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Abstract—Anomaly detection in the industrial internet of
things (IIoT) devices is significant due to its fundamental role in
protecting modern critical infrastructure. In the IIoT, anomaly
detection can be carried out by training machine learning models.
Data sharing between factories can expand the data from which
the model is trained, thus improving the performance of the
model. However, due to the sensitivity and privacy of IIoT data,
it is also difficult to build a high-performance anomaly detection
model between factories. To address this problem, we design an
anomaly detection method for IIoT devices combined blockchain
of main-side structure and federated learning. We store the global
model on the main-chain while the side-chain records the hash
value of the global models and local models, which updated by
participating nodes, controlling nodes access to the global model
through the main-side blockchain and the smart contracts. Only
the nodes participating in the current federated learning training
can get the latest global model, so as to encourage the nodes to
take part in the training of the global model. We designed a
proof of accuracy consensus algorithm, and select the nodes to
participate in training according to the accuracy of the local
model on the test dataset to resist the poisoning attack of the
models. We also use the local differential privacy (LDP) algorithm
to protect user data privacy from model inference attacks by
adding noise to the local model. Finally, we propose a new
algorithm named Fed Acc to keep the accuracy of the global
model stable when the users add a lot of noise to their local
models.

Index Terms—Anomaly detection, blockchain, federated learn-
ing, IIoT, privacy protection.

I. INTRODUCTION

INDUSTRY 4.0, also known as the Fourth Industrial Revo-
lution, represents a new industrial era where the embedded

devices used in intelligent production systems and processes
are ultimately able to achieve the collaboration of the Internet,
the Internet of Things (IoT), and the logistics network [1].
However, due to the existence of malicious nodes, the appli-
cation of the Industrial Internet of Things (IIoT) faces serious
security risks, which greatly impedes the development of the
IIoT. For example, in the intelligent manufacturing scenario,
if abnormal behavior (such as abnormal flow and irregular
reporting frequency) occurs to industrial devices, such as
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engines with sensors, industrial production may be interrupted,
thus causing huge economic losses to the factory [2]. In recent
years, intelligent applications based on the IoT have been
widely used in production and manufacturing, such as intelli-
gent devices, intelligent transportation, etc., in which various
data information collected by the sensor of the IoT devices
will be uploaded to the server for centralized processing. The
data can then be periodically uploaded to a cloud-based system
via an intermediate server or gateway in a specific region [3].
However, this communication infrastructure is more vulnerable
to security breaches, as untrusted cloud servers may want
access to large amounts of sensitive data. Therefore, it is
particularly important to provide security for these systems [4]
to ensure the privacy and confidentiality of industrial data.

Meanwhile, these compromised sensors can send inaccurate
data, and anomalies in IIoT devices may also expose users’
sensitive data, which brings security and privacy threats to IIoT
applications [5]. In order to distinguish between unreliable and
reliable sensors (which sensors are faulty and which sensors
are reliable), there needs to be some trusted infrastructure in
which these problems can be seen [6].

If the manufacturer does not provide a complete security
system for the devices, once it encounters external malicious
attacks, among them, sensitive information and data privacy
are likely to be leaked maliciously, so the related security
protection issue has gradually become a challenge hot spot. In
the face of increasing network security threats and expanding
attack surface, the security of IIoT network and environment
becomes more and more complex and challenging [7]. In
order to solve the IIoT devices anomaly problem, the typical
approach is to conduct anomaly detection on the affected IIoT
devices. At present, the most popular technology is artificial
intelligence (AI). AI constantly improves the anomaly detec-
tion model and realizes automatic detection through machine
learning and deep learning. However, any anomaly detection
technology based on machine learning and deep learning
is faced with challenges, such methods have training data
scarcity and privacy issues [8]. Anomaly detection methods
based on machine learning or deep learning require a great
deal of data for model training, which may expose privacy.
The anomaly detection algorithm based on federated learning
can coordinate model training among multiple parties without
exposing data privacy.The federated learning framework was
originally proposed by [9] to train the model without the
user uploading their own local data samples, thus protect-
ing the user’s privacy. Federated learning provides not only
privacy protection for the client, but also ultra-high learning
performance, all due to the model parameters of the local
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computation used to build the final model after summarizing
all of them without the client having to transmit the local
training data [10]. However, there is no doubt that federated
learning still has serious challenges. For example, federated
learning features model gradient aggregation by a central node.
Therefore, there are great security risks in the process of
polymerization. One is that the central node cannot be fully
trusted, and the client may refuse to participate in cooperation
because of distrust of the central node, and the other is the
inability to obtain transparent operational information about
the central node. Blockchain can be used to solve federated
learning’s challenges. Blockchain perfectly complements fed-
erated learning’s security issues, and the two complement
each other, providing better security, privacy, interoperability,
scalability and reliability by enabling data traceability, con-
sensus mechanisms to ensure that data cannot be tampered
with, avoidance of single points of failure, extension to public
networks where there may be untrusted nodes, and provide
incentive mechanism [11].

