, no matter physical
or virtual. For example, Gong et al. [6] adopted the node de-
gree [19], node strength and Markov Random Walk model to
calculate all node values in an iterative manner. Feng et al. [7]
incorporated multiple node attributes to calculate node values
in a direct way. In [8], Cheng et al. [8] adopted Google page
ranking model to calculate node and its adjacent link values in
an iterative manner. Cao et al. [9], [11] added link interference
attribute for calculate node values. In [10], node degree and
clustering coefficient attributes were assisted to rank nodes, too.
Other node sorting approaches, used in [12]–[14], were not de-
tailed in this paper. In general, efficient node sorting approach
has been widely accepted as a vital role of two-stages mapping
algorithms. Hence, it is important to collaborate network at-
tributes and resources in order to reveal node importance before
conducting embedding.

With respect to the one-stage type, multiple algorithms have
been proposed over the past six years. We detail the latest one-
stage algorithms. In [15], Cao et al. adopted the pure inte-
ger linear programming (ILP) model, integrating virtual nodes
and links embeddings in one single stage. However, the pure
ILP model-based embedding strategy was too time consum-
ing to calculate VN embedding assignment in polynomial time.
Hence, Cao et al. constructed candidate sets for limiting the
number of variables and evaluated the proposed algorithm in

small scaled network scenario. While in [16], Li et al. adopted
the ILP model to deal with different types of VN requests. The
highlight of [16] was the category method of VN request. How-
ever, the ILP-based algorithm proposed by Li could not be eval-
uated in dynamic network scenario. In [17], Lischka et al. used
the subgraph isomorphism approach of graph theory to embed
VN in one embedding stage. Subgraph isomorphism approach
based one-stage algorithm guaranteed VN embedding quality.
However, the embedding assignment calculation time per VN
grew exponentially with the size of network expanding. Gong
et al. [18] adopted the compatibility graph of graph theory to
embed each VN in one embedding stage. However, this algo-
rithm was usually trapped in high calculation time. Generally,
existing one-stage algorithms cannot be evaluated in dynamic
network scenario. Though ensuring the quality of VN embed-
ding assignment, one-stage algorithms [3] are time consuming.

Therefore, we propose another heuristic mapping algorithm
VNE-ARS that integrates two ordered mappings into one single
stage. Our VNE-ARS is able to calculate VN embedding as-
signment within polynomial time. Hence, our VNE-ARS can be
promoted to future dynamic network scenario. Based on our
gained knowledge and previous research results [5], we collab-
orate main network attributes and resources in our VNE-ARS,
serving as the mapping criterion. In addition, we implement
five different virtual constraints while adopting our VNE-ARS to
embed VNs. In the existing publications [4], [5], at most three
constraints, CPU, node location and link bandwidth, are exe-
cuted. To further strengthen our VNE-ARS, we conduct the com-
prehensive experiments. For example, evaluation results reveal
that our VNE-ARS outperforms all selected two-stages mapping
algorithms.

III. NETWORK MODEL AND EVALUATION METRICS

A. Network Model

The network model for virtualization research consists of two
sub-models: One is the substrate network model and the other
is the virtual network (request) model.

The substrate network (SN) can be modeled as an undirected
graph Gs(V s, Es), where V s and Es represent the sets of sub-
strate nodes and substrate links in the network, respectively.
|V s| and |Es| record the number of substrate nodes and sub-
strate links, respectively. vsεV s represents a substrate node in
V s. Each vs has its CPUCPU(vs), node storage Sto(vs), node
deployment time DeT (vs) and geographical location Loc(vs).
Each esεEs has the bandwidth bw(es) for transmitting data
flow. In addition, P s denotes the set of loop-free substrate paths
in Gs(V s, Es). P s

vs
|M|,v

s
|N|

denotes the set of loop-free paths be-
tween certain two substrate nodes vs|M | and vs|N | in Gs(V s, Es).
|M | and |N | are certain two different integers between [1, |V s|].
Note that ρCPU , ρSto and ρbw denote the weights of CPU, node
storage and link bandwidth. CPU, node storage and link band-
width are selected as network resources that will be used in Sec-
tion IV of this paper.

