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Abstract: Increased device connectivity and information sharing
in wireless IoT networks increases the risk of cyber attack by ma-
licious nodes. In this paper, we present an effective and practi-
cal scheme for detecting data integrity and selective forwarding at-
tacks launched by malicious relays in wireless IoT networks. The
proposed scheme exploits the broadcast nature of wireless trans-
mission and provides a sentinel based approach to intrusion detec-
tion. Our detection scheme assumes a general noise model for the
network where different wireless links may have different packet
error probability (PEP). Further, our detection scheme is effec-
tive even in scenarios where different wireless links in the network
employ distinct modulation and coding schemes at the physical
layer. This detection scheme has application in practical wireless
IoT networks, such as those based on the recently introduced IEEE
802.11ah standard.

Index Terms: Malicious relay detection, packet error probability,
sentinel, wireless relay network.

I. INTRODUCTION

The number of IoT devices being deployed in average house-
holds and industries is increasing at a fast pace [1], and IoT
based applications have transformed many critical infrastruc-
ture, such as health-care and smart cities [2]. However, most
IoT devices are built with cost and efficiency as the driving fac-
tor, but suffer from poor security configurations and open de-
signs [3]–[5], thereby presenting a challenge in detecting secu-
rity breaches.

In this paper, we present a scheme for detecting malicious
nodes in a wireless IoT network where low power IoT de-
vices connect to the access point (AP) (or base station) via
relay nodes. Such a relay-based model for wireless informa-
tion exchange conserves power in the transmitting IoT device,
and is adopted by the recently introduced IoT networking stan-
dard IEEE 802.11ah (also called Wi-Fi HaLow) [6]. The Wi-Fi
HaLow standard has emerged as a promising solution for con-
necting IoT devices due to its large coverage area, extended
power-saving mode, and device-grouping option for reducing
contention [7], [8].

In practice, a wireless relay node responsible for forwarding
data packets to/from IoT devices may become compromised,

Manuscript received January 30, 2019.
This research is supported by the National Research Foundation, Prime Min-

ister’s Office, Singapore under its Corporate Laboratory@University Scheme,
National University of Singapore, and Singapore Telecommunications Ltd.

A. Tandon and T. J. Lim are with the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore 117583 (email: an-
shoo.tandon@gmail.com, eleltj@nus.edu.sg).

U. Tefek was with the Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 117583 (email: utku@u.nus.edu).

Digital Object Identifier: 10.1109/JCN.2019.000049

and used by an adversary to hinder information transfer. A relay
node may get compromised via (i) malicious access to the local
network (for instance, in Stuxnet attack [9]), (ii) malicious re-
mote access through the Internet, (iii) malicious physical access
to IoT networks in public areas, such as shopping malls, hotels,
and health-care centers [10]. For instance, ARP poisoning [11]
could be employed by the attacker to associate its MAC address
with the IP address of a relay, that results in the traffic meant
for the relay to be diverted to the attacker, which may then mod-
ify the incoming packets before forwarding. We remark that we
have implemented the data integrity attack using ARP poisoning
in a WiFi-based network.

We present an effective scheme for detecting two attacks by
a malicious relay: (i) Data integrity attack (where a relay cor-
rupts the packet) and (ii) selective forwarding attack (where a
relay selectively drops packets). The data integrity attack is es-
pecially serious as wrong decisions, based on maliciously mod-
ified data, could disrupt the operation of the IoT system. For
instance in healthcare applications, fatal erroneous treatment de-
cisions could be made when packets containing personal health
information are modified by a malicious relay. Similarly, ma-
liciously altering the commands sent from/to security cameras
and door locks can have critical consequences [10].

The proposed scheme employs special trusted passive nodes,
called ‘sentinel’ nodes, which monitor information exchange at
relay nodes by exploiting the broadcast nature of wireless trans-
mission. The distinctive features of our proposed scheme are as
follows:
(a) In contrast to most existing detection schemes, our sen-

tinel based scheme does not require any change in existing
PHY/MAC protocols.

(b) The probability of false alarm in our detection scheme is
negligible. This is unlike standard detection schemes which
trade probability of missed detection with the probability of
false alarm.

(c) The proposed scheme is effective even in scenarios where
different wireless links in the network may employ distinct
modulation and coding schemes at the physical layer.

A. Related Work

Wireless IoT networks, consisting of resource-constrained
nodes with relatively low computing and communication capa-
bility, are vulnerable to attack by an adversary which aims to
disrupt and alter the communication of vital information in the
network. The application of physical layer techniques for detect-
ing false data injection by a relay was examined in [12], [13].
While the detection scheme in [12] is at the modulated symbol
level, a Bayesian test approach at the packet level is adopted
in [13]. However, the detection performance in [12] is unsat-
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isfactory when the channel gain between the source-destination
link is small, while the approach in [13] is unreliable when the
relay corrupts only a small fraction of bits. A channel-aware de-
tection of selective forwarding attack is proposed in [14], but
suffers from high missed-detection probability when the mali-
cious node drops only a small fraction of packets. In contrast,
our sentinel based scheme is robust even when only a small
number of packets are dropped.

An efficient cross-layer scheme for malicious relay detec-
tion in two-hop wireless sensor networks was proposed in [15].
However, the detection scheme in [15] relied on the assump-
tion that some devices forward the same information through
two different relays. Detection of selective forwarding attack
via received signal strength indicator readings at certain mon-
itor nodes was proposed in [16]. This approach however re-
quires implementation of a sophisticated localization algorithm
to estimate distances among nodes. In [17], a selective forward-
ing attack detection approach involving a random selection of
a checkpoint node along the forwarding path was proposed.
This scheme involves the use of one-way hash functions and
exchange of acknowledgement (ACK) packets with timing in-
formation, requiring major changes to existing wireless sensor
network protocols.