Due to various problems in anomaly detection of smart
factory devices in IIoT, a federated learning architecture
combined with blockchain is designed in this paper which
can also protect the data privacy of the factory. Since the
training of anomaly detection model requires local data from
each smart factory, there is a risk of privacy disclosure in the
process of federated learning and training. Therefore, security
can be provided to the system through the blockchain, and the
anomaly detection model can be trained through differential
privacy (DP) in a way that protects user privacy. Contributions
from this paper are as follows:

1) We propose the IIoT anomaly detection architecture com-
bined federated learning and the main-side blockchain
structure, store the global model on the main-chain,
record the hash of the global model and node local
model on the side-chain, and design an access control
mechanism to control nodes’ access to the global model
on the main-chain. As for encouraging clients to actively
participate in the federated learning training , we set that
only the client participating in the training can get the
latest global model from the main-chain.

2) We propose the proof of accuracy (PoA) consensus
algorithm, which test the accuracy of the local model
uploaded by nodes on the side-chain and nodes whose
accuracy are higher than the threshold were selected
to take part in the federated learning training, while
local models with lower accuracy were prohibited from
participating in the training of this round.

3) We propose the Fed Acc algorithm which uses a sliding
window to judge whether the loss value of the global
model decreases in the overall trend during the federated
learning and training process, so as to resist the poisoning
attack of the model. To ensure the data privacy of smart
factories, clients can use local differential privacy (LDP)
to add noise when uploading model parameters. In this
paper, simulation verifies that the global model has better
anti-noise ability than Fed Avg when the local model
adds more noise.

II. RELATED WORK

At present, the IIoT has a large number of sensor devices,
and the security system of many devices has a certain delay,
it is likely to be unable to deal with novel network attacks.
Therefore it is necessary to apply anomaly detection for
unknown attacks. Each factory may not have the same type of
attack, and the data generated is not the same, so multiple
factories can use federated learning to expand the dataset
and cooperate to complete anomaly detection. Blockchain and
federated learning have been widely used in neural network
training. Federated learning has successfully decentralized
data, enabling clients to independently train local datasets and
upload trained model parameters without uploading local data
to the central server. Finally, all uploaded model parameters
are aggregated, and the final model is obtained after multiple
rounds of iterative convergence. This ensures the data privacy
security of each client. The characteristics of blockchain, such
as decentralization, verifiability and traceability, help to reduce
attacks on federated learning, thus improving the accuracy
of the model. Meanwhile, in order to make the model more
perfect, the incentive mechanism makes each factory node
actively take part in the training. There are many federated
learning architectures based on blockchain. Li et al. [10]
proposed blockchain-based federated learning (BCFL) archi-
tecture, where blockchain, completely decentralized and pro-
tected by privacy, is mainly used as the central database of
federated learning system. The primary goal of the BCFL is
to protect the local privacy datasets against malicious nodes
by fairly rewarding nodes according to the quality of their
contributions. Abbas [12] et al. used federated learning to build
a cluster-based threat search system for anomaly detection,
named Block-Hunter, which can automatically search for
external attacks in blockchain-based IIoT networks. In order
to solve the problems of device asynchrony and resource
consumption in federated learning, Cao cite9500737 et al.
designed a new consensus mechanism and built a framework
of federated learning weighted by blockchain (DAG-FL) based
on direct acyclic graph (DAG). For member inference attacks
such as model theft attacks, model reconstruction attacks and
other privacy attacks in federated learning, Jia et al. [13]
proposed three solutions: K-means clustering, random forest,
and AdaBoost which are all distributed and based on DP and
homomorphic encryption, and combine these methods with
federated learning and blockchain.

In the study of federated learning and anomaly detection,
Taheri et al. [14] proposed an architecture Fed-IIoT, introduced
Android malware detection algorithm, including a variety of
equally independent learning model distribution, proposed two
kinds of potential random variable based poison attacks, using
generative adantagonistic network (GAN) and federated learn-
ing to float malware on benign data samples, viz. GAN and
Federated GAN (FedGAN). A GAN network (A3GAN) de-
fense algorithm combined aggregation federated learning and
GAN algorithms is proposed to avoid aggregation anomalies
and detect adversaries in server-side components. Compared
with the centralized ML method, [15] uses federated learning
training on the device to protect the data privacy of the
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terminal device not only has achieved higher accuracy, but
also minimized false alarms. The advantages of integrating
federated learning with an integrator for optimal results are
demonstrated. As for solving the problem of network attacks
and sample dissimilarity, Wu et al. [16] proposed a model
combining hybrid Gaussian variational self-coding network
and federated learning for anomaly detection classification.
In the MGVN network model, the variational autoencoder
is constructed using the mixed Gaussian structure, and then
features are extracted from the input data in order to construct
the depth support vector network.