The virtual network (request) model can be modeled as an
undirected graph Gv(V v, Ev, T v), where V v and Ev are the
sets of all virtual nodes and virtual links in Gv(V v, Ev, T v), re-
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Fig. 1. Network models and mapping results.

spectively. T v denotes the time attributes of Gv(V v, Ev, T v):
arriving time point ATP (Gv), expiring time point ETP (Gv),
maximum allowed waiting time MAWT (Gv), embedding ex-
ecution time EET (Gv). Each virtual node vvεV v has its re-
quired CPU CPU(vv), demanded node storage Sto(vv), maxi-
mum allowed deployment time MADT (vv) and requested ge-
ographical location Loc(vv). r(vv) is the coverage radius of
virtual node vv . Each virtual link evεEv has its bandwidth de-
mand bw(ev) for communication. Following the introduction of
two network models, we will describe the VN embedding that
consists of virtual nodes mapping and virtual links embedding.
As usual, all virtual nodes of the VN are firstly mapped. Then,
all virtual links of the VN are embedded. VNs are processed
one by one. When one VN is being mapped, other VNs must
be waiting. For better understanding VN embedding, we take
one virtual network (request), labeled as Gv(V v, Ev, T v), as an
example.

First all virtual nodes mapping: In the virtual node mapping
stage, each virtual node in the Gv(V v, Ev, T v) is mapped by
the unique function FuncN ( ) :V v → V s. We take one virtual
node vv|M | in Gv(V v, Ev, T v) as an example.

FuncN (vv|M |) ∈ V
s

FuncN (vv|M |) = FuncN (vv|N |),

if and only if vv|M | = vv|N |

s. t.
CPU(vv|M |) ≤ CPU(FuncN (vv|M |)) (1)

Sto(vv|M |) ≤ Sto(FuncN (vv|M |)) (2)

MADT (vv|M |) ≥ DeT (FuncN (vv|M |)) (3)

Dis(Loc(vv|M |), Loc(FuncN (vv|M |))) ≤ r(v
v
|M |), (4)

where (1) means that the CPU demand of vv|M | must be ful-
filled by the mapped FuncN (vv|M |). To (2), it indicates that
demanded node storage of vv|M | must be fulfilled by the mapped
FuncN (vv|M |). To (3), it means that node deployment time of
the mapped FuncN (vv|M |) must be within the required deploy-
ment time of vv|M |. To (4), it indicates that the Euclidean dis-
tance between vv|M | and FuncN (vv|M |) must be within the cov-
erage radius of virtual node r(vv|M |). From (1) to (4), all four
equations must be fulfilled. Otherwise, the virtual node vv|M | is
not mapped successfully.

Second all virtual links mapping: After completing the virtual
node mapping successfully, it is the second virtual link mapping
of Gv(V v, Ev, T v). Path splitting and path interference are not
considered in this paper. That is to say, each virtual link ev is
mapped onto one physical path directly. We take one virtual link
ev|M |,|N |, connecting virtual nodes vv|M | and vv|N |, as an example.
The link virtual embedding of Gv(V v, Ev, T v) is performed by
the unique virtual link function FuncL( ) : Ev → P s.

FuncL(e
v
|M |,|N |) ⊆ P

s
FuncN (vv

|M|)FuncN (vv
|N|)

s. t.

bw(ev|M |,|N |) ≤ bw(P
s
FuncN (vv

|M|)FuncN (vv
|N|)

), (5)

where (5) indicates that the communication bandwidth demand
of ev|M |,|N | must be fulfilled by the selected substrate path
P s
FuncN (vv

|M|)FuncN (vv
|N|)

. With respect to remaining virtual

links in the Gv(V v, Ev, T v), their communication demands
must be fulfilled, using the link mapping function. Otherwise,
reject the Gv(V v, Ev, T v).
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As presented above, it is the embedding description of VN
Gv(V v, Ev, T v). For readers to have a better understanding, we
plot Fig. 1, presenting two VNs embedding onto a shared SN.
VN 1 is marked in yellow while VN 2 is marked in red. Under-
lying SN is marked in white while occupied nodes are marked in
yellow or red. Three numbers in each rectangle indicate CPU,
node storage and node deployment time. One number in each
rectangle represents the link bandwidth. As shown in Fig. 1,
different nodes in the same VN must be embedded onto differ-
ent substrate nodes: A → a, B → b and C → i for VN 1,
D → b and E → d for VN 2. In addition, different virtual
nodes belonging to different VNs are allowed to share the same
substrate node. For example, virtual nodeB of VN 1 and virtual
node D of VN 2 can share same physical node b.

