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An Efficient Tasks Offloading Procedure for an
Integrated Edge-Computing Architecture
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Abstract—The advent of sixth-generation networks has given
rise to numerous challenges, requiring the synergistic exploitation
of both ground and air edge computing facilities. This paper
considers an integrated ground-air edge computing scenario
where the computation offloading of a set of delay sensitive
tasks has to be performed in a context where ground and air
computational facilities are already involved in monitoring and
control proceduers in a remote area under an unpredictable
overload of computation requests, e.g., related to the management
of an emergency situation. In this reference, a matching game
is proposed to assign tasks to the most suitable computation
nodes, in order to minimize the outage probability of the newly
arrived tasks, i.e., the probability with which tasks experience
a completion time greater than the corresponding deadline. To
this regard, we have considered that new allocated task suffer
for a waiting time due to the time needed to complete the service
of all the tasks already in the ground or air computation node.
As a consequence, to statistically characterize such waiting time,
under proper assumptions, we have resorted to the G/G/1 queuing
system model and the Lindley’s integral equation approach to
define a suitable metric to formulate a tasks allocation procedure
based on the matching theory. Furthermore, matching stability
has been theoretically proved for the proposed approach. Finally,
numerical results have been provided in order to highlight
the better behavior of the proposed task allocation scheme in
comparison with different state-of-the-art alternatives.

Index Terms—Queueing system, task offloading, unmanned
aerial vehicle.

I. INTRODUCTION

THE upcoming sixth-generation (6G) networks has to sup-
port a wide plethora of disruptive applications, typically

demanding for high rate, high reliability, low latency, and
requiring seamless coverage. In such a context, the exclusive
use of classical cellular networks seems to be not enough to
handle the huge amount of data expected to be injected in
the network by the new generation applications, and simulta-
neously guaranteeing the corresponding high-flying quality of
service (QoS) constraints. Within this challenging context, the
exclusive exploitation of terrestrial networks cannot meet the
far-reaching traffic demand and service quality level, mainly
in terms of delay constraints, of the emerging applications.
In particular, it appears to date that it is through a synergism
carefully orchestrated between terrestrial and non-terrestrial
computational resources, that services delay mitigation can be
reached [1].
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Fig. 1. System scenario where a hybrid ground-aerial domain was considered.

In particular, this offers the promising opportunity to extend
and empower the emerging edge computing paradigm [2]
in an integrated heterogeneous scenario by considering fly-
ing unmanned aerial vehicles (UAVs) able to provide edge
computing close to the end-users functionally integrated with
ground edge nodes (ENs). This feature is of special interest
whenever a quick and temporary computation resource update
is needed in contexts where a permanent expansion of the
ground ENs infrastructure is not advisable or viable, e.g.,
performing monitoring and control operations in a remote area
under an unpredictable overload of computational demands.
More generally, it can be stated that this novel edge computing
paradigm aims at overcomes the limits of a classical ground
edge computing system in any congested areas, providing
faster computation and hosting processing of tasks stemmed
from devices in an efficient and flexible manner by enabling
tasks offloading towards different ENs locations, e.g., ground
or air. In such a context, it becomes of paramount importance
to provide a suitable tasks offloading procedure in order to
select the most convenient computation site between a set of
ground ENs or UAV-ENs. Furthermore, the end-to-end task
delay, expressing the time elapsed since a device demanding
for task computation submits its request until the device
receives the processing outcome, represents a crucial metric
to be investigated here. This holds particular significance in
multimedia services, ensuring a predefined service quality
target. However, it also proves beneficial for critical applica-
tions, especially when assessing the risk level associated with
potentially surpassing a specific deadline in data delivery, is
considered as a key performance indicator.

As a consequence, it has become mandatory to have ad-
equate methodologies to perform a suitable tasks offloading
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and to predict the achievable performance. During years,
Markovian analysis has been extensively applied to this regard,
providing results in network performance evaluation in an
easy way. Nevertheless, in order to provide accurate network
performance predictions in the novel application contexts,
the assumption of Markovian models may represent a too
simplistic hypothesis. In fact, even if a more general system
characterization such as G/G/1 model increases the complexity
of the theoretical study, the corresponding analysis typically
fits better the actual system dynamic, giving rise to a more
effective system design [3].