Privacy in federated learning is also important. In [17], a
new federated learning based on converter architecture, which
is called FedAnomaly, is proposed to timely implement privacy
protection exception detection in cloud manufacturing. As to
details, for the edge devices, a transformer based weakly
supervised anomaly feature extraction model is designed, and
the devices upload the feature with DP noise. Meanwhile,
the MLPS model is used to detect exception for the cloud
side. Because of the differences between transformer training
and traditional device training, Ma textitet al. [17] customized
a new federated-learning training protocol for the anomaly
detection model, which minimizes communication overhead
by uploading code features and losses instead of model
parameters. In [18], an unsupervised model called TCN-
ACNN was constructed to detect anomalies deeply in system
logs and learn time representations. To ensure collaboration
and privacy between IoT devices, a new federated learning
algorithm has been developed to improve the TCN-ACNN. A
masking strategy based on the lottery hypothesis is designed to
enhance customization of federated learning and reduction in
communication overhead when dealing with non-IID datasets.

Although the above researchers have made the latest de-
velopment and research results, the FedAvg federated average
algorithm, which is directly used in their aggregation algo-
rithm, does not consider the problem of data heterogeneity
among multiple factories. The data generated between multiple
factories is likely to be heterogeneous data. How to deal with
heterogeneous datasets in the federated learning training pro-
cess is also a hot research direction. In terms of heterogeneous
data processing, Wu et al. [19] selects nodes by calculating
the inner product of local model and global model gradients,
and then removes unfavorable local updates that will affect the
overall data heterogeneity, thus changing the relationship be-
tween local gradients and global gradients. However, Zhang et
al. [20] proposed a new federated learning framework named
centroid distance-weighted joint average (CDW FedAvg). One
of the key points is the centroid distance. Specifically, each
node’s dataset has two classes, positive and negative. The
centroid distance takes into account the distance between the
two classes. However, it is not considered that the centroid
distance of the dataset will reveal the data privacy of the client.

Incentive in federated learning is also a hot research
trend. Multitudes of literature revolves around designing joint
learning incentives through customer contributions, which has
two attributes that are most valued: data quantity and data
quality [21]. To incentivize honest clients to upload high-
quality models, while promptly detecting and punishing ma-

Fig. 1. System architecture.

licious clients, Bao et al. [22] proposed a federated learning
ecosystem to equitably distribute profits, called FLChain. This
ecosystem has the benefits of a typical blockchain: decentral-
ized, trusted, auditable, and incentivized. To keep incentives
safe, some federated learning works [22], [23], encourage
clients to place the parameters of their training models in the
blockchain and reward them with cryptocurrency. However,
the current incentive mechanism rarely considers the problem
of security. Data providers may provide low quality data or
false data. In this case, how to allocate incentives is a problem
worth studying.

The role of blockchain in IIoT is mainly to improve system
security. Matthew et al. [24] implemented a collaborative IDS
framework to enable secure data transactions in IIoT systems.
Rathee et al. [25] utilized the Viterbi algorithm to implement
a blockchain-based IDS framework to ensure security in the
IIoT. Hewa et al. [26] designed a new security architecture
based on blockchain and fog computing to improve the secu-
rity of IIoT cloud networks.

At present, there are few studies on the application of
BCFL architecture for anomaly detection in IIoT. In this
paper, a federated learning anomaly detection system based on
blockchain architecture is designed, which uses LDP to ensure
the protection of the node privacy, and considers the problem
of model accuracy decline caused by differential privacy, and
designs a new federated learning model aggregation algorithm.
The effect of noise is reduced and our algorithm is verified by
simulation.

III. SYSTEM MODEL

In this paper, we propose a detection model for IIoT device
traffic anomaly combined federated learning and blockchain,
which includes modules such as main-side blockchain struc-
ture, PoA consensus algorithm, Fed Acc federated learning
algorithm, and main-side blockchain access control smart
contract. Let’s take a look at the overall architecture of this
paper’s model.

A. Anomaly Detection Architecture of IIoT based on Double-
blockchain

The system structure diagram is shown in Fig. 1 con-
tains three smart factories F1, F2, and F3, each of which
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contains multiple data-generating devices. The three smart
factories conduct federated learning through blockchain.
Blockchain adopts the double-chain architecture of the main-
side blockchain. The main-chain records the smart factory
global model and the access permission proof of nodes while
recording local model parameters, the initial global model
and the hash of global model on the side-chain. The role of
the side-chain is to select the consensus node of the main-
chain. Only the nodes that upload the local model and pass
the model test can become the consensus node, obtain access
to the data of the main-chain, and then participate in federated
learning training to obtain the trained global model. The nodes
that do not participate in the global model training can only
obtain the initial global model. The subscripts x and y of
GlobalModelx,0 and GlobalModely,t in the figure are used to
distinguish different global models, 0 and t represent different
iterations, 0 represents the initial globalmodel that has not
been trained, and t represents the globalmodel after t iterations
trained by federation learning. We use Fed Acc algorithm to
train and update the model, so as to finally get a global model
to detect anomaly, which can be used by each smart factory to
detect anomaly. After the global model is obtained, the side-
chain records the hash value of the global node. Because the
attacks on each factory and the anomaly data on the local
device may be different, the global model through federated
learning across multiple factories helps them detect anomaly
that are not present locally.