B. Main Evaluation Metrics

This sub-section includes main performance metrics for eval-
uating VNE algorithms: VN embedding revenue, embedding
cost, VN acceptance ratio, node resource utilization and link re-
source utilization.

At first, it is the VN embedding revenue. For telecommuni-
cation providers, VN embedding revenue represents the revenue
by implementing the VN Gv . We formulate (6).

Rev(Gv
Tv
ser

) =

{
Rev(Gv) · T v

ser, if G
v is embedded

0, else,
(6)

where T v
ser is the VN Gv service time. T v

ser = ETP (Gv) −
ATP (Gv)−ECT (Gv)−EET (Gv). Take note thatECT (Gv)
represents the embedding assignment calculation time of Gv .
Other time terms have been introduced in Section III-A. In ad-
dition, the sum of ECT (Gv) and EET (Gv) must not be more
than MAWT (Gv). The per-unit revenue Rev(Gv) of (6) is
formulated in (7). CPU, node storage and communication band-
width are selected. Weights method is adopted to balance dif-
ferent network resources.

Rev(Gv) = ρCPU ·
∑

vv∈V v

CPU(vv) + ρSto ·
∑

vv∈V v

Sto(vv)

+ρbw ·
∑

ev|M|,|N|∈Ev

bw(ev|M |,|N |) (7)

Secondly, it is the VN embedding cost metric, indicating the
amount of consumed physical resources for implementing the
VN Gv . We formulate (8).

Cost(Gv
Tv
ser

) =

{
Cost(Gv) · T v

ser, if G
v embedded

0, else,
(8)

where Cost(Gv) represents the per-unit cost of Gv . Other pa-
rameters used in (8) are same to parameters used in (6). We
further formulate (9) to detail the per-unit cost of Gv .

Cost(Gv) = ρCPU ·
∑

vv∈V v

CPU(vv) + ρSto ·
∑

vv∈V v

Sto(vv)

+ρbw ·
∑

ev|M|,|N|∈Ev

∑
ps∈P s

numps

ev|M|,|N|
· bw(ev|M |,|N |), (9)

where numps

ev|M|,|N|
records the number of substrate links in

the substrate path that is used to accommodate the virtual link
ev|M |,|N |.

Afterwards, it is the VN acceptance ratio metric. This metric
is designed for quantifying any mapping algorithm’s embedding
ability. The VN acceptance ratio is determined by the number
of accepted VNs and total requested VNs during the evaluation
time. See (10).

V NAcce = AcceptedV Ns/TotalV Ns (10)

Next, it is the node resource utilization metric. To the type
of node resources, CPU and node storage are considered in this
paper. Hence, we formulate (11).

NodeUtil = ConsumedNode/TotalNode, (11)

where ConsumedNode refers to the total consumed CPU or
node storage of certain substrate node (e.g. vs) after embed-
ding all VNs in the evaluation time. TotalNode refers to the
initial amount of CPU or node storage of certain substrate node
(e.g. vs). While in this paper, we illustrate CPU utilization for
illustration (Section V).

At last, it is the link resource utilization metric. Only link
bandwidth is considered in this paper. Its equation is similar to
(11). For saving space, we do not formulate the link resource
metric in this paper.

IV. VNE-ARS ALGORITHM

Our VNE-ARS algorithm is detailed. Firstly, we collaborate
main selected network attributes and resources. Secondly, we
introduce a convenient node sorting approach, serving as the
mapping criterion of all nodes, including the substrate and the
virtual. Finally, we detail the single-stage VN mapping.

A. Collaborated Attributes and Resources

In previous publications [3]–[5], researchers usually had their
self-developed node ranking approaches. By using their own
node approaches, calculated node values could serve as the map-
ping criterion. In each node ranking approach, certain network
attributes and network resources were incorporated. Based on
these backgrounds and our gained knowledge [9], [11], we se-
lect multiple main attributes and resource. We use one SN
Gs(V s, Es) in order to formulate main attributes and resources.
Certain substrate nodes vs|M | and vs|N | belong to Gs(V s, Es).
|M | and |N | are certain two different integers between [1, |V s|].