In this reference, the main contributions of the paper can
be summarized as follows

• Analysis of the queue behavior at the computation nodes
in an integrated gound-air computation system by resort-
ing to the G/G/1 model and use of the Lindley’s integral
equation, solved by means of spectrum factorization [4]
method;

• Design and development of an algorithm to perform tasks
offloading with the aim at minimizing the task outage
probability, i.e., the probability that a task experiences a
completion time greater than the corresponding deadline,
based on the queue state conditions of the selected
computation nodes, i.e., ground EN or an unmanned
aerial vehicles-mounted ENs (UAV-ENs);

• Numerical simulations to test the performance of the
framework proposed and validate its effectiveness in
comparison with different tasks allocation schemes.

The rest of the paper is organized as follows. In Section II an
in-depth review of the related literature is provided. Section III
presents both the system model and the problem formulation,
whereas Section IV details the proposed framework. Perfor-
mance evaluations are presented in Section V. Finally, our
conclusions are outlined in Section VI.

II. RELATED WORKS

Many works are available from the literature regarding the
use of UAVs to enable advanced services and applications. In
particular, authors in [5] proposed a heuristic to maximize the
cellular users coverage optimizing the drones deployment, as
long as minimizing the communication cost among UAVs. A
drone-as-a-service market model has been developed in [6],
in which a service algorithm has been designed, in order to
properly meet the quality requirements in terms of cost and
delay, expressed by users. Moreover, this paper deals with the
improvement of security for delivery drones. In particular, the
authors propose a consumer authentication hybrid computing
framework for drone delivery as a service, the effectiveness of
which is demonstrated through experimental results. In [7] the
main focus is the limited UAVs resources. In fact, the authors
analyzed the feasibility of overcoming these constraints by
combining and controlling multiple UAVs. In this reference,
the paper explores programmable crowd-powered drones to
create a federated cloud. Moreover, a scripting language is
applied to coordinate flight trajectories of multiple drones, as
well as multi-drone service management. Differently, in [8],

a mixed integer programming problem has been formulated
considering the traveling salesman problem with a drone
station. The route distortion problem has been defined, and
a lower bound of the number of drones needed to solve it
has been proposed. Furthermore, the paper [9] proposes an
UAV-assisted MEC network with air–ground cooperation, in
which both UAV and ground access points exhibit a direct link
towards devices and cooperate to execute tasks computation,
aiming at minimizing the worst delay and optimizing the re-
source allocation by jointly controlling UAV-device matching,
UAV horizontal and vertical position, bandwidth selection, and
task splitting. A two-layered decision-making framework for
the cooperation between one or more stations and one or more
drones is presented in [10], maximizing profit, and minimizing
the travel distance.

G/G/1 queuing systems have been the object of the anal-
ysis proposed in [11], in which a shift parameter has been
introduced to model the time lag under the assumption of ex-
ponential, hyperexponential, and Erlang distributions. Further-
more, paper [12] addresses multiple vehicle-to-vehicle (V2V)
connections sharing spectrum with multiple capacity-hungry
links. The main goal of the paper has been the resource
allocation and packet sampling rate optimization of V2V
connections, aiming maximizing the sum ergodic capacity of
the network, as well as guaranteeing the age-of-information
outage probability of V2V links. Authors in [13] propose an
online optimization of both the UAV trajectory and the user
association, in order to reach finite queueing delay minimizing
UAVs energy consumption. In paper [14], a G/D/1 queuing
model for the analysis of network-on-chip has been proposed
and studied by resorting to a Jackson queuing network.
Authors in [15] consider a hybrid aerial-ground scenario,
where the offloading is exploited to perform UAV visual
target tracking. Such a deep learning task is sent to an EC
node, to meet the constraints on the computational resource
and energy capacity typical of UAVs. The aerial-terrestrial
communication links are also studied in paper [16], where
the multi-task learning is adopted in combination with the
reflecting intelligent surfaces (RIS) to improve coverage. An
adaptive RIS-assisted transmission protocol, where the channel
estimation, the transmission policy, and the data transmission
are independently implemented in a frame, is designed. Dif-
ferently, in [17], a multi-task resource scheduling framework
exploiting the deep reinforcement learning has been designed
with the objective to minimize the energy consumption of
all users and UAVs in the system. Authors in [18] integrate
horizontal federated learning with double deep Q-network to
solve the problem of the computation offloading and relay
communication in air-ground integrated networks, considering
emergency scenarios. In reference to the offloading problem,
the objective is the minimization of the weighted sum of both
delay and energy consumption. For the data transmission, the
main goal is to maximize the minimum rate of relay links.