B. Federated Learning
In this section, we propose an operational framework for

federated learning. The smart factory uses local difference
privacy (LDP) to disturb the local model and resist the
model inference attacks when training data locally. In order
to solve the model poisoning attack that may occur during
the training iteration process, we proposed a new algorithm
named Fed Acc to redistribute the local model according to
the accuracy of the aggregation model. We also designed the
access control smart contract of the main-side blockchain to
realize the node’s access control to the main-chain.

1) initialization: In the initialization phase, we consider
the set of factories as Ki ∈ {K1, · · ·,Kn}, dataset is
Di ∈ {D1, · · ·, Dn}, all local models are wi ∈ {w1, · · ·, wn},
the global initial model to be trained is W0 (the subscript
represents the number of iteration rounds, and 0 means no
training has been conducted).

2) Local model training: Ki, a smart factory, obtains the
global model Wt (t represents the number of iterations) from
the blockchain and uses the local privacy dataset Di to train
the model on the local device to get the local model. The
learning objective of local client Ki is finally to get it’s own
best model parameter wj

t that minimizes the objective function
l
(
wj

t , x, y
)

,

min l =

n∑
t=0

l
(
yjt , f

(
xj
t

))
, (1)

where l represents the loss function, j represents one of the
smart factorys,

(
xj
t , y

j
t

)
is the time series data generated by

the smart factory j at time t, xj
t is the feature vector, yjt is

the label, f (·) represents the machine learning model, and n
represents the size of the local dataset.

We use the binary cross entropy loss function to train the
anomaly detection model. We set the label of abnormal data
to 1, ya = 1, and the label of normal data to 0, yn = 0. The
local loss function defined by us is shown in (2):

l (w, x, y) = −
n∑

t=0

yt log σ (xt) + (1− yt) log (1− σ (xt)), (2)

σ (·) is the sigmoid function.
In this paper, we use the differential privacy to protect

model parameters wk by adding a random gauss perturbation
of model parameter, in order to guarantee (ε, δ)-LDP the
LDP, local produce random noise n follow gaussian distri-
bution N

(
0, δ2

)
, and then to get local model after distur-

bance. The perturbation δ2 satisfies the following conditions
σ2 ≥ 2 log (1.25/δ)

ε2 ∆2, Where represents the norm sensitivity.
For the function, we assume S = ∥f (D)− f (D′)∥2 ≤ ∆f .
The sensitivity S of the function is limited by ∆f , where D and

D′ are two adjacent datasets. If and only if ε = ∆f

σ

√
2 log 1.25

δ

Gaussian noise satisfy (ε, δ)-LDP [27], in this paper, local
difference privacy (LDP) is used, the node adds Gaussian noise
to local model and then uploads the local model.

wj ← wj +N
(
0, σ2S2

)
(3)

Note that since LDP is used, there is no limit to how much
noise a user can add to the local model. If user k adds a
lot of noise, he can of course protect the privacy of his own
data well, but this will lead to poor model effect, and then
affect the global model. Therefore, we designed a new model
aggregation algorithm Fed Acc to alleviate the impact of local
model noise on the whole region model.

3) Fed Acc algorithm: In general, the global objective
function in federated learning is:

F (w) =

|K|∑
i=1

Di

|K|∑
i=1

Di

li(w, x, y), (4)

for i ∈ K, li (w, x, y) is used to measure the loss function
based on local dataset Di. Fed Avg algorithm is the most com-
monly used gradient aggregation process. Firstly, the gradient
Wt−1 at time t − 1 is obtained, and each node participating
in the training optimizes its target by local stochastic gradient
descent (SGD).

wi
t = wi

t−1 − η∇Fi

(
wi

t−1

)
(5)