Firstly, we talk about the selected network resources. Selected
resources in this paper are CPU, node storage and link band-
width, that have been mentioned in Section III-A.

Secondly, we talk about the selected network attributes. Se-
lected network attributes are extracted from various previous
node ranking approaches [5], proved efficient and effective be-
fore:

The first network attribute is the node degree attribute
(Degree(vs|M |)). In network theory, degree attribute of certain
node vs|M | records the number of direct links connecting vs|M |
to its adjacent nodes, revealing the node connectivity in the net-
work. Higher node degree, more connectivity of the node.
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The second network attribute is the node strength attribute
(Strength(vs|M |)). To certain node vs|M |, its strength attribute
indicates the weights sum of its adjacent links. In this paper, link
bandwidths represent the weights over links. That is to say, if the
node strength is higher, the node has more adjacent resources for
mapping VNs.

The third network attribute is the node closeness
(Closeness(vs|M |)). This node attribute is about recording the
node distance in the network. To certain node vs|M |, it is usually
connected to remaining nodes in the network. Hence, it is es-
sential to record the total distances from node vs|M | to remaining
nodes. See (12).

Closeness(vs|M |) =∑
vs
|M|,v

s
|N|∈Ns,|M |6=|N |

Dis(Loc(vs|M |), Loc(v
s
|N |)) (12)

The fourth node attribute is the node centrality
(Centrality(vs|M |)). This node attribute indicates the number of
times that the selected node vs|M | serves as a bridge within the
shortest path connecting certain two different nodes (e.g. vs|P |
and vs|Q|). This attribute can reveal the contribution of node vs|M |
to measuring the network connectivity. We formulate (13).

Centrality(vs|M |) =

∑
vs
|M|,v

s
|P |,v

s
|Q|∈Es,vs

|M| 6=vs
|P | 6=vs

|Q|

Number(vs|P |, v
s
|Q|)(v

s
|M |)

Number(vs|P |, v
s
|P |)

,

(13)
where Number(vs|P |, v

s
|Q|)(v

s
|M |) represents the number of short-

est paths connecting node vs|P | and node vs|Q|, passing node vs|M |.
Number(vs|P |, v

s
|Q|) represents the number of shortest paths con-

necting node vs|P | and node vs|Q|.

B. Convenient Node Sorting Approach

By collaborating above network attributes and resources, we
propose a convenient node approach. The calculated node val-
ues can serve as the mapping criterion of the following one
single-stage mapping. Procedures of the node approach are pre-
sented:

Firstly, we define and formulate a class of network attribute
block, labeling as NAB. The NAB class has three different sub-
classes: NAB-TWO, NAB-THREE and NAB-FOUR, aiming at
quantifying network attributes. See (14)–(16). Main differences
of three sub-classes are selected network attributes. Node vs|M |
is selected as an example.

NAB − TWO(vs|M |) =

Degree(vs|M |) · Strength(v
s
|M |) (14)

NAB − THREE(vs|M |) =

Degree(vs|M |) · Strength(v
s
|M |) · Closeness(v

s
|M |) (15)

NAB − FOUR(vs|M |) = Degree(vs|M |)·

Strength(vs|M |) · Closeness(v
s
|M |)

·Centrality(vs|M |) (16)

Secondly, we intend to define and formulate another metric,
named as network resource block NRB, quantifying the consid-
ered network resources (CPU, node storage and link bandwidth)
and functional attributes (location and node deployment time).
Stimulated from the known Coulomb’s law in electromagnetism
area and the Newton’s law in gravitational field, we formulate
(17). Node vs|M | is selected as an example.

NRB(vs|M |) = α·

∑
vs
|M|,v

s
|N|∈Ns

CPU(vs|M |) · CPU(vs|M |) · bw(e
s
|M |,|N |)

Dis(Loc(v s
|M |),Loc(v

s
|N |))

2 , (17)

where α is a constant. In addition, at least one path connects
vs|M | and vs|N |. Otherwise, the value of (17) is 0.