In [18], an overhearing-based misbehavior detection scheme
was proposed, where each node reports the packet forward-
ing ratio for itself and its neighbors. However, this incurs
heavy computational load on the network, as every resource-
constrained device continuously monitors the traffic at neigh-
boring nodes. A related approach was proposed in [19], where
nodes were assumed to have knowledge of their two-hop neigh-
bors via the use of special ‘Hello’ packets.

In [20], a watchdog technique was proposed where each node
monitors the next hop transmission to detect any data integrity
attack. This watchdog scheme [20] requires that the IoT devices
are always awake and active in order to listen to the packets be-
ing transmitted and received by neighboring nodes. Therefore,
this scheme suffers from heavy computational load at each IoT
node due to traffic monitoring across all neighboring nodes.

We remark that an important distinction between our sen-
tinel based malicious detection, and previous works based on
the watchdog approach [18]–[20], is that the sentinel based de-
tection scheme does not require any changes to standard wire-
less/IoT protocols: The task of monitoring and reporting mali-
cious behavior is entrusted only to special sentinel nodes which
are positioned appropriately by the network designer, and pro-
tected with adequate security protocols. Moreover, our paper is
distinct from previous works based on the watchdog approach in
that it presents a detailed analysis of the impact of channel noise
and packet error probability on the detection performance.

B. Our Contribution

In this paper, we present a sentinel based malicious relay de-
tection scheme for wireless IoT networks. We provide a detailed
analysis for the detection of the data integrity attack and the se-
lective forwarding attack. The analysis assumes a general noisy
channel model for the IoT network, where each wireless link
may potentially have distinct packet error probability (PEP) due
to different channel noise conditions. We quantify the probabil-

ity of early detection of malicious relay behavior as a function
of PEP on different wireless links across the network. We also
present a framework to quantify the number of sentinels required
to monitor a certain geographical area populated with relays and
associated devices, such that the desired early detection proba-
bility is achieved.

The salient features which make the sentinel based detection
scheme effective for practical use are as follows: (i) It does
not require any change in existing PHY/MAC protocols, such
as IEEE 802.11ah. (ii) The false alarm rate is negligible as
it occurs only in the unlikely scenario where the packet CRC
fails to detect errors, even though the decoded packet is in error.
(iii) The detection scheme operates at the MAC layer and there-
fore remains effective even in scenarios where different wireless
links may employ distinct modulation and coding schemes at the
physical layer. (iv) The scheme is robust in detecting selective
forwarding attacks even when a small fraction of packets are
dropped by a malicious relay.

This paper extends our workshop paper [21] in two direc-
tions. First, we present a unified framework for analyzing de-
tection performance as a function of number of sentinels placed
in the network. Second, this paper provides extensive simulation
results highlighting the detection performance as a function of
varying PEP on different wireless links, and depicting the prob-
ability of early detection of malicious relays as a function of the
number of sentinel nodes.

The rest of the paper is structured as follows. The system
model is presented in Section II. The data integrity attack and
the selective forwarding attack are discussed in Section III. The
probability of early detection of these attacks is derived in Sec-
tion IV. In Section V, we jointly analyze the packet stream from
different devices connected to a malicious relay, and also pro-
vide a framework to quantify the number of sentinels required to
achieve a desired early detection probability. In Section VI, we
present numerical results highlighting the impact of PEP on dif-
ferent wireless links on the performance, and demonstrate how
the choice of number of sentinels influences early attack detec-
tion probability.

II. SYSTEM MODEL

Consider a wireless IoT network where IoT devices connect
to the access point AP via a relay node (see Fig. 1). We as-
sume that each relay node uses a decode-and-forward mecha-
nism. Thus, a relay node first demodulates and decodes the re-
ceived physical layer payload, before re-encoding and forward-
ing the medium access (MAC) payload to the destination. It
is assumed that there is a unique sequence number counter as-
sociated with packets transmitted from each IoT device, as in
IEEE802.11 networks. The MAC layer adds appropriate packet
sequence number and cyclic redundancy check (CRC) bits to the
packet before passing it to the physical layer for error correction
encoding and modulation. The CRC bits help to detect residual
bit errors due to channel impairments, after the forward error
correction decoder at a receiver has attempted to remove errors
from the received signal. Similar to the IEEE 802.11ah proto-
col, the multiple access scheme is assumed to be carrier-sense
multiple access with collision avoidance (CSMA/CA). The sys-
tem model considers a practical scenario where different wire-
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Fig. 1. Model of a wireless IoT network with relay and sentinel nodes.

less links may have different packet error probabilities due to
different channel conditions.

The proposed intrusion detection scheme employs special
nodes, called sentinel nodes, which constantly monitor the re-
ceived and forwarded data packets at relay nodes. These sentinel
nodes could be especially designed to be extra secure, protected
with adequate security protocols, and placed at appropriate lo-
cations for traffic monitoring. Further, sentinel nodes installed
exclusively for network monitoring could listen to ambient traf-
fic in a passive manner, making them resistant to security threats
from a malicious entity.

Fig. 1 depicts a typical network setting with sentinel nodes
deployed for monitoring data traffic. Since the multiple ac-
cess scheme is CSMA/CA, neighboring clusters of nodes (each
served by one relay) transmit in orthogonal time/frequency
channels with high probability. Thus, a sentinel node can moni-
tor traffic from multiple relay clusters in its vicinity. For exam-
ple, in Fig. 1, the sentinel S∗ is shown to overhear transmissions
from two neighboring relay clusters. We remark that although
we focus on uplink transmissions from IoT devices to theAP in
this paper, the same approach is applicable for downlink trans-
missions from the AP to IoT devices.