η is the learning rate and ∇Fi (·) is gradient of node i.
In this paper, firstly, some models are excluded in the model

test stage of the side-chain, and at the same time, the weights
of all models are changed in the model aggregation stage. In
this way, the influence of some models on the convergence
rate can be slowed down without losing the information
of these models. In [28], the federated learning study the
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measurement method of the fairness and effectiveness of α-
fairness measurement method is proposed, and put forward the
optimal solution of model weights are as follows:

pj =
a

1−α
α

j

K∑
i=1

a
1−α
α

i

, (6)

where aj is the accuracy of node j,pj is aggregation of
weight for the node j model, α is the parameter of α-fairness
[28]. In order to reduce the impact of data heterogeneity
and improve the performance of the model, we propose a
new aggregation algorithm Fed Acc. The aggregation node
downloads all the client model wj

t from the blockchain, tests
the model wj

t with the common dataset, and obtains the trained
model accuracy acc. (6) is used to assign the weight of the
client model parameters. For the purpose of reducing the
communication consumption of the aggregation model, we
further processed a local model in each round. When the local
model’s losstj > losst−1

j of j node, we would not choose this
local model for global aggregation in this round of training.
This can not only reduce the calculation amount of model
aggregation, but also eliminate the model with poor quality
and resist the model poisoning attack. The participating nodes
pass their update model ∆t

i = wt
i − wt−1

i to the aggregation
node, which updates the global model as (7):

∆t =
∑
j∈St

pj∆
t
j , (7)

wt = wt−1 +∆t, (8)

where pj is the aggregation weight of the model correspond-
ing to node j, which can be obtained from (6). Through the
consensus algorithm, the node with the highest weight is found
as the consensus node to aggregate the global model and
broadcast to the blockchain.

When the model was updated, we designed a sliding win-
dow B = {b0, b1, · · ·, bd}, to judge that the loss of several
updates of a node is decreasing on the overall trend. The
window size is d, which records the loss value of a local
model tested on the common dataset in the latest round d.
The window size and threshold limit the loss floating size of
the node training model. If the window size is larger than
the threshold, the overall loss trend is rising, which can be
assessed as a malicious model. In this paper, we set the
threshold to 0.

Let’s first calculate before we aggregate the model:

s =

d−1∑
i=0

bi+1 − bi, (9)

bi is the model loss value at time i.s represents the sum of
the difference between adjacent elements in the window to
evaluate whether the loss of the model rises or falls in round
d. If the value of d is 2, it means to evaluate whether the
current loss is lower than that of the last round each time. If
it is lower, it will not be included in the reference range for
model updates, that is, the aggregation weight of the updated
local model will be set to 0. This causes the global model to

Algorithm1: Fed Acc

1: procedure SERVER AGGREGATIONS
2: Input : {clientsModelj}j∈k

3: for each round t = 0, 1, 2· · · do
4: {accj}tj∈{Kn}{lossj}

t
j∈{Kn} ← TestModel()

5: for each accj , lossj do
6: if s in (9) ≥ 0 then
7: delete LocalModelj in this epoch
8: end if

9: pj ←
acc

1−α
α

j∑K
i=1 acc

1−α
α

i

10: wj ← UpdateGlobalModel()
11: end for
12: end for
13: end procedure
14: function sub window(losstj)
15: result = 0
16: for lossi, lossi−1 in losstj do
17: if i− 1 ≥ 0 then
18: result+ = lossi − lossi−1

19: end if
20: end for
21: return result
22: end function
23: procedure CLIENT TRAINMODEL
24: Input: Local data
25: initialize local minibatch size :

B, local epochs : E, learningrate : η
26: for each epoch i ∈ E do
27: samples Si based on B
28: wi ← wi−1 − η▽ g(wi−1, Si)
29: wi ← wi +N(0, σ2S2)
30: end for
31: end procedure

stop training in subsequent rounds once all models have lost
more than the previous round. If the value of d is too large, the
algorithm will not respond immediately once a node launches
a model poisoning attack and reset the corresponding model
weight to 0, resulting in serious pollution of global model
parameters. A similar method is also used in [29], which
directly eliminates nodes with substandard accuracy in the
training process. In our study, sliding windows were added
instead of directly eliminating models with low elimination
accuracy, so that the training process included those models
that added too much noise but also contained meaningful
information. The detailed process of Fed Acc is shown in
Algorithm 1.

C. Proof of Accuracy Consensus Algorithm

In this IIoT scenario, traditional permissioned-blockchain
consensus algorithms such as PBFT, Paxos and Raft, which
automatically elect the primary node and package and broad-
cast blocks, are not necessarily appropriate for consortium
blockchain systems. The reasons are as follows. First, in
federated learning, nodes participating in the training process
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are able to independently decide whether to use their own
local private datasets for training to obtain a local model.
Therefore, some nodes will participate in the consensus while
others will not. Some nodes can be evil nodes, PBFT has a
fault tolerance of 1/3, and Raft algorithms require participants
to be completely trusted. In the scenario of this paper, nodes
are likely to upload fake models to carry out model poisoning
attacks, and consensus algorithm should be able to resist such
attacks. Therefore, this paper designs a Proof of Accuracy
(PoA)consensus algorithm to select the nodes of model ag-
gregation and ensure that the local model uploaded by the
nodes participating in federated learning is safe and reliable.

