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Network Resource Allocation Method based on
Blockchain and Federated Learning in IoT

Hui Zhi and Yaning Wang

Abstract——Virtual network embedding (VNE) is an effective
approach to solve the resource allocation problem in IoT net-
works. But most existing VNE methods are centralized methods,
they not only impose an excessive burden on the central server
but also result in significant communication overhead. Therefore,
this paper proposes a distributed resource allocation method
based on federated learning (DRAM-FL) to alleviate the comput-
ing and communication overhead, and improve network resource
utilization. When utilizing DRAM-FL, it is essential to address
the security challenges arising from the unreliable nature of IoT
devices. So, we introduce blockchain into DRAM-FL, and propose
a distributed resource allocation method based on blockchain and
federated learning (DRAM-BFL). In DRAM-BFL, a dual-chain
structure is designed to facilitate reliable information exchange
among nodes, a node reliability assessment method and EPBFT-
NRA consensus algorithm are proposed to improve the security of
VNE. Simulation results demonstrate that, compared with other
methods, DRAM-BFL can increase the VN acceptance rate and
long-term average revenue-to-expenditure ratio while improving
system security. In addition, DRAM-BFL exhibits good scalabil-
ity, and has superior throughput and delay performance in IoT
with malicious nodes.

Index Terms—Blockchain, federated learning, Internet of
things, resource allocation, virtual network embedding.

I. INTRODUCTION

IN the Internet of things (IoT), terminal devices can form
networks through self-organization, thus achieving inter-

connectivity and communication. Today, IoT can be applied in
many fields, such as healthcare, retail, industry, transportation,
utility, and communication [1]. By 2030, the number of
IoT devices in the world will reach 29.4 billion [2], which
will be large scale IoTs. With the increase of the number
of devices, the application data generated will also increase
exponentially [3]. However, the larger scale the IoT, the greater
pressure the data communication and resource requirement
at terminals [4]. Unfortunately, terminal devices, such as
smart sensors, smartphones, and other intelligent electronic
devices [5]–[7], often have limited network resources, which
poses a huge challenge to IoT’s network resource allocation.
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Moreover, most existing network resource allocation methods
are fixed and insufficient to support diverse application require-
ments. Therefore, how to improve the resource utilization of
terminals while meeting diverse application requirements is
a key problem in IoT’s network resource allocation. Virtual
network embedding (VNE) is an effective way to solve this
problem [13]. Under the constraints of resource and QoS
requirements, VNE can abstract different IoT application re-
quirements into virtual networks (VNs), and then map them
to the physical network (PN) according to network resources.
This approach can eliminate the resource allocation limitations
of the underlying physical network, solving the problems of
limited terminal resources and diverse application require-
ments [8]. So, in this paper, we also use VNE to realize
the network resource allocation for diverse IoT application
requirements.

Existing VNE resource allocation methods are all central-
ized methods. That’s to say, network resource information
and IoT application requirements are uploaded to the central
server, and then the central server makes resource alloca-
tion decisions, such as heuristics algorithm [9], ant colony
system (ACS) [10], Q-learning [11], reinforcement learn-
ing (RL) [12], deep reinforcement learning (DRL) [13], Graph
convolutional networks (GCN) [14], etc. These centralized
methods [9]–[14] are suitable for small networks with a small
number of terminals and simple topology. For large-scale IoT
networks, these centralized methods [9]–[14] will lead to high
communication and computing costs for the system. That’s
to say, the large-scale IoT VNE problem needs a distributed
approach to solve. Distributed federated learning (FL) can be
used to solve this problem. So, in this paper, we propose
a distributed resource allocation method based on federated
learning (DRAM-FL) to reduce the computing and communi-
cation cost, simplify the network complexity, and improve the
network resource utilization.

Since IoT terminals are mostly low-cost devices with poor
reliability, it is essential to consider the reliability of IoT ter-
minals when using DRAM-FL, and avoid information security
issues such as data tampering and malicious node attacks.
In this regard, blockchain can establish reliable information
interaction between untrusted nodes, and solve the information
security problem in distributed system [15]. Therefore, we
introduce blockchain into DRAM-FL and propose a distributed
resource allocation method based on blockchain and federated
learning (DRAM-BFL) to improve information security. As
far as we know, it is the first attempt to combine blockchain
and FL with VNE to solve the resource allocation problem in
IoT.
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The main contributions of this paper are as follows:
1) A DRAM-BFL is proposed. Firstly, we transform the

resource allocation problem into a VNE problem, and
proposes a DRAM-FL to solve it. This method enables
local networks to collect information, learn the dynamics
of the network and make optimal VNE decisions through
their respective local training nodes. It can improve
VN acceptance rate and long-term average revenue-to-
expenditure ratio, reduce the complexity of IoT network
topology, and reduce the computational and communi-
cation costs.

2) We introduce blockchain into DRAM-FL and propose
DRAM-BFL. A blockchain structure with dual chains
is designed, which contains topology chain and model
chain. The topology chain is used for secure sharing of
network topology information, and the model chain is
used for secure sharing of model information in FL. The
dual chains can realize protection and access control of
on-chain data, reduce the hidden risk of data leakage,
and realize decentralized FL.

3) In DRAM-BFL, a node reliability assessment method
is proposed and the reliability of physical nodes is
measured through evaluating their performance. During
the node mapping stage, VNE decisions can be made
based on the results of node reliability assessment, this
can effectively avoid attacks from malicious nodes.

4) In order to further improve the security of DRAM-
BFL, we design the enhanced practical Byzantine fault
tolerant consensus algorithm based on node reliability
assessment (EPBFT-NRA). And the consensus nodes are
dynamically updated to ensure the fairness of nodes and
improve the security of consensus process.