Our aim is to effectively detect the presence of a malicious
relay node in the network. Without loss of generality, we focus
on a particular relay node R, with k IoT devices D1, · · ·, Dk as-
sociated with this relay, and a sentinel node S∗ responsible for
the security of this relay cluster, as labeled in Fig. 1. We con-
sider a practical scenario where, for each wireless link, there is
a certain PEP due to factors such as noise, fading, and packet
collision. We use the notation pA→B to denote the PEP on the
wireless link from node A to node B. Therefore, for instance,
pDj→S∗ will denote the PEP for the wireless link between de-
vice Dj and sentinel S∗.

Note that for a given packet transmission from device Dj to
relay R, if the CRC fails at R due to noise, then R does not

send back an ACK packet to Dj , and the packet is retransmit-
ted by Dj . It is assumed that a packet is retransmitted by Dj

until it receives the ACK packet from R. Further, we assume
that ACK packets are small and encoded with a robust error
correction scheme, so that ACK packets are received without
error. We adopt the convention where the first transmission of a
packet is referred to as its 0-th retransmission.

In this paper, we consider the following two potential attacks
launched by a malicious relay node.
1. Data integrity attack: Here, the relay corrupts the re-

ceived MAC payload (also called the MAC service data unit
(MSDU) [6]) before forwarding it.

2. Selective forwarding attack: Here, the relay selectively
drops some data packets which it was expected to forward
to AP . This attack might result in loss of sensitive infor-
mation or a significant increase in end-to-end delay, thereby
disrupting normal operations.

We remark that our proposed scheme can also be applied
for detecting malicious nodes in multi-hop networks. Our pro-
posed scheme complements cryptography based approaches, in
the sense that cryptography can defend against eavesdropping,
but not against selective forwarding attacks. In addition, cryp-
tography based detection of data integrity attack cannot pinpoint
the malicious relay node in multi-hop networks [22].

III. SENTINEL BASED ATTACK DETECTION

We consider the scenario where an attack is directed on a
given packet which originates from IoT device Dj and is to be
transferred to theAP viaR. The wireless transmission byDj is
heard by relay R, and with a certain probability by sentinel S∗.
Note that the link from Dj to R is effectively error-free due to
the use of ARQ on the Dj → R link, where R requests packet
retransmissions from Dj until R receives an error free copy of
the packet. The following lemma quantifies the probability that
a packet is successfully transferred fromDj toR, but is not suc-
cessfully received by S∗.

Lemma 1: Let qDj→R denote the probability that a given
packet is successfully transferred from device Dj to relay R,
but is not successfully received by sentinel S∗. Then we have

qDj→R =

(
1− pDj→R

)
pDj→S∗

1− pDj→R · pDj→S∗
. (1)

Proof: For a given packet to be transferred from Dj to R,
the probability that it is correctly received atR in its i-th retrans-
mission is given by (1− pDj→R) piDj→R, while the probability
that this packet is not correctly received by S∗ during the course
of its i retransmissions is equal to pi+1

Dj→S∗ . Thus, we have

qDj→R =

∞∑
i=0

(1− pDj→R)piDj→R · p
i+1
Dj→S∗ (2)

=
(1− pDj→R) pDj→S∗

1− pDj→R pDj→S∗
.

2

Remark: The above lemma can be generalized to the scenario
where the maximum number of packet retransmissions allowed
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are finite (denoted by M ). In this case, the expression in (2) is
replaced by

qDj→R =

M∑
i=0

(1− pDj→R)piDj→R · p
i+1
Dj→S∗ .

Note that (1) is equivalently expressed as

qDj→R =
pDj→S∗

1 + pDj→R ·
(
1− pDj→S∗

)
/
(
1− pDj→R

) , (3)

which shows that 0 ≤ qDj→R ≤ pDj→S∗ . Further, we have
qDj→R → pDj→S∗ as pDj→R → 0, while qDj→R → 0 as
pDj→R → 1.

We now consider the case where the sentinel listens to the
transmission from relay R to AP . Let qR→AP denote the prob-
ability that a given packet is successfully transferred from R to
AP , but is not successfully received at S∗. Then, similar to (1),
we observe that qR→AP is given by

qR→AP =
(1− pR→AP ) pR→S∗

1− pR→AP pR→S∗
(4)

=
pR→S∗

1 + pR→AP (1− pR→S∗) / (1− pR→AP )
. (5)

This shows that 0 ≤ qR→AP ≤ pR→S∗ , and we observe that
qR→AP → pR→S∗ as pR→AP → 0 while qR→AP → 0 as
pR→AP → 1.

A. Detecting Data Integrity Attack

Consider a tampering attack by relay R on a packet received
by R from device Dj , where R corrupts some bits of the
MAC payload before encoding, modulating, and forwarding the
packet to AP . Note that when R forwards this corrupted packet
to AP , its MAC header contains fields indicating the source of
the packet (device Dj) and the packet sequence number (say, i).
The transmission from R to AP is potentially decodable by the
sentinel S∗.

When all the links are noiseless, the sentinel always receives
an exact copy of the packet forwarded by R to AP . The sen-
tinel then compares the MAC payload of this packet to the cor-
responding payload of the stored copy of the packet received
from Dj with sequence number i. Hence, in this scenario when
R corrupts the payload, the attack is easily detected by S∗ when
it observes that the MAC payload forwarded by R is different
from the payload transmitted by device Dj .