Assume that the number of nodes taking part in the consen-
sus algorithm is m each time, and all nodes participating in
the consensus are {Km}. We choose the nodes that participate
in the consensus and the nodes that aggregate the model. The
detailed steps are as follows

Step1: Firstly, multiple smart factories form a blockchain
system with double-chain structure of main-side blockchain,
and an initial global anomaly detection model is disclosed.
Intelligent factory j uses local dataset Dj to train the
global model LocalModelj , and then uploads the local
training model to the side-chain, which collects the model
{LocalModelj} ∈ {Km}, triggers the smart contract using
the common dataset Dpub on the side-chain to test the local
model uploaded by the intelligent factory j. Obtain the model
accuracy, the model accuracy is higher than the threshold γ
node selected as the consensus to participate in the main-chain
of the next round of consensus. The primary node is elected
by finding the one with the highest accuracy.

Step2: The primary node executes the federated aggregation
algorithm, starts model iterative aggregation with other nodes,
and finally gets a new global model.

Step3: The primary node records the global model in the
main-chain, and records the hash of the global model in the
side-chain.

This completes a PoA consensus and federated learning
training process. Different from PBFT algorithms, PoA algo-
rithms require nodes to actively participate in the consensus
process rather than passively select the primary node. Nodes
that do not participate in this consensus will not get the
latest master chain data, and only the old master chain is
stored locally, that is, only the old global model. The accuracy
process of side-chain calculation can resist model poisoning
attack. After the accuracy of side-chain calculation, the model
with low accuracy is eliminated, and the remaining nodes
start to carry out the iterative process on the main-chain until
the specified number of rounds is stopped, and each updated
global model is recorded in a block of the main-chain. The
result has 2 blocks, a block on the side-chain that holds all the
original local models, and the other block on the main-chain
that holds the final global model.

D. Main-chain Access Control Scheme

The main-chain access in this paper is controlled by smart
contracts. After the side-chain verifies the node’s local model,
it gives the node the corresponding access control rights.

Algorithm2: Proof of acc

1: procedure SELECT NODES
2: Input : {clients}
3: for clientj in {clients} do
4: checkclientj
5: Upload hash(localmodelj) on sidechain
6: γj = Testmodel(localmodelj)
7: if γj < r then
8: Delete clientj
9: end if

10: end for
11: end procedure
12: procedure UPLOAD GLOBALMODEL
13: Input : GlobalModel
14: Wt ← Update(GlobalModel)
15: Upload Wt on mainchain
16: Upload hash(Wt) on sidechain
17: end procedure

First, the node uploads the local model ⟨GID,LocalModel⟩
through the smart contract, and the GID is the globally unique
identifier of the node. The smart contract waits for the node
to upload the local model within T time after the time stamp
of the last block. After T time, TestModel () is tested on all
the collected models to get the accuracy and eliminate those
models whose accuracy is not up to the standard.

After passing the verification contract of the side-chain,
Proof will be formed on the side-chain, and the Proof in-
formation is ⟨{GID} , {LocalMode} , {H (LocalModel)} ,
BlockHeight ⟩. BlockHeight is the block height of the
side-chain, and {·} represents the set. The node uses Proof
as the input of the master chain smart contract to trigger
the master chain access control smart contract, which stores
the transaction as the current Proof access control policy.
The next node starts to access the main-chain. The node
enters ⟨GID,LocalModel, SignedLocalModel⟩ into the ac-
cess control smart contract of the main-chain, and SignedLo-
calModel is the model signed by the node with the private
key. The main-chain verifies that the input data of the node
meets the Proof access control policy, verifies that the signed
model is valid, and if so, the node obtains the access control
permission of the main-chain.

The main-chain only validates the Proof of the current
side-chain BlockHeight, so if a node is verified with the
previously generated Proof , it will not pass.

The smart factory sends its own Proof information to the
main-chain, triggering the smart contract. The smart contract
verifies the Proof sent by the smart factory and verifies
SignedLocalModel. SignedLocalModel is signed by the
local private key for the smart factory, and the smart contract
is verified by the public key corresponding to the GID. For
the node that fails to pass the verification, the smart contract
will directly execute the return, and the node that passes
the verification will continue to execute the following smart
contract. Nodes that are not authenticated will not execute
subsequent smart contracts and will not have access to the
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Algorithm3: Access control contract

1: procedure Sidechain access control contract
2: Input :< GID,LocalModel >
3: accuracy = TestModel(LocalModelGID)
4: if accuracy ≥ Threshold then
5: {GID}.append(GID)
6: {LocalModel}.append(LocalModel)
7: {H(LocalModel)}.append(H(LocalModel))
8: else
9: return

10: end if
11: Proof ←< {GID}, {LocalModel},
{H(LocalModel)}, BlockHeight >

12: Output : Proof
13: end procedure
14: procedure Mainchain access control contract
15: Input : Proof, {GIDj , LocalModelj ,