An autonomous network resource demand prediction
scheme has been proposed in [19], exploiting queuing theory.
More in depth, the analysis addressed in [19], accurately mea-
sures the mathematical expectation of queuing length experi-
enced by packets, and the average occupied resources usage in
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nodes, taking into account the success rate of communication
resource transmission and the limited caching availability on
nodes. Then, paper [20] focuses on multipath technology
within the context of Internet of things (IoT) monitoring
and control applications. Two paths with different strategies
have been considering, exploit redundancy and coding to
enhance timing performance of wireless communications. In
this picture, data blocks have been modeled via a Markovian
and a deterministic process, respectively. Then, the packet
delay and the peak age of information metrics have been
analyzed. While there is a wide range of works that deal with
studying computational offloading scenarios where UAVs and
edge computing coexist, and other works extensively apply
the results of queuing theory, our work combines Lindley’s
analysis with this kind of landscape. In fact, for the best
of authors’ knowledge, this is the first paper introducing
the Lindley’s analysis to obtain a measure of the outage
probability within an offloading problem.

III. PROBLEM STATEMENT

A. System Scenario

As depicted in Fig. 1, in this paper, we mainly focus on a
scenario where we have an edge computing system devotes to
monitoring and control a process in a remote area to face an
unpredictable overload of computation requests, e.g., related
to the management of an emergency situation. In this case, an
efficient and flexible approach is to resort to the deployment of
a swarm of UAVs having on board computation capabilities
in order to enable an integrated ground-air edge computing
infrastructure (ECI), where computation capabilities are lo-
cated at the ground ENs or on the UAV-ENs. In particular,
we have a set C of processing nodes formed by a set of
ground ENs S = {1, · · ·, S} able to perform computation,
and a swarm of UAVs V = {1, · · ·, V }, each one having on-
board computation capabilities and linked to almost one SBS
of the ground cellular network. Hence, we have an overall set
C = {1, · · ·, S} ∪ {1, · · ·, V } of possible computation nodes.
Note that the elements of both sets S and V are heterogeneous
in terms of computational capabilities, i.e., mean computation
time, with UAV-ENs less powerful in terms of processing
speed than the ground ENs.

B. General System Assumptions

To complete the definition of the system scenario, we have
made the following assumptions.

• Any device can access the ground-air ECI by means of
the most suitable SBS station of cellular network in order
to offload its task computation request to any possible EN
site belonging to C;

• Any ground EN can be reached by a device through the
ground cellular network to offload its task independently
from the access SBS, i.e., the SBS directly linked to it;

• Any UAV assigned to the service area of interest can be
linked1, to almost one SBS, i.e., it belongs to V and,
hence, to C, with a given probability pc;

• All the SBSs of the access cellular network form a full
connected network, i.e., the task offloading to a given
UAV-EN can be routed to the most suitable SBS (if
any), linked to the UAV-EN of interest, independently
of the access SBS. However, in such a context we have
to take into account that each element c in C is involved
in providing computation service, according to a first-in-
first-out (FIFO) policy, to previously allocated task flows
related to control and monitoring procedures already
activated in the operation area. In particular, such task
flows (nominal flows in what follows) are characterized
by independent general arrival and service processes
with mean rate λc tasks/s, µc tasks/s, respectively, with
µc > λc in order to guarantee the stability at each
computation node.

In such a context, we have to provide a suitable computation
allocation for an additional set U = {1, · · ·, U} of tasks,
related to new needs to make current procedures more specific
to the context of interest. Each additional tasks is associated to
only one device so that devices and tasks are cited interchange-
ably in what follows. Furthermore, in our model we have
assumed that each task u requires computation completion
with a given soft-deadline delay constraint td,u, u ∈ U . Such a
constraint means that tasks are allocate even if their deadline
is not satisfied. In fact, soft-deadline applications prefer to
receive a delayed service rather than not receiving it at all.
Moreover, all tasks in U , allocated to a given node in C, due to
the adopted FIFO policy, access the service according to their
allocation order and first with respect to any tasks belonging
to the nominal flows arrived at that node after their allocation.
However, all the nominal flows arrived before and waiting
for service in the ground EN or UAV-EN queue maintain
the acquired FIFO priority for access the service facility with
respect to new computation arrivals.