Thirdly, it is the procedure of calculating node sorting value,
labeled as NSV in this paper. Derived from our published sur-
vey [5], the direct product of NAB and NRB can be used to repre-
sent the node value of node vs|M |,NSV (vs|M |) (18). However, in
many extreme network cases, such as sparse networks [5], [20],
direct product cannot reveal the node embedding ability accu-
rately, leading to inefficient substrate resources utilization and
low VN embedding acceptance [5]. Hence, another calculation
method should be proposed.

NSV (vs|M |) = NAB(vs|M |) ·NRB(vs|M |) (18)

NSV (vs|M |)% =
NSA(vs|M |)∑

vs
M∈V s NSA(vs|M |)

(19)

Derived from Markov random model [21], we decide to cal-
culate the accurate NSV (vs|M |) in order to be the mapping cri-
terion of VN embedding. As three sub-classes exist in NAB,
there should exist three different NSV (vs|M |) values. For sim-
plicity, we just talk about one NSV (vs|M |). Firstly, we compute
the initial node sorting value percentages in (19). We use cer-
tain node vs|M | as an example in (19). Then, we constitute an
initial node embedding ability vector, labeled as NSVVec0 in
this paper (20). In addition, we define two kinds of transfor-
mation probabilities in (21) and (22): Attribute transformation
probability and resource transformation probability.

NSVVec0 = (NSV (vs1)%, · · ·, NSV (vs|V s|)%)T (20)

ProNAB(vs
|M|,v

s
|N|)

=
NAB(vs|N |)∑

vs
|M|∈V s NAB(vs|M |)

(21)

ProNRB(vs
|M|,v

s
|N|)

=
NRB(vs|N |)∑

vs
|M|∈V s NRB(vs|M |)

, (22)

where vs|M | and vs|N | are any two different nodes in the whole
network. With using the Markov model approach, we can cal-
culate the eventual node values of all nodes. With respect to
node vs|M |, its node value is shown in (23) by (k + 1) rounds of
calculation.

NSV (v s
|M |)

k+1 = (1− d) ·
∑

vs
|M| 6=vs

|N|,v
s
|N|∈V s
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Algorithm 1 A convenient node calculation.
Require: Network Gs(V s, Es), a small positive value δ
Ensure: Vector NSV V ec
1: Get matrix M , the initial NSV V ec0

2: Define an iteration number k, k = 0.
3: Define a variable ε, is∞.
4: while ε ≥ δ do
5: NSV V eck+1 =M·NSV V eck;
6: ε =

∥∥NSV V eck+1 −NSV V eck
∥∥;

7: k = k + 1;
8: end while
9: NSV V ec = NSV V eck+1

ProNAB(vs
|N|,v

s
|M|)
·NSV (vs|M |)

k

+d ·
∑

m 6=n,n∈N

ProNRB(vs
|N|,v

s
|M|)
·NSV (vs|M |)

k, (23)

where d is the damping factor. The factor is within the range of
(0,1). In order to express all node sorting values in the form of
a vector NSVVec, expression 24 is formulated.

NSVVeck+1 = (1− d) ·M1 ·NSV V k+

+d ·M2 ·NSV V k, (24)

where M1 and M2 are the transition matrices of attribute prob-
ability and resource probability. Both matrices have (|N | · |N |)
dimensions. Equation (24) can be further calculated in (25).

NSVVeck+1 = [(1− d) ·M1 + d ·M2] ·NSV V eck

=M ·NSV V eck, (25)

whereM is defined as the chain transition matrix. We can easily
get the fact that the eigenvalue of M is not more than 1 [21].
Consequently, the conclusion that traffic matrix M is the stable
matrix is true [20]. Therefore, the NSVVeck+1 will eventually
converge to a stable vector.

Though it is easy to get the vector converged, it is difficult
to calculate the final vector of (25). The time complexity of
directly calculating (25) is approaching O(|V |3). Time com-
plexity grows exponentially with the network scale expanding.
Hence, it is impractical to calculate directly. Instead, a conve-
nient iterative approach is adopted. Through k iterations, the
vector will be converged [20]. Time complexity of the calcula-
tion is decreased to O((|V |) · log(1/δ)). δ is a small positive
number to control iteration times. See Algorithm 1.

C. One Single-Stage Mapping Strategy

In this subsection, we detail the one single-stage mapping
strategy of our VNE-ARS.