SignedLocalModelj}j∈{Kn}
16: for each client do
17: bool = V erify(Proof, {GID,LocalModel,

SignedLocalModel}j∈{Kn}
18: if bool == True then
19: continue
20: else
21: return
22: end if
23: end for
24: Execute Algorithm1 : Fed Acc
25: end procedure

main-chain.
The access control contract is shown in Algorithm3. The

blocks in the main-side blockchain are one-to-one correspon-
dence, each node stores all the side-chain blocks, the node that
participates in training every time stores all the main-chain
blocks, and the node that participates in training occasionally
stores some main-chain blocks,only these nodes can get the
latest global model. The node that does not participate in this
round can only get the global model that he participated in the
model aggregation last time. If a node has never participated
in federated learning training, only the initial model can be
obtained.

E. Security Analysis

1) Access control security: Adversary model. Adversary
is a smart factory that does not have relevant training data
but wants access control of the main-chain to get the latest
anomaly detection model. Access control is divided into two
parts: side-chain access control and main-chain access control.

Side-chain access control: Smart factories can only send ac-
cess control requests to the side-chain through smart contracts,
and the GID in the request is one-to-one corresponding to the
localmodel, and only the localmodel that satisfies a certain
accuracy rate can access the side-chain. If an adversary uses
its own GID to make an access control request, it needs the

relevant data to train the model and get a qualified localmodel.
This is not consistent with our hypothesis assume.

Main-chain access control: If the opponent does not pass the
side-chain access control, he cannot forge the signature, and
therefore cannot get the main-chain access control permission.

2) Blockchain fork: According to the PoA consensus de-
signed in this paper, aggregation nodes are selected from the
nodes participating in training to aggregate the local model and
generate the main-chain block. The nodes generating blocks
in each round are fixed, so there will be no bifurcation.

F. Incentive Mechanism
Existing blockchain-based federated learning schemes as-

sume that every client is willing to actively participate in
model training, but this does not necessarily hold true in an
IIoT environment, so these schemes need to provide certain
incentives for eventual implementation. This paper does not
use token as incentive like other literatures [23], but to obtain
the latest global model as incentive. In essence, the scheme
in this paper extends the data quantity and labels of the
federated learning algorithm, and only the nodes participating
in training can obtain the access permission of the main-chain,
and then participate in training to obtain the latest model,
and update their own model parameters after obtaining the
latest model. The trained global anomaly detection model has
higher accuracy, which motivates smart factories to participate
in the federated learning training. In this paper, the side-chain
is jointly stored by all nodes. In the case that not every node
take part in every round of the process of training, each block
of the main-chain is stored by some nodes, but the block stored
by all nodes can still be combined to obtain a complete main-
chain.

IV. PERFORMANCE EVALUATION AND DISCUSSION

The simulation tool of this paper adopts python3.7, ten-
sorflow2.0, the CPU is Intel(R) Xeon(R) Silver 4210R CPU
@ 2.40GHz, GPU is NVIDIA GeForce RTX 3060, and
the dataset is Skoltech anomaly benchmark (SKAB) dataset
[30]. SKAB is an anomaly benchmark designed to evaluate
anomaly detection algorithms. SKAB designs for evaluating
the anomaly detection algorithms. SKAB allows working with
two main problems (there are two markups for anomalies):
1. Outlier detection (anomalies considered and marked up as
single-point anomalies). 2. Changepoint detection (anomalies
considered and marked up as collective anomalies). And the
experimental data in SKAB has two markups for anomalies,
so two kinds of problems can be handled.

1) When anomalies are detected, it is marked as single-point
anomalies.

2) When anomalies are detected, it is marked as collective
anomalies.

The first is outlier detection and the second is change-point
detection. The data properties in both tests are shown in
Table I.

Our global model adopts logistic regression model, with the
learning rate set as 0.02, epoch set as 100 and batch size set
as 200.
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TABLE I
PROPERTIES FOR SKAB DATASET.

Properties Description
datetime Identifies the date and time when the value was written

to the database (Unit: YYYY-MM-DD hh:mm:ss)
Accelerometer1RMS Represents the vibration acceleration (Unit: g)
Accelerometer2RMS Represents the vibration acceleration (Unit: g)
Current Represents the amperage on the electric motor (Unit:

Ampere)
Pressure Represents the pressure in the loop after the water

pump (Unit: Bar)
Temperature Represents the temperature of the engine body (Unit:

The degree Celsius)
Thermocouple Shows the temperature of the fluid in the circulation

loop (Unit: The degree Celsius)
Voltage Represents the voltage on the electric motor (Unit:

Volt)
RateRMS Shows the circulation flow rate of the fluid inside the

loop (Unit: Liter per minute)
anomaly 0 represents the point is failure-free, 1 represents the

point is anomalous
changepoint 0 represents the point is an outlier for single-point

anomalies, 1 represents the point is a changepoint for
collective anomalies

(a)