C. Analytical Approach

The initial step in our analysis aims to determine the waiting
time experienced by tasks in the set U = {1, · · ·, U}, at the
computation nodes due to the workload already allocated (i.e.,
nominal flows). Hence, our goal is to derive the probability
density function (pdf) of the waiting time at a given compu-
tation node, modeled as a G/G/1 system, due to the presence
of previously arrived tasks belonging to the nominal flow of
that node.

In particular, the system under consideration is one where
all the possible computation nodes exhibit independent inter-
arrival times between tasks belonging to the relative nominal
flow, with a general pdf Ac(t), for ∀c ∈ C. Similarly, the

1This simple Bernoulli statistical model takes into account the fact that,
due to the UAVs motion, it may not always be possible to have connectivity
with at least one ground SBS. For simplicity, without loosing generality of
our analysis, we have assumed that the UAVs connection conditions does not
change during the completion of the tasks allocation planning and that the
UAV connection probability, pc, with almost one ground SBS is the same for
all UAVs.
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task computation service times are independent with a general
pdf Bc(t), for ∀c ∈ C. In addition to this, we have assumed
that only one server is available at each processing node and
that the computation service, as stated before, is performed
according to the FIFO policy. Understanding the behavior of
a such G/G/1 system, even if under the FIFO queuing policy,
typically poses a non-trivial challenge, requiring an appropri-
ate methodology. Among various alternatives, the analytical
approach outlined in this paper leads to the Lindley’s integral
equation with solution obtained by resorting to the spectral
factorization method [4]. Towards this end, by focusing on a
given node c ∈ C, we have that Q(n+1)

c is the waiting time (in
queue) experienced by the (n+ 1)th task of the nominal data
flow allocated on node c, given by

Q(n+1)
c =

{
Q

(n)
c + x

(n)
c − h

(n)
c , if Q(n)

c + x
(n)
c − h

(n)
c > 0;

0, if Q(n)
c + x

(n)
c − h

(n)
c ≤ 0,

(1)
where x

(n)
c is the computation (i.e., service) time of the

task Oc(n) belonging to the nominal data flow allocated
at node c, whereas h

(n)
c represents the interarrival time

between two consecutive computation requests, i.e., Oc(n),
Oc(n+ 1) [4]. Denoting with d(n)c the difference x(n)c −h(n)c ,
i.e., d(n)c = x

(n)
c − h

(n)
c , and considering the stochastic process

{Q(n)
c , n = 0, 1, · · ·}, we have that

Q(n+1)
c (t) = Q(n)

c + d(n)c . (2)

Furthermore, being µc > λc for all c ∈ C we have that
the stability condition is verified for all the processing nodes,
hence, we have :

lim
n→∞

Pr [Q
n(c) ⩽ t] =Wc(t) (3)

with Wc(t) the stationary cumulative probability distribu-
tion (CDF) for the waiting time in the queue at node c.
Likewise, the stationary CDF for the random variable dc
assumed independent of n, results in :

C∗
c (u) = Pr(xc − hc ⩽ u)

=

∫ ∞

t=0

Pr(xc ⩽ u+ t|hc = t)Ac(t)dt. (4)

Being, xc independent of hc, we have:

Cc(u) =

∫ ∞

t=0

Bc(u+ t)Ac(t)dt, (5)

where Cc(u) is the pdf of the random variable dc. Hence,
through some algebraic manipulations detailed in [4], skipped
here due to space limitation, we obtain the Lindley’s integral
equation in the following form:

Wc(t) =

∫ t

−∞
Wc(t− u)Cc(u)du t ⩾ 0, (6)

and Wc(t) = 0 for t < 0.

For the purpose of our analysis, we introduce the function
ϕ+c(s) defined as:

ϕ+c(s) =

∫ +∞

−∞
Wc(t)e

−stdt, (7)

that can be easily recognized ad the Laplace transform of
Wc(t). In solving (6) with respect to Wc(t), we resort here to
the use of the spectrum factorization approach [4]. In partic-
ular, being Ac(s) and Bc(s) the Laplace transform of Ac(t)
and Bc(t), respectively, the goal of the spectrum factorization
approach, as detailed in [4], is to define two rational functions
of s, Ψ+c(s),Ψ−c(s), so that we have:

Ac(−s)Bc(s)− 1 =
Ψ+c(s)

Ψ−c(s)
. (8)

Moreover, the factorization provided in (8) has to respect the
following properties [4]:

• For Re(s) > 0, Ψ+c(s) results to be analytic with no
zeros in the half-plane;

• ∃D such that for Re(s) < D, Ψ−c(s) results to be
analytic with no zeros in the half-plane.