II. RELATED WORK

A. Virtual Network Embedding (VNE) Algorithms

The VNE problem has been proven to be NP-hard [16],
so most of the traditional VNE methods are heuristics algo-
rithms [17]–[20] that rely on manual rules to make embedding
decisions. Initially, these heuristics algorithms were used in
single-domain scenarios. However, with the diverse application
of the IoT, such as medical services, retail, industry, transporta-
tion, etc., there may be multiple network service requirements
for the same physical network. Each requirement has different
transmission performance requirements. So, researchers began
to study multi-domain heuristic algorithms [21]. These multi-
domain heuristic algorithms are centralized methods and make
decisions by a third party [22]. Furthermore, heuristic algo-
rithms need follow fixed rules to get embedding decisions.
They cannot adaptive optimize according to the changes of
the physical network, they can easily fall into local optimum
and often get suboptimal solutions.

B. Machine Learning based Virtual Network Embedding Al-
gorithms

Large-scale IoT network and fragmented resources bring
great challenges to the traditional VNE algorithms. Many

researchers turn their attention to the machine learning (ML)
methods. Unlike heuristic algorithms, ML can effectively
avoid falling into local optimization. For example, [23] models
the problem of resource allocation under DDOS as Bayesian Q
learning game, and a greedy Q learning algorithm is proposed
to solve it. [24] combines deep Q-network and Monte Carlo
method to achieve fast convergence of VNE decision. [25]
combines Monte Carlo tree searching and RL neural network
to solve the VNE problem. [26] uses RL to solve VNE problem
and abstracts node mapping into the Markov decision-making
process (MDP), which requires large computing costs and has
low time efficiency. In [27], RL is used in VNE, where policy
gradients are used to train policy networks. In [28], RL and
policy networks are used in the node mapping phase, and
bandwidth resource sequencing is used in link mapping phase.
With the objective of maximizing the number of embedded
VNs, deep reinforcement learning (DRL) is applied to VNE
in [29], which combines deep learning (DL) and RL to
enhance the success rate. In [30], a VNE algorithm based
on RL security perception is proposed. In [31], a multi-stage
VNE prediction model based on RL is proposed for cloud data
centers to determine suitable physical resources and optimize
the resource utilization.

In summary, all these heuristic algorithms [17]–[22] and ML
algorithms [23]–[31] are all centralized algorithms. The local
training data needs to be uploaded to a central server to make
resource allocation decisions, resulting in large computing
costs and communication costs in large-scale IoT. Therefore,
in this paper, we adopt distributed FL, which is different
from traditional centralized training methods. FL can reduce
the network topology complexity in IoT, greatly minimize
communication and computing costs while improving the
scalability of VNE.

C. Security-aware Virtual Network Embedding Algorithms

Considering the complex network environment of IoT, the
security of the VNE process is also crucial. Distributed FL
algorithms face security challenges such as malicious node
attacks and data tampering. Some approaches are proposed to
address the security of VNE. For example, [31] establishes
security levels for VNs, but does not consider the security
of physical nodes and the underlying physical network. Ref-
erences [29] and [32] incorporate constraints on reputation
or security level of physical nodes into the node importance
ranking process. All the methods in [29], [31], [32] are
designed for centralized VNE algorithms and rely on man-
ually formulated node reliability assessment, which may not
accurately reflect the actual network node situation and cannot
ensure the security of VNE decisions.

As a result, some researchers begin to study improvements
or new solutions to solve the security problems of today’s
IoT. Blockchain technology is a relatively new solution. Some
researches integrate block chain into the frame of FL in
IoT scenarios, build trust between devices, realize privacy
preserving and model sharing in FL, effectively prevent the FL
single point failure and malicious attacks. For example, [33]
jointly considers channel assignment, block size adjustment
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TABLE I
SYMBOLS AND VARIABLES.

Noatation Description

CPU(nV
l ) The computing resource demand of nV

l

BW (lVlk) The bandwidth resource demand of lVlk
V ac VN acceptance rate

R(GV , t) The long-term revenue of embedding GV

R(GV ) The long-term average revenue

C(GV , t) The long-term expenditure of embedding GV

C(GV ) The long-term average expenditure

RC The long-term average revenue-to-expenditure ratio

ωi
t The global model parameter of tth round aggregation

∆t The local model parameter of tth round training

St The set of local training nodes in global update

k The processing speed of consensus nodes

Tarrive The delay for VN to reach the processing stage

Tcon(t) The delay of consensus process

Tup(t) The delay of the node update process

Tbc(t) The average delay of the blockchain system

SN
S
i The reliability assessment value of node NS

i

and block producer selection to reduce the energy consumption
and improve the security of FL. [34] proposes an IoT resource
management framework combining blockchain and FL, which
uses support vector machine (SVM) classifier to improve
the accuracy of detecting malicious nodes. [35] addresses
the privacy risks of gradient inversion attacks by building a
self-aggregating privacy-protecting FL model at the top of
the blockchain. [36] proposes a Byzantine robust federated
learning framework to realize privacy preserving. However,
all the studies in [33]–[36] focus on the effective and secure
resource management of FL, uses blockchain to realize privacy
preserving, model sharing or preventing malicious attacks in
FL. All the studies in [33]–[36] did not consider how to
effectively utilize IoT’s network resources to meet different
application requirements, not only the FL resource require-
ment. VNE model is an effective means to realize IoT resource
management to meet different application requirements. So, in
this paper, we first propose a VNE model in IoT, and then use
FL and blockchain to improve the efficiency and safety of
VNE, the proposed VNE model can meet more application
needs, including FL.