(b)

Fig. 2. Model accuracy and loss with σ2S2 = 0.1.

a. We set the local Gaussian noise added by the four clients
as N (0, 0.1) and the size of the sliding window as 3. After
that, Fed Avg and Fed Acc algorithms were respectively used
to conduct federation learning training to obtain the simulation

(a)

(b)

Fig. 3. Model accuracy and loss with σ2S2 = 0.3.

diagram as shown in Fig.2 It can be seen that in the case of
low noise, the training process of all nodes is not affected
much, the rising trend of accuracy and the declining trend of
loss are relatively smooth, and eventually convergence will be
successful.

b. We set the local Gaussian noise added by client1 and
client2 as N (0, 0.3), and then conduct federation learning
training with Fed Avg and Fed Acc algorithms respectively
to obtain simulation diagrams as shown in Figs. 3(a) and 3(b).

As can be seen from Fig.3, when the Gaussian noise added
by the user is very high, the accuracy of the two algorithms
tends to decline in the late training iteration due to the high
noise. The accuracy of the global model of Fed Avg algorithm
will decrease significantly and the loss will increase quickly.
In contrast, our Fed Acc scheme can resist the influence of
user noise on the global model to a certain extent. Even if the
user adds large noise to protect privacy, the accuracy of the
global model is higher than that of Fed Avg.

c. In the case of evil nodes, we add Gaussian noise of
N (0, 0.8) to client1 in the 20th iteration. The simulation
results are shown in Figs. 4(a) and 4(b).

It can be seen from Figs. 4(a) and 4(b) that in the case
of malicious nodes, the accuracy of Fed Avg algorithm will
decline sharply, eventually converging around 0.64, and the
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(a)

(b)

Fig. 4. (a) is the Comparison of algorithm accuracy in case of evil node and
(b) is the loss comparison in case of evil node.

loss will also reach a very high value, and finally reach a flat
value around 0.65. Compared with Fed Avg, the global model
obtained by Fed Acc has higher accuracy and lower loss, so
Fed Acc has better ability to resist model poisoning attacks.

d. We try to use different models such as BP neural network
for federated learning training. Figs. 5(a) and 5(b) respectively
show the training results of BP neural network. The BP neural
network is a four-layer neural network. The first layer consists
of 8 units corresponding to the 8 features. Then, there are
two hidden layers that both have 200 units. The output layer
is a Softmax function to classify normal data and abnormal
data. Note that the hidden layers apply ReLu function as the
activation function.

The learning rate is set to 0.02.It can be seen that compared
with LR model, the fluctuation of BP neural network is larger,
but it can also converge at last. We can choose different
training models in different IIoT environments. Under the SKB
dataset in this paper, it is obvious that LR model has better
effect.

Next, we conducted experiments on the influence of sliding
window size on training results. Fig. 6(a) is the simulation
result of LR model and Fig. 6(b) is the simulation result of
BP neural network.

(a)

(b)

Fig. 5. Model accuracy and loss with σ2S2 = 0.3 use BP neural network.

As can be seen from Fig. 6(a), all the accuracy after sliding
window is added are higher than the one without sliding
window, and d = 0 is equivalent to no sliding window. Among
all the results, the model accuracy obtained by training is the
highest when d = 20. Therefore, with the increase of the
sliding window size, the model accuracy increases first and
then decreases, which is also the same as our previous analysis.
The window size should not be too big or too small.

A similar conclusion can be drawn from Fig. 6(b). In
Fig. 6(b), the accuracy of BP neural network still fluctuates
greatly, but the accuracy of different window sizes is similar
to that of Fig. 6(a), and the highest accuracy is still obtained
when d = 20.

V. CONCLUSION

This paper studies the IIoT device anomaly detection system
based on blockchain and federated learning. It makes inno-
vations in the federated learning training process, consensus
algorithm and incentive mechanism, and improves the accu-
racy of the federated learning algorithm while considering the
privacy of user nodes. The solution in this paper relies on
the selection of global public dataset, so the system should
update the public dataset frequently, preferably with multiple
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(a)

(b)

Fig. 6. Model accuracy and loss with different size of sliding window. (a) is
the variation of LR model accuracy with the size of sliding window; (b) is
the variation of BP model with the size of sliding window.

anomaly so that the global model can better withstand model
poisoning attacks. How to choose the test dataset to improve
the performance of the global model is beyond the scope of
this paper, and it is our future research direction. At the same
time, blockchain-based systems inevitably face problems such
as high delay and poor scalability. In the future, we will study
blockchain sharding and other technologies to improve the
efficiency of system operation. In this paper, we only consider
the updated anomaly detection global model as the incentive.
In the future, we will study how to provide effective economic
incentives to encourage smart factories to actively participate
in the federated learning training.
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