When the links are noisy, there is a non-zero probability that
the sentinel S∗ is not able to successfully receive the packet
transmitted by Dj to R, with this probability given by qDj→R
in (1). Similarly, there is a non-zero probability that S∗ is not
able to successfully receive the packet transmitted by R to AP ,
with this probability given by qR→AP in (4). The sentinel S∗

cannot detect the data integrity attack on this packet originat-
ing from Dj in the event that it does not successfully receive
either the transmission from Dj or the corresponding corrupted
packet forwarded by R. The following theorem quantifies this
probability.

Theorem 1: Let qDj denote the probability that sentinel S∗

is unable to detect a data integrity attack by relay R on a given

packet originating from device Dj . Then we have

qDj
= 1− (1− qDj→R)(1− qR→AP ), (6)

and qDj→R and qR→AP are given by (1) and (4), respectively.
Proof: The sentinel S∗ can successfully detect the tamper-

ing attack on a given packet from Dj if and only if S∗ success-
fully receives this packet when it is transferred from Dj → R
and also successfully receives the tampered version which is
forwarded from R → AP . Thus, S∗ successfully detects the
tampering with probability (1− qDj→R)(1− qR→AP ), and the
probability that S∗ is unsuccessful in detecting this tampering is
given by (6). 2

The quantity qDj
can be upper bounded as follows

qDj ≤ qDj→R + qR→AP

≤ pDj→S∗ + pR→S∗ . (7)

We remark that qDj
is independent of the sequence number

of the packet transmitted by Dj because the network statistics
are assumed to be invariant over the observation window. We
also remark that a false alarm occurs only in the unlikely sce-
nario where the packet CRC fails to detect errors in the decoded
packet (after error correction), even though the decoded packet
is in error. In this scenario, the sentinel may mistake an erro-
neous packet to be a corrupted packet, thereby raising a false
alarm.

B. Detecting Selective Forwarding Attack

Consider a selective forwarding attack where relay R drops
packets i to i+ l−1 from IoT deviceDj . The packet originating
from device Dj with sequence number i + l is forwarded by R
to the AP . Note that the link from R to AP is effectively error-
free due to the use of ARQ on the R → AP link. Hence, in
case relay R forwards the packet with sequence number i + l
originating from Dj to the AP without modifying the sequence
number, then this selective forwarding attack is readily detected
at the AP due to the missing sequence numbers. However, if R
changes the sequence number from i+l to i, then theAP cannot
detect this attack involving selective forwarding of packets.

Therefore, we assume that relay R not only drops certain
packets, but also modifies the sequence numbers of the subse-
quent packets so that theAP does not observe any discontinuity
in the packet sequence number. We assume that the MAC pay-
loads of packets originating from device Dj corresponding to
different sequence numbers have different content. This is justi-
fied, for instance, when the MAC payload includes a time-stamp
to represent the time when IoT device Dj senses a certain at-
tribute.

Therefore our scenario is that R drops packets from Dj with
sequence numbers i, i+ 1, · · ·, i+ l − 1, and then forwards the
subsequent packet to AP after modifying its sequence number
from i+ l to i. Further, consider the following case where
(i) S∗ successfully receives the packet with sequence number

i transmitted from Dj to R, and
(ii) S∗ also successfully receives the packet forwarded by R to

AP for which R modified the sequence number from i + l
to i.
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In the above scenario, the selective forwarding attack is suc-
cessfully detected at S∗ by comparing the MAC payload of the
packet with sequence number i transmitted by Dj to R, with
the MAC payload of the forwarded packet by R to AP with
sequence number i.

However, when the communication links are noisy, there is a
non-zero probability that S∗ is not able to successfully receive
the packet(s) transmitted by both Dj and R. The next theorem
quantifies this probability.

Theorem 2: Let q̃Dj ,i denote the probability that sentinel S∗

is unable to detect the packet dropped by relay R on a packet
originating from device Dj , with packet sequence number i.
Then we have

q̃Dj ,i = 1− (1− qDj→R)(1− qR→AP ) , q̃Dj
, (8)

where qDj→R, and qR→AP are given by (1), and (4), respec-
tively.

Proof: The sentinel S∗ can successfully detect this packet
drop at the relay if and only if S∗ successfully receives the
packet with sequence number i when it is transferred from
Dj → R and also successfully receives the packet with tam-
pered sequence number (from i + l to i) which is forwarded
from R → AP . Thus, S∗ successfully detects the tampering
with probability (1 − qDj→R)(1 − qR→AP ), and therefore (8)
represents the probability that S∗ is not successful in detecting
this attack. Note that the expression for q̃Dj ,i given by (8) is
independent of the sequence number i, and we can therefore
simplify it to q̃Dj

. 2

Similar to data integrity attack detection, a false alarm occurs
while detecting selective forwarding attack only in the unlikely
scenario where CRC fails to detect errors in the decoded packet,
and the sentinel uses an erroneous packet for comparing cor-
responding packet transmissions by a device and its associated
relay.

C. Impact of Path Loss on PEP

In this subsection, we analyze the impact of path loss on the
PEP for a given wireless link. Let Pd0 denote the mean received
power at a receiver which is located d0 meters away from a
transmitter. Then, a general path loss expression for Pd, the
mean received power at distance d from the transmitter, is given
by

Pd = Pd0

(
d0
d

)ε
, (9)

where ε denotes the path loss exponent. The mean received en-
ergy per bit at distance d, denoted Eb(d), is related to Pd as
follows

Eb(d) =
Pd
r
, (10)

where r denotes the transmission rate in bits per second. The
noise power spectral density, N0, on the other hand is approxi-
mately given by −174 dBm/Hz ≈ 4 × 10−18 mW/Hz at room
temperature. Therefore, when Pd0 is expressed in mW, then we
have

Eb(d)

N0
=
Pd0 × 1018

4r

(
d0
d

)ε
. (11)
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Fig. 2. Plot depicting the impact of distance on PEP, when path loss expo-
nent is 2.5, transmission rate is 1 Mbps, and the packet is composed of 240
information bits.