At present, there is a lack of researches on the security
of distributed VNE algorithms. Therefore, in this paper, we
intend to incorporate blockchain into distributed VNE resource
allocation and propose a dual-chain structure (topology chain
and model chain) to improve the security of the VNE process.
Simulation results also show that the proposed DRAM-BFL
can achieve more secure and efficient IoT resource allocation
when compared with the traditional VNE method.

In addition, the symbols and variables mentioned in the
paper are given in Table 1.

III. SYSTEM MODEL FOR NETWORK RESOURCE
ALLOCATION

A. VNE Model and VNE Problem

For the convenience of analysis, we divide IoT nodes into
two types: Base stations (BSs) and general devices. BSs are the
nodes that usually have high computing power, large storage
space, and fixed location. General devices are terminal devices
that usually have low computing power, small storage space,
and mobile location. When a virtual network (VN) application
requirement arrives, IoT needs to adopt appropriate resource
allocation method based on the current network status to meet
the application requirement of VN. Once the VN requirement
is successfully embedded (mapped), the resources within IoT
will be consumed until the end of VN application. In this
context, we define the underlying physical network as PNs,
refer to application requirements as VNs. As a result, we
can transform the network resource allocation problem into
a multi-domain VNE problem.

1) Physical network: The physical network
is represented as an undirected weighted graph:
GS = (NodeS , LinkS , PathS , FuncS). There are Q
physical nodes in the physical network, and these physical
nodes are recorded as nS

1 , · · ·, nS
Q. NodeS represents

the set of all physical nodes in the physical network,
NodeS =

{
nS
1 , · · ·, nS

Q

}
. The physical link from nS

i

to nS
j is denoted as lSij , the set of all physical links is

LinkS =
{
lSij , i, j ∈ {1, 2, · · ·, Q} , i ̸= j

}
. PathS represents

the set of all physical paths in this physical network. A
physical path contains one or more physical links, the latter
situation belongs to path splitting. In the VNE, the resource
attributes of the physical node nS

i include CPU resources
CPU(nS

i ) and node reliability assessment NES(nS
i ). The

resource attribute of the physical link lSij is the available
bandwidth resource Bw(lSij). FuncS epresents the set of
functional attributes for the physical network, which includes
node location Loc(nS

i ) of all physical nodes.
2) Virtual network: Each application requirement is defined

as a VN. Then VNE is used to allocate network resources. A
virtual network is described as an undirected weighted graph:
GV = (NodeV , LinkV , FuncV ). There are R virtual nodes
in the virtual network denoted as nV

1 ,...,n
V
R . NodeV is the

set of all virtual nodes, that is NodeV =
{
nV
1 , · · ·, nV

R

}
.

The virtual link from nV
l to nV

k is denoted as lVlk. LinkV

represents the set of all virtual links in the virtual network, that
is LinkV =

{
lVlk, l, k ∈ {1, 2, · · ·, R} , l ̸= k

}
. In the VNE,

the resource attribute of a virtual node nV
l is the node CPU

resource CPU(nV
l ). The resource attribute of the virtual link

lVlk is available bandwidth Bw(lVlk). FuncV represents the
set of functional attributes for the virtual network, which
includes node location Loc(nV

l ) and maximum location de-
viation MaxLocDev(nV

l ) of all virtual nodes.
3) Multi-domain VNE model: Fig. 1 shows the multi-

domain VNE model in IoT, the process of VNE can be
represented as GV → GS . As shown in Fig. 1, a virtual node
can only be mapped to one physical node, different virtual
nodes of the same VN must be mapped to different physical
nodes, virtual nodes of different VNs can be mapped to the
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Fig. 1. Multi-domain VNE model in IoT.

same physical node. Furthermore, a virtual link can be mapped
into a physical path, which contains one or more physical
links.

B. VNE Evaluation Index

1) VN acceptance rate: VN acceptance rate, also known as
VN success rate, is one of the important indexes to evaluate the
performance of VNE algorithms. VN acceptance rate means
the ratio of the number of VNs successful embedding to the
total number of VNs in the time T .

V ac =
AcceptedTV N

TotalTV N

, (1)

where AcceptedTV N indicates the number of VNs successfully
accepted by the physical network from time 0 to T . TotalTV N

indicates the total number of VNs received by the physical
network from time 0 to T . The VN acceptance rate reflects
resource utilization, and the higher the VN acceptance rate,
the more the resources utilization of the physical network.

2) Long-term average revenue: The revenue of embedding
GV means the revenue obtained by the underlying physical
network through renting out resources after GV is successfully
embedded. It is calculated as follows.

R(GV , t) =
∑

nV
l ∈NodeV

CPU(nV
l ) +

∑
lVlk∈LinkV

BW (lVlk), (2)

where CPU(nV
l ) represents the computing resource demand

of the virtual node nV
l , BW (lVlk) represents the bandwidth

resource demand of the virtual link lVlk. Their revenue weights
are determined by the network service provider, and are
uniformly set to 1 in this paper to simplify analysis.

That’s to say, the revenue of underlying physical network
for embedding GV is determined by the sum of the CPU
resources consumed and the bandwidth resources consumed
of embedding GV during the given duration time t.

Then, the long-term average revenue can be defined as:

R(GV ) = lim
T→∞

T∑
t=0

R(GV , t)

T
. (3)

R(GV ) measures the average value of the revenue obtained
by the underlying physical network in time T , which rep-
resents the ability of the network service provider to obtain
revenue.