Using the above conventional node approach, we can calcu-
late the SN and VN nodes values. Then we store all substrate
node values and all virtual node values in separated substrate
set and virtual set, respectively. All calculated node values are
regarded as the mapping criterion. Afterwards, we backup all
resource and topology information of the SN. Next, we conduct
two virtual nodes’ greedy embeddings. Both virtual nodes have

the first two highest node sorting values of the VN. Note that
the embedded substrate nodes must reserve enough network re-
sources (CPU, storage, allowed location and node deployment
time) so as to fulfill two highest virtual nodes constraints. For
instance, if the virtual node capacity cannot be fulfilled by all
substrate nodes of the SN, we will reject the VN. Consequently,
the SN information will not be updated. If two highest virtual
nodes are embedded, we will conduct the subsequent link em-
bedding of two highest virtual nodes. If there exists a virtual
link connecting two highest virtual nodes, the virtual link will
be simultaneously mapped by using the SP approach. If no vir-
tual link connecting both nodes, we will turn to mapping the
third virtual node with the third highest node value. After the
third node embedding completes, if there exist virtual links con-
necting third highest virtual node to previous two embedded vir-
tual nodes, all links embedding will be conducted by using min-
imum intermediate nodes preferred SP method. With respect
to remaining virtual elements, we repeat the above embedding
strategy.

Until all virtual nodes and links are successfully mapped, we
will output the VN embedding results. This VN mapping is
completed within one stage. Time complexity of the one single-
stage mapping is less than O(|V s||V v|) [21]. We need to take
note that with certain two connected virtual nodes embedded,
their simultaneous virtual link embedding starts. We will point
out some key points of our simultaneous virtual link embedding.
Firstly, to embed the virtual link optimally, we adopt minimum
intermediate nodes preferred SP method, aims at consuming less
bandwidth resources. Secondly, we conduct one pruning proce-
dures in the simultaneous virtual link embedding. We try to
delete all substrate links having no available bandwidths for ac-
commodating virtual link. Time complexity of SP method is
less than O(|Es||Ev|log|V s|).

D. Algorithm Complexity of VNE-ARS

The algorithm complexity of VNE-ARS is determined by the
node values calculation and one single-stage mapping. The
complexity of calculating node values lies in the iterative-based
calculation. The calculation can be completed in polynomial
time [21]. The complexity of single stage mapping is less than
the sum of two isolated stages (greedy node mapping and SP
link mapping) that can be completed in polynomial time [20].
Hence, our VNE-ARS is a polynomial-time VN embedding al-
gorithm.

V. EVALUATION EXPERIMENTS

A. Experiment Settings

Since virtualization research is still in its infancy [1], proto-
types for evaluating VNE have not been fully developed. We
conduct the evaluation experiments to validate our VNE-ARS al-
gorithm. We generate the underlying SN, using GT-ITM tool.
The number of nodes is set to be 100. Each node has a possi-
bility of 0.5 to connect remaining nodes in the SN. With respect
to the node resources (CPU, node storage), they are integers,
following the uniform distribution [50, 100]. To each physical
node location, it is uniformly distributed in the (200*200) two-
dimensional plane. To each physical node deployment time, it
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Fig. 2. Average VN acceptance ratio (80 substrate nodes).

is set to be one millisecond. With respect to the link commu-
nication bandwidths, they are integers, following the uniform
distribution [50, 100]. To the requested VNs, they are generated
by using GT-ITM. VNs are requested following the Poisson dis-
tribution, up to 5 every 100 time units. An exponentially dis-
tributed VN lifetime is set to be 20 time units. With respect to
virtual resource demands (CPU, storage, bandwidth), they are
integers, following the uniform distribution [1, 20]. Each virtual
node location is uniformly distributed in the (200*200) plane.
The coverage radius of each virtual node is uniform distributed
within [5, 10]. For each virtual node deployment time demand,
it is set to be one millisecond.

We run the experiments up to 100000 time units. That is to
say, approaching 50000 VNs will be processed. With respect to
resource factors in (7), they are set to be 1. We make our eval-
uation codes, available in [22], [23]. Take note that 1 time unit
represents 1 minute. We introduce settings in detail for follow-
ing researchers to re-produce our experiments easily.