C.1 Uncoded Packet

We will provide an exact analytical expression for PEP as a
function of d, the distance between a transmitter and a receiver,
for an uncoded packet composed of n information bits. When
the transmitter uses binary phase shift keying (BPSK), bit error
rate (BER) is related to Eb(d)/N0 as

BER = Q

√2Eb(d)

N0

 , (12)

where Q(·) is the tail probability of the standard normal distri-
bution, and is expressed as follows

Q(x) =
1√
2π

∫ ∞
x

e−u
2/2du. (13)

The PEP for an uncoded packet with n bits is

PEP = 1− (1−BER)n. (14)

Combining (11), (12), and (14), the PEP at distance d is

PEP = 1−

[
1−Q

(
109
√
Pd0
2r

(
d0
d

)ε/2)]n
. (15)

C.2 Packet protected by Convolutional Coding

We know that PEP on a given wireless link can be reduced by
appropriate error correction coding [23]. From (1), (4), and (6),
we see that a reduction in pDj→S∗ or pR→S∗ leads to a reduction
in qDj

which, in turn, helps to reduce N̄Dj
(see (18)). Therefore,

a reduction in PEP via error correction helps in lowering the
expected number of packets required to detect a malicious relay.

Fig. 2 compares PEP for uncoded and coded packets as a
function of distance d with d0 = 1 (meters), Pd0 ∈ {−70,−60}
dBm (or equivalently Pd0 ∈ {10−7, 10−6} mW), and the power
spectral density of thermal noise is -174 dBm/Hz. We have
considered a transmission rate of r = 1 Mbps, while the path
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loss exponent, ε, is 2.5. The error correction coding scheme is a
rate 1/2 convolutional code supported by WiFi HaLow [6], and
has a constraint length of 7. The curve for the uncoded case
is obtained using (15), while the curve for convolutional cod-
ing is obtained using Monte-Carlo simulation where a Viterbi
decoder [24] is employed for 8-bit quantized soft-decision de-
coding. It is seen from the figure that for a fixed target PEP,
convolutional coding provides significant increase in coverage
distance over the uncoded case.

The path loss model discussed in this subsection will be ap-
plied later in Section V.B to quantify the number of sentinels
required to monitor a given network in order to achieve the re-
quired detection performance.

IV. EARLY DETECTION PROBABILITY

In this section, we quantify the probability of early detection
of malicious relay behavior. Towards this, we define and discuss
the early detection probability for the data integrity attack and
selective forwarding attack.
(a) Early detection of data integrity attack: For data packets

originating from a given device Dj , we define the m-early
detection probability of data integrity attack to be the prob-
ability that sentinel S∗ detects the data integrity attack when
not more than m packets originating from device Dj have
been tampered with by relay R. Let NDj

denote the in-
dex of the tampered packet originating from deviceDj , with
which the sentinel S∗ successfully detects the tampering at-
tack. Then them-early detection probability of data integrity
attack for packets originating from Dj is equal to the proba-
bility Pr(NDj

≤ m).
(b) Early detection of selective forwarding attack: As men-

tioned earlier, there is a unique sequence number counter
associated with transmitted packets from each IoT device.
For packets originating from a given deviceDj , the implica-
tion of the selective forwarding attack is the following: Even
if one packet originating from Dj is dropped, the sequence
number of all future packets originating from Dj which are
forwarded by R to AP need to be modified by R in order to
maintain sequence number continuity. Now, following the
first instance of a dropped packet originating from Dj , let
MDj

denote the count for the number of subsequent packets
(which originate from Dj and are forwarded by R to AP )
that are required for the sentinel to detect the attack. For
a given device Dj , we define the m-early detection prob-
ability of selective forwarding attack to be the probability
Pr(MDj ≤ m).

Remark: The above discussion shows that the sentinel based
detection of selective forwarding attack is robust even when the
relay drops just a single data packet from a given device.

The following theorem quantifies the m-early detection prob-
ability of data integrity attack and the m-early detection proba-
bility of selective forwarding attack.

Theorem 3: We have

Pr(NDj
≤ m) =

m∑
n=1

(1− qDj
)
(
qDj

)n−1
(16)

= Pr(MDj
≤ m). (17)

Proof: We have Pr(NDj ≤ m) =
∑m
n=1 Pr(NDj = n),

so it suffices to show that Pr(NDj
= n) = (1− qDj

)
(
qDj

)n−1
in order to prove the first equality in (16). As qDj

denotes the
probability that sentinel S∗ is unable to detect a data integrity
attack on a given packet originating from Dj , it follows that
Pr(NDj

= 1) = 1− qDj
. Now, if S∗ detects the data integrity

attack only after n > 1 packets originating from Dj have been
corrupted, it implies that S∗ was unsuccessful in detecting the
data integrity attack on the previous n − 1 packets, and hence
Pr(NDj

= n) = (1− qDj
)
(
qDj

)n−1
.