3) Long-term average revenue-to-expenditure ratio: The
long-term revenue-to-expenditure ratio reflects the utilization
of underlying resources. If the ratio is high, it indicates that
the utilization rate of the underlying resources is high and the
number of VNs successfully accepted is large.

The long-term expenditure is defined as

C(GV , t) =
∑

nV
l ∈NodeV

CPU(nV
l )

+
∑

lVlk∈LinkV ,pS
ij∈PathS

Num(pSij)BW (lVlk),
(4)

where CPU(nV
l ) represents the amount of physical node

computing resource occupied by the virtual node nV
l , BW (lVlk)

represents the amount of physical path bandwidth resource
occupied by the virtual link lVlk.

In the link embedding in (4), a virtual link lVlk is mapped into
a physical path pSij , which consists of one or more physical
links. Num(pSij) denotes the number of physical links on the
physical path pSij .

The long-term average expenditure is calculated as

C(GV ) = lim
T→∞

T∑
t=0

C(GV , t)

T
. (5)

Therefore, the long-term average revenue-to-expenditure
ratio of VNE is defined as

RC =
R(GV )

C(GV )
. (6)

RC measures the ratio of the average revenue and the av-
erage resource consumed expenditure of the physical network
for embedding GV during time T . RC is an index used to
measure the resource utilization efficiency of the underlying
physical network. The higher the RC, the higher the resource
utilization efficiency of the network.

IV. DRAM-FL

A. Network Resource Allocation Problem

The goal of the network resource allocation is to find
optimal mapping decision F (nV

l → nS
i , L

V
lk → PS

ij) (i.e.,
embedding decision) to maximize the sum of VN acceptance
rate and revenue-to-expenditure ratio under the constraints
of resources, function and reliability. Therefore, the network
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Fig. 2. System model of DRAM-FL.

resource allocation problem can be described as the VNE
optimization problem P1.

P1 : arg
F (nV

l →nS
i ,LV

lk→PS
ij)

max(V ac+RC)

s. t.C1 : CPU(nS
i ) ≥ CPU(nV

l )
C2 : Bw(lSij) ≥ Bw(lVlk), l

S
ij ∈ pSij

C3 : Distance(Loc(nS
i ), Loc(n

V
l )) ≤MaxLocDev(nV

l )
C4 : φ(nV

l → nS
i ) = 1,

∀nV
l ∈ NodeV , nS

i ∈ NodeS , nS
i /∈ FN

C5 : φ(lVlk → lSij) ≥ 1,
∀lVlk ∈ LinkV , lSij ∈ LinkS

(7)
Specifically, VNs cannot be indefinitely mapped to the phys-

ical network due to the limited resources. Conditions C1 and
C2 are resource constraints, which ensure that the available
resources of the underlying network nodes and links meet the
resource requirements of the virtual nodes and virtual links.
C3 means the range of VNE cannot exceed the maximum
position deviation, it is a functional constraint to avoid long-
distance transmission. C4 means that a virtual node of the
same VN can only be mapped in one physical node, where the
set of malicious physical nodes FN is excluded. C5 indicates
that a virtual link can be mapped into one or more physical
links, the latter case refers to path splitting.

B. System Model of DRAM-FL

As shown in Fig. 2, we integrate FL into VNE problem,
and propose the DRAM-FL to solve the VNE problem. We
divide IoT into multiple local networks based to geographical
location, select a capable node as the local training node in
each local network for FL. The local training node collect
real-time topology information, such as physical location, CPU
resources, link strength, node connectivity, and node reliability
assessment, etc.

C. Workflow of DRAM-FL

Assume IoT network is divided into I local networks,
which are denoted as GS

1 , · · ·, GS
i , · · ·, GS

I respectively, and the
dataset size of local network GS

i is denoted as Di. When the
local training node receives the VN request, it downloads the
pre-trained model and starts online learning. The local training

Algorithm 1: Workflow of DRAM-FL
Input: Local training nodes I , local mini batches B,

epochs E,
learning rate η, T , i = 1, 2, · · ·, I
Procedure: Local training
1: for l = 1→ E do
2: for b ∈ B do
3: ωi

t = ωt−1 − η∇Fi(ωt−1)
4: ∆i

t = ωi
t − ωt−1

5: end for
6: Local model parameters ∆i

t are uploaded to the
central sever

7: end for
Procedure: Checking local model
8: evaluate ωi

t (Obtain partial local network
information through the local dataset ∈ Di)

9: return St

Procedure: Checking inner product
10: ∇F (ωi

t
) = −∆i

t
/
η

11: ∇F (ωt) =
1

|St|
∑
i∈St

∇Fi(ωt)

12: for j = 1, · · ·, \ |{{S_t}}\| do
13: if j = 1, · · ·, |St|
14: S̄t ← St.pop(St[j])
15: end for
16: return S̄t

Procedure: Global Model Aggregation
17: Initializes ω0;
18: for t = 1, 2, · · ·, T do
19: ∆t =

1

|S̄t|
∑
i∈S̄t

∆i
t

20: ωt = ωt−1 +∆t

21: end for
22: return ωt

node takes the collected local network topology information
as the model input and makes VNE decisions as the model
output. Local training nodes perform mixed pattern training,
that is to say, each local training node will wait for the
completion of other training nodes. However, this algorithm
has a timeout setting, if it times out, it discards incomplete
training node.

For the local training model of VNE, we refer to the neural
network model in [37]. Its input is the feature matrix composed
of CPU, bandwidth, and node reliability assessment value. The
neural network model structure can be divided into four layers:

1) Input layer: it is used to input the feature matrix that
contains local network topology information.