B. Comparison Between VNE-ARS and Its Sub-Algorithms

As three sub-classes of NAB exist (Section IV-B), our conven-
tional node approach consists of three different sub-approaches
strictly. Consequently, three different classes of node values for
mapping can be calculated. Therefore, three algorithms exist:
VNE-ARS-TWO, VNE-ARS-THREE and VNE-ARS-FOUR. As
VNE-ARS-FOUR considers all four network attributes, it can be
regarded as VNE-ARS. In this sub-section, we conduct a per-
formance comparison between VNE-ARS and its sub-algorithms
(VNE-ARS-TWO and VNE-ARS-THREE), aiming at validating
the effects of network attributes.

With respect to the evaluation settings, they are same to what
are presented in Section V-A. Two main differences exist: the
SN network scale and evaluation time. The SN network scaled
is set to be 80. The evaluation time is set to be 50000 time units.
Ranging from Fig. 2 to Fig. 5, we plot main evaluation results.

In Fig. 2, VN acceptance ratios of VNE-ARS and its two sub-
algorithms are plotted. Derived from Fig. 2, two main conclu-
sions can be made. The first conclusion is that there are finite
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Fig. 3. Average substrate CPU utilization (80 substrate nodes).
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Fig. 4. Average substrate node storage utilization (80 substrate nodes).

physical resources for accommodating VN requests. We can
see the fact that all three algorithms will decrease to stable ra-
tios around 40000 time unit. The second conclusion is that our
VNE-ARS, collaborating all four main attributes and network re-
sources, perform best among all three algorithms. With incorpo-
rating the node centrality attribute in our node sorting approach,
it does benefit to improving embedding quality. Hence, more
resource space will be reserved. More VNs can be accepted.

Ranging from Fig. 3 to Fig. 5, evaluation results of node
and link resource utilizations (CPU, node storage and link band-
width) are plotted. Derived from all three figures, our VNE-ARS
consumes the most amount of resources. These behaviors sup-
port the VN acceptance ratio of our VNE-ARS directly.

In general, our VNE-ARS, considering the most number of
attributes and resources, performs better than its two sub-
algorithms. In another word, collaborating more attributes do
benefits to improving embedding quality.
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Fig. 5. Average link bandwidth utilization (80 substrate nodes).
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Fig. 6. Average VN acceptance ratio (100 substrate nodes).

C. Comparison Between VNE-ARS and Its Two-Stages Version

In this sub-section, we conduct another comparison between
VNE-ARS and its two-stages version. With respect to the two-
stages version of our VNE-ARS, it refers to conduct the VN em-
bedding in two isolated stages, though using the same node sort-
ing approach. Due to limited pages, we just plot the VN accep-
tance ratio results.

In Fig. 6, we can find that two algorithm run similarly in the
early stage of evaluation time. With time extending to around
20000 time unit, our VNE-ARS performs better than its two-
stages version. The performance advantage of our VNE-ARS
lies in its single-stage mapping, saving extra physical resources.
Hence, more physical resources are reserved for following VNs.
With time passing by, more and more VNs can be accommo-
dated by our VNE-ARS. Eventually, our VNE-ARS (0.827) has
higher VN acceptance ratio than its two-stages version (0.818).
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Fig. 7. Average VN acceptance ratio (100 substrate nodes).

D. Comparison Between VNE-ARS and Typical Two-Stages Al-
gorithms

By adopting the settings in sub-section A, we conduct a per-
formance comparison between our VNE-ARS and typical two-
stages algorithms. Selected two-stages algorithms are either
representative or latest in the literature. Selected algorithms are
GRD-VNE [6], VNE-DCC [10], VNE-TAGRD [11] and VNE-
RIM [12].

VN Acceptance Ratio Performance Comparison: As shown
in Fig. 7, we conduct the VN acceptance ratio comparison of all
five embedding algorithms. Two apparent conclusions can be
made easily. With respect to the first conclusion, it is the finite
substrate resources for accommodating VNs. We can discover
that all algorithms increase in the first place. Then their accep-
tance ratios will decrease. Their acceptance ratios will achieve
the dynamic balance in the end. With respect to the second con-
clusion, it is the performance advantage of our VNE-ARS. Since
90000 time unit, VN acceptance ratio of our VNE-ARS will re-
main around 0.77. With respect to the best behaved two-stages
algorithm, it is around 0.67 (VNE-DCC), which is 10% lower
than our VNE-ARS. Two main reasons are responsible for our
VNE-ARS advantage: the node sorting approach collaborating
main network attributes and resources and the combined one
single-stage mapping strategy.