We now prove the equality in (17). Comparing (6) and (8),
we observe that q̃Dj = qDj , and hence it suffices to show that
Pr(MDj = n) = (1− q̃Dj )

(
q̃Dj

)n−1
in order to prove the sec-

ond equality in (16). Let i denote the sequence number of the
first packet originating fromDj which gets dropped at the relay.
Then q̃Dj ,i denotes the probability that sentinel S∗ is unable to
detect this packet dropped by relay R. Note that the expres-
sion for q̃Dj ,i given by (8) is independent of i and is referred as
q̃Dj

. Following the first dropping of a packet at R correspond-
ing to packet source Dj , in order to maintain the continuity of
sequence numbers at the AP , the relay has to tamper the se-
quence number of every successive packet (with packet source
Dj) which R forwards to AP . For every such packet forwarded
by R to AP with tampered sequence number, the probability of
successful detection at sentinel S∗ is given by 1 − q̃Dj

. Now,
following the first packet drop by the relay, if S∗ detects the
selective forwarding attack only after n packets (with modified
sequence numbers) have been forwarded by R to AP , then we
have Pr(MDj = n) = (1− q̃Dj )

(
q̃Dj

)n−1
. 2

Remark: Note that NDj
is a geometrically distributed random

variable with Pr(NDj
= n) = (1 − qDj

)
(
qDj

)n−1
. The ex-

pected value of NDj
, denoted N̄Dj

, is therefore

N̄Dj =
1

1− qDj

. (18)

As NDj
and MDj

have the same probability distribution
(see (16)), it follows from the above remark that the expected
value of MDj

is also equal to 1/(1− qDj
).

V. DISCUSSIONN

A. Packets from Different Devices: A Unified View

So far, we have analyzed the packet stream originating from
a given device, say Dj , and have quantified the distribution of
the number of packets tampered with by the relay before the
sentinel detects the data integrity attack (see Theorem 3). In
this subsection, we take a unified view where we jointly analyze
the received packet stream from all the devices connected to the
relay. In particular, we analyze the data integrity attack, and
focus on the set of all packets tampered with by the relay, rather
than partitioning them into subsets based on the packet source.

For n = 1, 2, · · · , let jn denote the index of that device which
transmitted the nth packet modified by relay R, i.e., device Djn

is the originator of the nth packet tampered with by the relay.
Let ND denote the index of that tampered packet for which the
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sentinel S∗ successfully detects the tampering attack. The m-
early detection probability of data integrity attack in this sce-
nario is equal to the probability Pr(ND ≤ m). The following
theorem quantifies this probability.

Theorem 4: We have

Pr(ND ≤ m) =

m∑
n=1

Pr(ND = n), (19)

Pr(ND = n) =

{
1− qDj1

, n = 1(
1− qDjn

) (∏n−1
t=1 qDjt

)
, n > 1,

(20)

where the probability qDj for device Dj is given by (6).
Proof: Note that qDj denotes the probability that sentinel

S∗ is unable to detect the tampering attack on a given packet
transmitted by device Dj . Since j1 denotes the index of that de-
vice which transmitted the first packet modified by R, the prob-
ability that this attack is immediately detected by S∗ is equal to
Pr(ND = 1) = 1 − qDj1

. Now, if S∗ detects the attack only
after n > 1 packets have been tampered with, it implies that S∗

was unsuccessful in detecting the attack on the previous n − 1

packets, and hence Pr(ND = n) =
(
1− qDjn

) (∏n−1
t=1 qDjt

)
.
2

B. How Many Sentinels are Needed?

In this subsection, we provide a framework that helps us to
trade cost (in terms of number of sentinels) with performance
(in terms of early detection probability of a malicious relay). In
particular, for a given positive integerm and desired early detec-
tion probability Pr(ND ≤ m), the framework can be applied to
numerically quantify the number of sentinels required to moni-
tor a network populated with relays and associated devices, such
that the desired performance is achieved.

We consider a general wireless sensor network consisting
of one AP , multiple relays, and different devices associated
to each relay. Since the multiple access scheme is CSMA/CA,
neighboring clusters of nodes transmit in orthogonal channels
with high probability, and therefore a sentinel node can monitor
traffic from multiple relay clusters in its vicinity. Let R denote
the number of relays connected to the AP , let D denote the
number of devices connected to each relay, and let S denote the
number of sentinel deployed to monitor network traffic. Let the
number of malicious relays (among the R relays connected to
the AP ) be denoted by ρ.

We aim to quantify the number of sentinels S which ensure
that all the malicious relays are detected by sentinels with a suffi-
ciently high probability before each malicious relay corrupts not
more than m packets. Towards this, we use a relay-clustering
framework and a general path loss model (refer Section III.C)
to quantify the PEP on a given wireless link. This approach is
outlined in the following algorithm.
Step 1) LetR, D, and m be given. Initialize S = 1.
Step 2) Let Ptar denote the target probability with which a ma-

licious relay is detected before it corrupts not more than m
packets.

Step 3) LetAP be placed at the origin. Use Monte-Carlo simu-
lation to generateR relays uniformly distributed within a ra-
dius d1 from theAP . GenerateD devices around each relay,

where the devices are uniformly distributed within a radius
d2 from associated relays. For each realization of R relays
and D devices around each relay, use a clustering algorithm
(such as k-means clustering [25]) to cluster the relays into
S groups and place a sentinel at the centroid of each cluster.
Therefore, each sentinel monitors traffic flowing through re-
lays associated with the same cluster.

Step 4) Apply the path loss model in Section III.C to quantify
the PEP on a given wireless link as a function of the transmit
power and the distance between transmitting and receiving
nodes.

Step 5) Let the malicious relay corrupts packets originating
from different devices connected to it with equal probabil-
ity. Compute the probability of early detection of malicious
relay using Theorem 4, and average this probability over the
R relays. For a given relay R, its corresponding sentinel
S∗, and device Dj associated with R, the value of qDj

is
computed using (1), (4), and (6).

Step 6) If the early detection probability computed in the previ-
ous step is less than Ptar, then let S = S+1 and re-compute
the early detection probability by repeating the process from
Step 3 onwards; else stop.

The above framework help us quantify the number of sen-
tinels required to detect a malicious relay (ρ = 1) with proba-
bility at least Ptar when the malicious relay has not corrupted
more than m packets before it is detected.