2) Convolution layer: it evaluates the resource character-
istics of each feature vector in the feature matrix by
convolution operation on the extracted feature matrix,
and obtains the residual resource vector of each node.

3) Probability layer: the softmax function is used to nor-
malize the gradient logarithm of the discrete probability
distribution of the residual resource vector to obtain the
corresponding embedding probability of each physical
node.
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Fig. 3. System model of DRAM-BFL.

4) Filter layer: it filters out physical nodes with insufficient
resources and low reliability, and outputs a set of possi-
ble embedding physical nodes for each virtual node and
their corresponding embedding probabilities.

The workflow of DRAM-FL is described in Algorithm 1.
In DRAM-FL, FedAvg is used for global model aggregation,

its objective function is

min
Di

D

∑I

i=1
∆i

t. (8)

But FedAvg here uses a different local training node selec-
tion method when compared to traditional methods. According
to [38], we choose the node probability selection scheme, so
that the central server can dynamically adjust the probability
of each node being selected in each round of aggregation
according to the most aggregation results, and accelerate the
convergence of the model. We need to check the inner product
of local gradient and global gradient for all local training nodes
to ensure model convergence. If ⟨∇F (ωt),∇Fi(ωt)⟩ < 0,
the convergence speed of the global model will slow down.
Therefore, in this paper, we exclude local training nodes that
are not conducive to global update, and the remaining set of
local training nodes participating in global update is St.

V. DRAM-BFL

Since IoT terminals have poor reliability, it is essen-
tial to consider the reliability of IoT terminals when using
DRAM-FL. In order to promote the security sharing of net-
work information between nodes, and prevent data tampering
and malicious node attacking, we introduce blockchain into
DRAM-FL, and propose DRAM-BFL. Additionally, we design
a node reliability assessment method to mitigate the risk of
malicious node attacking.

A. System Model and Problem Description of DRAM-BFL

In Fig. 3, DRAM-BFL contains a local training layer and a
central consensus layer. The local training layer is consistent
with the model in Fig. 2. In the central consensus layer, the

consensus nodes are selected through the node reliability as-
sessment method (Section V.D). We choose the top n BSs with
the highest node reliability as the central consensus layer. This
layer implements a distributed blockchain, where consensus
nodes can trade and securely share model information and
network topology information with other nodes. The central
consensus layer verifies the training results of each local
training node by collecting the topology information and local
model parameters.

Through introducing blockchain, problem is changed into
problem P2 with adding security constraint C6. Detailed
analysis of (17) is given in Section V.C.

P2 : arg
F (nV

l →nS
i ,LV

lk→PS
ij)

max(V ac+RC)

s. t.C1 : CPU(nS
i ) ≥ CPU(nV

l )
C2 : Bw(lSij) ≥ Bw(lVlk), l

S
ij ∈ pSij

C3 : Distance(Loc(nS
i ), Loc(n

V
l )) ≤MaxLocDev(nV

l )
C4 : φ(nV

l → nS
i ) = 1,

∀nV
l ∈ NodeV , nS

i ∈ NodeS , nS
i /∈ FN

C5 : φ(lVlk → lSij) ≥ 1,
∀lVlk ∈ LinkV , lSij ∈ LinkS

C6 : (17)
(9)

B. Workflow of DRAM-BFL
The workflow of DRAM-BFL is shown in Fig. 4. Based

on the node assessment method described in Section V.D, we
select a base station with high reliability as the local training
node to ensure the security of FL. we adopt the Parameter
Server architecture and the FL with asynchronous pattern. The
detailed descriptions of Fig. 4 are as follows:

<1> Explore environment. Each local training node explores
the environment of its own local network and obtains its
topology information separately.

<2> Upload information. The topology information ob-
tained by the local training node is uploaded to the central
consensus layer.

<3> Chain up. In the central consensus layer, the topology
information is packaged into blocks and uploaded to the
topology chain.

<4> Local training. When the local training node receives
the VN requirements, it downloads the pre-trained model and
starts online training, and feeds the training results (local
model) back to the central consensus layer.

<5> Verify. The local training node upload trained local
model to the central consensus layer. After receiving the local
model, the central consensus layer first obtains the topology
information from the topology chain to verify the local model,
and then adds the verification results to the topology chain. The
validation results are also used as part of the node reliability
assessment.

<6> Model aggregation. The global model is obtained
through the aggregation of local training models.

<7> Chain up. The global model is packaged into blocks
and uploaded to the model chain.

<8> Model update. Each local training node obtains the
latest global model from the model chain, then it starts a new
round of training for its own local model.
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Fig. 4. The workflow of DRAM-BFL.

C. Dual Chain Structure

We introduce blockchain into VNE, design a dual chain
structure that contains topology chain and the model chain.

1) Topology chain: The topology chain is a public chain
that used to store the local network topology informa-
tion. Local training nodes are served as light nodes in
topology chain, they collect network topology informa-
tion from neighboring nodes, save it, are then upload it
to the central consensus layer. The network topology
information includes the physical location of nodes,
CPU resources, link strength, node connectivity, and
node reliability. After the consensus process, the central
consensus layer packages this information into a block,
adds it to the topology chain. The topology chain has a
high degree of security and transparency, all information
including node reliability is publicly recorded and all
nodes can access this information. In the VNE process,
network topology information stored in the topology
chain can effectively improve security and play a key
role in subsequent model verification.