VN Embedding Revenue and Embedding Cost Performance
Comparison: In Figs. 8 and 9, we plot the VN embedding rev-
enue and embedding cost results of all selected algorithms, re-
spectively. It is not comprehensive to discuss the VN embedding
revenue or embedding cost results separately. Two conclusions
can be made form both figures. With respect to the first conclu-
sion, it is the discovery that VN embedding revenue results can
reveal the VN acceptance ratio results. As usual, more and more
VN demands are accommodated, more embedding revenues can
be earned. As the SN has finite physical resources, VN accep-
tance will decrease to the stable state. Correspondingly, VN em-
bedding revenues will achieve to a balance. With respect to the
second conclusion, it is the fact that VN embedding cost of all
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Fig. 9. Average VN embedding cost (100 substrate nodes).

selected algorithms increase with time extending. This conclu-
sion lies in the fact that more and more VNs are requested with
evaluation going. Therefore, more and more substrate resources
will be consumed. The SN will load all its resources to its full
capacity.

CPU and Bandwidth Utilization Performance Comparison:
CPU utilization and link bandwidth utilization results are plot-
ted in Figs. 10 and 11, respectively. In Fig. 10, we can find
that CPU utilizations of all selected algorithms increase, espe-
cially to our VNE-ARS. In general, our VNE-ARS consumes the
most amount of node CPU resources. Owing to the collaborated
network attributes and resources, our VNE-ARS can ensure effi-
cient VNs mapping. Hence, the underlying substrate resources
will be fully consumed. To the link bandwidth results, we can
find the fact that the link bandwidth results of all algorithms run
similarly. It is owing to the reason that the same link mapping
strategy (SP approach) is used by all algorithms.
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Fig. 10. Average CPU utilization (100 substrate nodes).
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Fig. 11. Average link bandwidth utilization (100 substrate nodes).

E. Discussion of Evaluation Experiments

We briefly talk about the embedding quality of our VNE-ARS
algorithm in this sub-section.

In sub-section B, we compare our VNE-ARS with its sub-
algorithms that incorporate part network attributes. By conduct-
ing the evaluation experiments, our VNE-ARS proves to have
stronger embedding ability than its sub-algorithms. Hence, it is
necessary to consider more network attributes. Only node de-
gree and strength are not enough to guarantee VN embedding
quality.

In sub-section C, we conduct the evaluation work in order to
highlight the advantage of single-stage embedding. If adopting
the two-stages mapping strategy, the lack of node and link coor-
dination will lead to inefficient VN mapping and extra substrate
resources consumption. In the end, VN acceptance ratio will
decrease. Hence, it is necessary to adopt the one-stage mapping
strategy.

In sub-section D, we compare our VNE-ARS with multiple
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two-stages algorithms. With respect to the two-stages algo-
rithms, they embed each VN in two isolated stages: first node
embedding and second link embedding. They aim at finding
a feasible VN mapping assignment in order to minimize em-
bedding assignment calculation time. Hence, the VN mapping
quality can not be guaranteed. While in VNE, VN embedding
quality and VN embedding calculation time cannot be achieved
simultaneously. On these backgrounds, we make the compro-
mise between VN embedding quality and VN embedding calcu-
lation time. We propose our VNE-ARS algorithm. On the one
hand, we adopt the heuristics in order to save calculation time.
On the other hand, we conduct one single-stage VN mapping so
as to ensure better embedding quality. Evaluation results vali-
date our VNE-ARS algorithm efficiency.

VI. CONCLUSION MARKS

We propose one single-stage heuristic mapping algorithm
VNE-ARS in this paper. Our VNE-ARS enables to calculate each
VN mapping assignment within polynomial time. We evaluate
our VNE-ARS in a comprehensive manner in order to highlight
its efficiency. Evaluation results reveal that our VNE-ARS out-
performs not only existing two-stages mapping algorithms, but
also its two-stages version. For further research, we intend to
evaluate our VNE-ARS by implementing the prototypes.
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