We remark that the outcome of the above framework can be
directly applied to compute early detection probability of multi-
ple malicious relays (ρ > 1). Since the detection of a malicious
relay depends only on packet error probabilities on the associ-
ated wireless links, the detection process for different malicious
relays is mutually independent. Therefore, if there are ρ > 1
malicious relays present in the network, the probability that all
malicious relays are detected before each malicious relay cor-
rupts not more than m packets, is lower bounded by (Ptar)

ρ.

VI. NUMERICAL RESULTS

In this section we present several numerical results highlight-
ing the performance of the sentinel based detection scheme. In
Section VI.A, we consider the case where a given malicious re-
lay R is monitored by a fixed sentinel S∗, while in Section VI.B
we consider a unified framework where a network consisting of
several relays and IoT devices is monitored by a given number
of sentinel nodes.

A. Detecting a Given Malicious Relay

In this subsection, we consider the scenario where a given ma-
licious relay R is monitored by a fixed sentinel S∗. We demon-
strate the impact of PEP over different wireless links, on the per-
formance of the proposed sentinel based detection scheme. The
corresponding Monte-Carlo simulation results, obtained by con-
sidering 104 end-to-end packet transmissions, are marked with
‘+’ symbol in the following figures.

We first present results for qDj→R, which denotes the prob-
ability that a given packet transmitted by IoT device Dj is suc-
cessfully transferred to relay R, but is not successfully received
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IoT device Dj is successfully transferred to relay R, but is not successfully
received by sentinel S∗.
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Fig. 4. Plot depicting qDj→R as a function of pDj→R.

by sentinel S∗. Fig. 3 plots qDj→R as a function of pDj→S∗ ,
where pDj→S∗ denotes the PEP due to channel noise on the
wireless link from Dj to S∗. The dependence of qDj→R on
pDj→S∗ and pDj→R is given by Lemma 1. As mentioned in the
remark after Lemma 1, we observe from Fig. 3 that qDj→R ≤
pDj→S∗ and that qDj→R tends to pDj→S∗ as pDj→R tends to
zero. Further, using (1) we observe that for a given value of
pDj→R, the partial derivative

∂qDj→R

∂pDj→S∗
=

1− pDj→R(
1− pDj→R · pDj→S∗

)2 > 0,

and thus qDj→R is an increasing function of pDj→S∗ , as de-
picted in Fig. 3.

Fig. 4 plots qDj→R as a function of pDj→R. The curves are
plotted for four different values of pDj→S∗ . As mentioned in
the remark after Lemma 1, it is observed from the figure that
qDj→R ≤ pDj→S∗ . For a given value of pDj→S∗ , it is seen that
qDj→R = pDj→S∗ when pDj→R = 0. Moreover, qDj→R is a
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strictly decreasing function of pDj→R as

∂qDj→R

∂pDj→R
=
−pDj→S∗(1− pDj→S∗)(
1− pDj→R · pDj→S∗

)2 < 0.

Fig. 5 plots the missed detection probability for a data in-
tegrity attack by R on a given packet transmitted by Dj (de-
noted by qDj

), as a function of qR→AP . Using (6), we have
qDj = qDj→R + qR→AP (1 − qDj→R) and thus qDj varies lin-
early with qR→AP , when qDj→R is fixed. Further, we observe
from (6) that qDj is symmetric in qR→AP and qDj→R, and hence
qDj

will remain unchanged when values of qR→AP and qDj→R
are interchanged.

Fig. 6 plots the average number of packets corrupted by a
relay before sentinel S∗ detects the data integrity attack (denoted
by N̄Dj ), as a function of qR→AP . Note that combining (18) and
(6), we observe that N̄Dj

increases with qR→AP , as depicted in
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(the average number of packets corrupted by

relay before S∗ detects data integrity attack) is less than certain thresholds.

the Fig. 6. Further, N̄Dj is symmetric in qR→AP and qDj→R,
and hence N̄Dj

will remain unchanged when values of qR→AP
and qDj→R are interchanged.

Using (1), it is observed that

∂qDj→R

∂pDj→R
=
−pDj→S∗(1− pDj→S∗)(
1− pDj→R · pDj→S∗

)2 < 0,

and therefore qDj→R decreases with pDj→R. Similarly, us-
ing (4), it can be shown that qR→AP decreases with pR→AP .
Fig. 7 shows the shaded area for which N̄Dj

is less than cer-
tain thresholds, for the worst-case performance scenario where
pDj→R = 0 and pR→AP = 0. As qDj→R (resp. qR→AP )
is a decreasing function of pDj→R (resp. pR→AP ), it follows
from (6) and (18) that an increase in pDj→R or pR→AP will
only reduce N̄Dj

, and therefore improve detection performance.
Fig. 7 highlights the robustness of the sentinel based intru-

sion detection scheme by showing that the average number of
corrupted packets required for detection are reasonably small
even when the packet error probabilities on the Dj → S∗ link
and the R→ S∗ links are sufficiently high.

As shown in Theorem 3, the early detection probability of
selective forwarding attack is similar to that of the data integrity
attack, and therefore the corresponding numerical results have
been omitted.

B. Early Detection Probability: A Unified View

This subsection presents numerical results for a unified
framework with the following properties:
• GivenR relays, each relay serving D devices, and a total of
S sentinels for network monitoring, the relays are clustered
into S different groups. A sentinel is placed at the centroid
of each cluster.

• The R relays are uniformly distributed spatially over a ra-
dius of d1 meters from the AP . The D devices connected
to a given relay are uniformly distributed over a radius of d2
meters from the relay.