2) Model chain: After completing local model training,
the local training node uploads the local training model
information to the central consensus layer. The central
consensus node aggregates these models, packages the
latest global aggregated model information into a block,
and adds the new block to the model chain through the

consensus process. So, the model chain has high privacy
and controllability, and can be used to save the sensitive
data of model parameters. Then, the local training node
can directly obtain the latest global training model in-
formation from the model chain, this method can reduce
direct information interaction between the local training
layer and the central consensus layer and improve the se-
curity of the model update process. Additionally, before
model aggregation, the central consensus layer verifies
local training model, and the validation result is one of
the main parameters of reliability evaluating for local
training nodes.

The dual-chain structure is a multichain blockchain, two
chains store different data content, and the two chains coop-
erate with each other to complete VNE tasks. Topology chain
is a public chain used to store and verify open information,
ensuring security and consistency across of the network.
Model chain is an alliance chain used to deal with sensitive
data and private transactions. Such structure can strike a
balance between protecting privacy and maintaining trans-
parency while meeting the needs of different organizations
interoperate operations, and providing a secure and reliable
way for multiple organizations to share data. What’s more, the
dual-chain structure facilitates the queries of VNE processes.
The workflow of DRAM-BFL can be written into a smart
contract that can act automatically.
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Fig. 5. Consensus process for EPBFT-NRA.

1) EPBFT-NRA: Considering the consensus security, we
design the enhanced practical Byzantine fault tolerant (PBFT)
consensus based on node reliability assessment. The EBPFT-
NRA integrates reliability assessment and consensus node
dynamic update, and PBFT. Initially, the node with the highest
reliability assessment value is selected as primary node, the top
n central consensus nodes with the highest node reliability
value are selected as consensus node (replica node). After
every M round of consensus process, EPBFT-NRA performs
a consensus node updating process to ensure the fairness of
nodes and the security of consensus process.

EPBFT-NRA is based on PBFT protocol. If we assume that
the total number of consensus nodes in the system is N,and
there are f malicious nodes. For PBFT, only when N ≥ 3f+1,
the security of the system can be guaranteed. The blockchain
structure stores the information of the latest VNE process, and
begins a new consensus process after completing a new VNE.

The Consensus process of EPBFT-NRA is shown in Fig. 5.
The detailed descriptions are as follows.

1. Arrive: When a VNE arrives, the local training node sends
its information to the nearest consensus node i.

2. Generate: The node with the highest reliability value is
selected as primary node. After receiving the information from
the local training node, the consensus node i packages this
information and forwards it to the primary node.

3. Propagate: After the primary node receives messages
from other consensus nodes, it packages all the messages
and generates a block, then sends this new block to other
replica nodes. After the primary node verifies the MAC, the
three-phase broadcast protocol of PBFT starts, which are pre-
prepare, prepare, and commit.

4. Pre-prepare: The primary node sends the pre-prepare
message to all replica nodes. Each replica node accepts the
pre-prepare message and enters the prepare phase.

5. Prepare: When replica nodes enter the prepare stage,
each replica node sends a prepare message to all other replica
nodes. After receiving the new block information, each replica
node validates the information. For a replica, if it receives
information from 2f different replicas are consistent with the
pre-prepare message, that is, with 2f + 1 confirmations, the

Fig. 6. Consensus node updating process in EPBFT-NRA.

replica node is prepared. After all replica nodes are prepared,
the consensus enters commit phase.

6. Commit: Each replica node broadcasts a commit message
to all other replica nodes. If 2f+1 commit messages (including
the message of itself) are correct, the replica node enters the
committed state. After all replica nodes enter the committed
state, the consensus process is completed, the new block is
added to the blockchain.

The consensus node update process is shown in Fig. 6. The
detailed descriptions are as follows.

1. Start: After M rounds of consensus process, the primary
node will start the dynamic update process and send the
start information to other replica nodes. In order to select
new n replica nodes and new primary node, a reliability
value threshold is calculated according to new node reliability
values, and the start information includes this threshold value.

2. Exchange: After replica nodes receiving the start informa-
tion from primary node, each replica node determines whether
its reliability value is greater than the threshold value, if it is
greater than the threshold, the replica node sends the update
information to other replica nodes. If a replica node receives
the information that from other 2f + 1 replica node, it enters
the recruitment phase. The replica nodes with reliability values
less than the threshold will be removed from the replica nodes.

3. Recruit: The remaining replica nodes send recruitment
information to other consensus nodes (non-replica nodes).

4. Confirm recruitment: Each non-replica node determines
whether its reliability value is greater than the threshold value,
if its reliability value is greater than the threshold, it becomes
a candidate node. All candidate nodes will send recruitment
confirmation message to all replica nodes.

5. Update: After receiving recruitment confirming messages,
each replica node will send node update information to other
replica nodes and candidate nodes. If each replica node and
each candidate node receive the update information from more
than 2f + 1 nodes, these candidate nodes will become the
replica nodes. The process of consensus node updating is end.

2) Blockchain system delay: The delay of block generation
can be determined by two parts: consensus delay and node
update delay. According to [39], only the computational delay
of cryptographic operations is considered, including verifying
signatures delay, generating MACs delay, and verifying MACs
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delay, which are Cs, Cm and Cv respectively, the processing
speed of consensus nodes is k GHz.

1) Consensus delay: The blockchain consensus process is
shown in Fig. 5. We set the delay Tarrive for VN to
reach the processing stage to a fixed value. Then, the
cost of the primary node and the replica node in the
consensus process are respectively.

Ccon
P

= 2(N− 1)Cm + (4f + 1)(Cs + Cv) (10)

Ccon
R

= 2(N−1)Cm+(4f+1)Cs+2(2f+1)Cv (11)

The consensus delay is

Tcon(t) =
max(Ccon

P
, Ccon

R
)

k
+ Tarrive. (12)

2) Node update delay: The consensus node update process
is shown in Fig. 6. According to the process, we can
calculate the cost of the primary node and the replica
node as follows.

Cup
P

= (N− 1)Cm + 2f × (Cs + Cv) (13)

Cup
R = N× Cm + 2f × Cs + 2(f + 1)Cv (14)

The delay of the node update process is

Tup(t) =
max(Cup

P
, Cup

R
)

k
. (15)

After every M consensus process, the node update process
is developed. Additionally, the average delay calculation of the
blockchain system is

Tbc(t) =
MTcon(t) + Tup(t)

M
. (16)

To ensure the security of VNE in IoT, it is necessary to
limit the consensus delay [40] of the blockchain, so

∀tTbc(t) ≤ min(Tbc(t)), (17)

where Tbc(t) is the delay limit to ensure system security.

D. Node Reliability Assessment Method

When there are malicious nodes in IoT, the attack behaviors
of malicious nodes, such as malicious packet loss, malicious
transmission, can cause VNE failure. This results in resource
utilization decreasing and IoT tasks failure. To mitigate the
impact of malicious nodes on the system performance, we
propose a node reliability assessment method. Firstly, we
analyze the behaviors of malicious nodes as follows:

1) Malicious embedding: After receiving the embedding
decision, the malicious node may abandon the embedded
decision with a certain probability.

2) Malicious transmission: After receiving the packet, the
malicious node does not send the packet according to the
optimal physical path selected by VNE. For example, ar-
bitrarily transmitting packets to other physical paths that
are already embedded, or maliciously deviating the optimal
link embedding decision and choosing another long-distance
physical path.

3) Malicious model uploading: If the malicious node is a
local training node, it may maliciously upload local model

information with poor performance to the central consensus
layer.

These three malicious behaviors are quantified into cor-
responding security assessment values respectively and inte-
grated into a node reliability assessment algorithm.

1) Node embedding assessment

RSNS
i =

RNS
i

SNS
i

, (18)

where RNS
i is the embedding completed by the node NS

i per
unit of time; SNS

i is embedding decisions received by the node
NS

i per unit of time.
2) Node transmission assessment

TRNS
i = 1− MDNS

i

1 +DNS
i

, (19)

where MDNS
i is the number of times the node NS

i is detected
as malicious transmission per unit time; DNS

i is the total
number of times the node NS

i is detected for transmission
per unit of time, 1 + DNS

i is set to avoid the situation that
denominator is equal to 0.

3) Node model uploading assessment

TMNS
i = 1− MZNS

i

1 + ZNS
i

, (20)

where MZNS
i is the number of times the node NS

i is detected
as malicious uploads per unit time; ZNS

i is the total number
of times the node NS

i is detected for model uploading per unit
of time.

4) The assessment of node reliability

SN
S
i = RSNS

i · TRNS
i · TMNS

i . (21)

It can be seen from (21) that the larger SNS
i , the higher the

reliability of the node NS
i .

VI. SIMULATION RESULTS AND ANALYSIS

We use GT-ITM topology generator [41] to generate the
topology of the underlying physical network and the virtual
network requirements. The number of nodes in the initial
underlying physical network is 100, the connection probability
between nodes is 0.5, and the CPU and bandwidth resources
of each physical link are randomly generated following a
uniformly distributed between 50 and 100. The underlying
physical network is divided into 8 local networks according
to geographical location. For the virtual network requirements,
the requirement arrival follows Poisson distribution, the arrival
time is 1000 unit times and the expected is 5. The number of
virtual nodes follows a uniform distribution between 2 and
8, and the connection probability between nodes is 0.5. The
CPU and link bandwidth resources of each virtual node are
randomly generated following a uniformly distributed between
1 and 20. We generate 1,000 VN requirements during 200,000
unit times, and we use these VN requirements as a local
dataset. The learning rate η is set to 0.001, the blockchain
size is 1 MB, k is 2.4 GHz, Cs is 0.034 M (CPU cycles), Cm

is 4 M (CPU cycles), and Cv is 4 M (CPU cycles).
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Fig. 7. VN acceptance rate (PN=100).

Fig. 8. Long-term revenue-to-expenditure ratio (PN=100).

To evaluate the performance of DRAM-BFL, we compare
DRAM-BFL with two methods, which are Noderank in [20]
and RL-VNE in [27], under the network environment with
malicious nodes and without malicious node respectively. We
compare the performance of VN acceptance rate and long-
term average revenue-to-expenditure ratio. We also increase
the number of physical nodes and expand the scale of the
physical network to test the scalability of DRAM-BFL.

We first evaluate the VN acceptance rate and long-term av-
erage revenue-to-expenditure ratio of each method over time.
Then we set the physical network environment to 100 physical
nodes (PN=100) and 200 nodes (PN=200), and simulate the
scenarios with 5 malicious nodes and without malicious node
respectively. In order to show the superiority of DRAM-BFL,
we simulate its algorithm execution time and its number of
communications, and compare DRAM-BFL with centralized
VNE algorithms. Then, we conduct the delay and throughput
experiments by using DRAM-FL under an ideal environment
(no malicious nodes), and compare it with DRAM-FL with

Fig. 9. VN acceptance rate with malicious nodes (PN=100).