• A malicious relay corrupts packets from different devices
associated with the relay with equal probability.
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Fig. 8. Early malicious relay detection probability, Pr(ND ≤ m), as a func-
tion of m whenR = 6 and number of sentinels S ∈ {1, 2, 3}.

• Every transmitted packet is protected by a rate 1/2 convolu-
tional code with constraint length 7, and the PEP follows the
path loss model in Section III.C.

In the following plots, we assume that the received signal
strength at a distance of 1m from a transmitting relay (resp.
transmitting device) is −60 dBm (resp. −70 dBm). The path
loss exponent is 2.5, the transmission rate is 1 Mbps, and the en-
coded packet size is 480 bits. The values ofD, d1, and d2, are 5,
100, and 20, respectively. TheR relays are clustered into S dif-
ferent groups using the k-means clustering algorithm [25]. The
following plots present Pr(ND ≤ m), representing the prob-
ability that a malicious relay is detected before it corrupts not
more than m data packets, under different scenarios. The results
are obtained via Monte-Carlo simulations by averaging the per-
formance over 106 iterations, with each iteration comprising a
random placement of relays and devices in the network.

Fig. 8 plots the early detection probability, Pr(ND ≤ m),
as a function of m when R = 6. For a given m, it is seen
that Pr(ND ≤ m) increases with number of sentinels, and
Pr(ND ≤ 10) exceeds 99.95% for S = 3.

Fig. 9 depicts Pr(ND ≤ m) as a function of m for different
values ofR when S/R = 1/3. As the number of sentinels scale
linearly with R, it is seen that for a given m, the early detec-
tion probability, Pr(ND ≤ m), increases withR. Note that the
network becomes denser with increasing R, and hence the ra-
dius of a relay cluster decreases, in general. A decrease in relay
cluster radius lowers the average PEP on device-to-sentinel and
relay-to-sentinel links due to shorter distances, which results in
improved performance.

Fig. 10 shows the detection performance when the ratio S/R
is equal to 1/2. In contrast to Fig. 9, the early detection proba-
bility is higher in Fig. 10 due to higher value of the ratio S/R
which results in lower average radius of a relay cluster.

Fig. 11 presents the detection performance for different val-
ues of R, where the number of sentinel S are fixed to 5. It is
seen that Pr(ND ≤ 10) > 99% for R ∈ {15, 20, 25, 30}, and
that Pr(ND ≤ 10) does not vary significantly with changing
values of R. As the performance is only expected to improve
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upon reducing R, we observe that the detection performance is
fairly robust for S = 5. The intuition behind this phenomenon,
where a fixed number of sentinels achieve robust performance,
independent of the number of relays, is as follows. Consider a
scenario where all devices transmit at a fixed power, and let d̃2
be the maximum distance (in meters) from a device where the
PEP is less than 10−1. The sentinel fails to detect data integrity
attack on a given packet if it fails to successfully receive either
the packet transmitted from a device or the corrupted packet for-
warded by the relay. In general, we can assume that relays trans-
mit at a higher power compared to devices, so a misdetection
typically occurs when a packet transmitted by a device is not
successfully received at a sentinel. When relays are uniformly
distributed within a radius d1 meters from the AP , then roughly
(d1/d̃2)2 sentinels are required to effectively cover the network
area to ensure that a transmission from a device is successfully
received by a sentinel with probability at least 0.9. For the pa-
rameters chosen for Fig. 11, we have d1 = 100 and d̃2 ≈ 45, and
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Fig. 11. Early malicious relay detection probability, Pr(ND ≤ m), as a
function of m for S = 5.

so (100/45)2 ≈ 5 sentinels are sufficient to effectively monitor
the network, independent of number of relays in the network. In
essence, the fact that the network can be effectively monitored
by a fixed number of sentinels, independent of the number of
relays, helps us to bound sentinel cost for achieving a desired
detection performance.

VII. CONCLUSION

We presented an effective and practical sentinel based scheme
for malicious relay detection in noisy wireless networks. This
scheme has the advantage that it does not require any change
in existing PHY/MAC protocols (such as IEEE 802.11ah Wi-
Fi HaLow), as it employs passive sentinel nodes for traffic
monitoring. The detection scheme exploited the broadcast na-
ture of wireless transmission to overhear information being for-
warded by relay nodes. The false alarm occurred only in the
unlikely scenario where the packet CRC fails to detect errors,
even though the decoded packet is in error. This implies that
the false alarm probability in our detection scheme can be made
negligible by using a sufficiently long CRC.

The detection scheme operated at the MAC layer by compar-
ing packets transmitted by IoT devices and the corresponding re-
lay. This has the advantage over other physical layer approaches
that our scheme remains effective even in scenarios where dif-
ferent wireless links in the network may employ distinct modu-
lation and coding schemes at the physical layer.

We provided a detailed analysis for the detection of the data
integrity attack and the selective forwarding attack. The analy-
sis assumed a general noisy channel model for the IoT network,
where each wireless link may potentially have distinct PEP due
to different noise conditions. We quantified the probability of
early detection of malicious relay behavior as a function of PEP
on different wireless links across the network. Moreover, our
scheme is robust in detecting selective forwarding attacks when
a small fraction of packets are dropped by a malicious relay.

We presented several numerical results to highlight the impact
of PEP on the probability of detection of data integrity attack on
a given data packet. The results showed that the proposed detec-
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tion scheme is robust even in the scenario where the PEP on the
wireless link from an IoT device to sentinel (resp. relay to sen-
tinel) is high. We also provided results for a unified framework
where a network with several relays and devices is monitored
by a given number of sentinels. The results showed that a given
network area can be effectively monitored by a fixed number of
sentinels, independent of the number of relays, thereby bound-
ing the cost for achieving a desired detection performance.
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