Fig. 10. Long-term revenue-to-expenditure ratio with malicious nodes
(PN=100).

malicious nodes and DRAM-BFL with malicious nodes.
Figs. 7 and 8 show the superiority of DRAM-BFL in VN

acceptance rate and long-term average revenue-to-expenditure
ratio. In the ideal IoT environment without malicious nodes,
we can see that VN acceptance rate of all three methods
are reduced at first, this is because when more VNs arrive,
the underlying network resources will be occupied more,
and the available idle resources will be less. However, the
long-term average revenue-to-expenditure ratio is relatively
stable as it is independent of the available resources. As the
underlying network gradually depletes, the performance of the
three methods begins to stabilize. Notably, the VN acceptance
rate of DRAM-BFL is 15.1% and 24.1% higher than that of
Noderank and RL-VNE, and the long-term average revenue-to-
expenditure ratio of DRAM-BFL is 25.8% and 41.8% higher
than that of Noderank and RL-VNE respectively.

However, when malicious nodes are present in the IoT
network, Figs. 9 and 10 show that the VN acceptance rate
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Fig. 11. VN acceptance rate with double physical nodes (PN=200).

Fig. 12. VN acceptance rate with double physical nodes and malicious nodes
(PN=200).

of RL-VNE and Noderank significantly decreases. This is be-
cause malicious nodes cause security problems while RL-VNE
and Noderank do not have blockchain protection. To address
this problem, DRAM-BFL uses a node reliability assessment
method, and prefers physical secure nodes for embedding. The
method can effectively reduce the impact of malicious nodes
on VNE performance.

Figs. 11 and 12 show the VN acceptance rate of three
methods in the network with double physical nodes. We
can see that, even with the increase of physical nodes and
the underlying physical network resources, DRAM-BFL still
outperforms the other two methods in terms of VN acceptance
rate. The increase of physical nodes leads to a great increase
of computation required to find suitable nodes and links during
VNE. As the Noderank employs the greedy search strategy, the
time required increase exponentially as the number of nodes
increases. RL-VNE, relying on the embedding probability
calculated by a centralized ML policy, needs to collect the

Fig. 13. Communication costs for different methods.

Fig. 14. Algorithm execution time for different methods.

feature information of all local nodes, resulting in double
computing and storage resources requirements in double scale
network.

Due to the direct correlation between computational cost
and algorithm execution time, we evaluated the computational
cost of DRAM-FL by algorithm execution time, and we eval-
uated the communication cost of DRAM-FL by the number
of communications. Figs. 13 and 14 show the number of
communications and the algorithm execution time of three
methods.

Fig. 13 shows the average number of communications
required by embedding a VN, and it can be seen that the com-
munication costs of DRAM-BFL is only about 20% of Node
Rank and about 25% of RL-VNE. That’s because DRAM-BFL
obtains local network information through the local training
node collecting, while RL-VNE and Node Rank obtain local
network information through all nodes uploading to central
server. In Fig. 14, we can see that NodeRank takes the least
execution time because it uses a simple search strategy, but
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Fig. 15. Network throughput for different methods.

Fig. 16. Throughput with different number of malicious nodes.

its VN acceptance rate is poor. RL-VNE adopts a centralized
training strategy, which increases the computational complex-
ity, so it has more time-consuming than DRAM-FL. The
time-consuming of DRAM-FL is 40.3% lower than that of
centralized RL-VNE method. The nDRAM-BFL umber of
communications of DRAM-FL is much lower than that of cen-
tralized algorithms RL-VNE and NodeRank. So, DRAM-FL
can reduce the computational and communication costs when
compared with centralized VNE algorithms.

Figs. 15–17 further illustrate the superiority of the
DRAM-BFL blockchain system in the malicious node envi-
ronment.

Fig. 15 shows that the throughput of DRAM-FL without ma-
licious nodes is better than that of DRAM-BFL with malicious
nodes and DRAM-FL with malicious nodes. Furthermore,
due to the security protection of blockchain, the throughput
of DRAM-BFL with malicious nodes is higher than that of
DRAM-FL with malicious nodes.

Fig. 16 shows that, as the number of malicious nodes

Fig. 17. Network delay for different methods.

increases, the performance of DRAM-FL and DRAM-BFL
decreases. This is because in a malicious node environment,
the greater the amount of data, the more data that the mali-
cious node handles, and the lower the throughput. However,
DRAM-BFL can effectively avoid the selection of malicious
nodes, so the throughput of DRAM-BFL scheme is always
higher than that of DRAM-FL.

Fig. 17 shows the network delay of different schemes. As
time increases, the delay of the DRAM-FL without malicious
nodes is lower than that of DRAM-BFL with malicious nodes
and DRAM-FL with malicious nodes. That’s because, in
the environment of malicious nodes, malicious nodes will
choose non-optimal paths to transmit data, resulting in the
increase of network transmission delay. In addition, due to the
security protection of blockchain, the delay of DRAM-FL with
malicious nodes is always lower than that of DRAM-BFL with
malicious nodes.

Based on the above analysis, the proposed DRAM-BFL can
not only improve the security of resource allocation in IoT, but
also provide excellent performance and practical significance.

VII. CONCLUSION

Based on the characteristics of resource fragmentation in
IoT, we use network virtualization technology to model the
resource allocation problem as a VNE optimization prob-
lem. Considering the restricted terminal resource and secu-
rity problems, we introduce blockchain and FL into VNE
and propose DRAM-BFL to solve this VNE optimization
problem. In DRAM-BFL, a dual chain structure is proposed
to protect network topology information and model param-
eter information, a node reliability assessment method and
EPBFT-NRA consensus algorithm are proposed to improve
security performance. Finally, simulation results show that
DRAM-BFL has good performance in VN acceptance rate,
revenue-to-expenditure ratio, network throughput and delay
while improving system security.
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