Once the factorization is provided, by resorting to the appli-
cation of the Liouville’s theorem (see [4] for more details) the
Laplace transform of the waiting time CDF, ϕ+c(s), results in

ϕ+c(s) =
Kc

Ψ+c(s)
. (9)

Moreover, being by definition :

lim
s→0

sϕ+c(s) = 1 (10)

from (9) we have:

Kc = lim
s→0

Ψ+c(s)

s
. (11)

Therefore, Wc(t) can be obtained by anti-transforming ϕ+c(s)
defined in (9) as

Wc(t) = L−1
s [ϕ+c(s)](t). (12)

Hence, the pdf of the waiting time at node c can be derived
as:

wc(t) =
dWc(t)

dt
, (13)

which completes our analysis concerning the waiting time
characterization at each computation node due to the presence
of the nominal flows.

D. Problem Formulation

This paper aims at minimizing the outage probability for the
additional set of tasks U needing to be offloaded on the pool
of heterogeneous computation nodes C previously committed
to provide computation service to nominal data flows. Towards
this end, we have to take into account that the set S of SBS
nodes offer a fast service time with respect to set V of UAVs
alternatives, mainly due to the different energy constraints.
In performing our analysis, we have overlooked the set-up
time required to acquire exclusive use of a communication
channel by users. This assumption is obviously valid in the
case of systems with dedicated channels (i.e., safety-critical
applications) but it may be considered reasonable also for a
random contention set-up phase, in particular, for the case un-
der consideration, where we have a relatively low to moderate
number of users linked to a same SBS. In addition, we did
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not consider transmission times in defining the deadlines, as
according to [21], these times are negligible in our scenario.
Nevertheless, as communication times usually represent a
constant delay contribution, the proposed analysis can readily
extend to encompass scenarios where their impact cannot be
deemed negligible by a proper definition of the actual time
deadline.

In particular, we propose in the next section an offloading
scheme based on a matching algorithm to produce as outcome
the allocation matrix A ∈ {0, 1}U×(S+V ), whose generic
element αu,c = 1 if the task of the generic user u belonging
to U is allocated on the network node c, zero otherwise. The
aim of our offloading scheme is to minimizing the outage
probability for any task u ∈ U whose computation service
time2 sc,u at node c is assumed known. Hence, the outage
probability for the generic task u with deadline td,u, offloaded
on node c, hence, having computation time sc,u and suffering
of a waiting time with pdf wc(t) due to the nominal flow
perviously allocated on c , results in:

Pout,c,u =

∫ ∞

ϵc,u

wc(t)dt = 1−Wc(ϵc,u), (14)

where we have:

ϵc,u = td,u − sc,u −
∑

j∈U\{u}

sc,j .αj,c. (15)

In this reference, the main objective of the paper is represented
by the minimization of the mean outage probability of tasks
belonging to U , i.e.,

min
A

1

|U|
∑
u∈U

Pout,c,u. (16)

In this reference, in the next section a proper tasks allocation
procedure on network nodes, heterogeneous in computational
capability, is designed, in order to provide a tasks assignment
arrangement able to minimize the number of offloaded tasks in
outage, on the basis of the queue congestion at all the possible
computation nodes.

In summary, the functional requirements of the proposed
systems revolve around executing an effective allocation policy
to minimize the outage probability of incoming tasks. This
objective is achieved by employing a matching algorithm
that considers task deadlines, the workload assigned to each
computation node, and applies the Lindley’s equation. Addi-
tionally, the system ensures FIFO priority for tasks previously
accepted by computation nodes, while newly allocated tasks
take service priority over those arriving later.

IV. TASKS OFFLOADING SCHEME

A. Matching Game for Task Assignment

Recently, matching theory (MT) [22] has gained momentum
to provide effective solutions to assignment problems. More
specifically, the MT establishes mutually beneficial relations

2The resulting computation service time at node c depends on the com-
putation node capabilities and dimension of u in bytes, however assumed
known.

Fig. 2. Diagram of the proposed algorithm, where task preference construction
process involves the Lindley’s analysis.

between the elements belonging to two opposite sets, taking
into consideration the preferences of each element in being
assigned to each element of the opposite set. In order to con-
sider the level of satisfaction of each element in being assigned
to the element of the opposite set, a list of preferences is
created by each element belonging to the two sets. Therefore,
the matching game has been formulated between the set of
tasks to be offloaded in U and the set C. Consequently, the
metrics of the preferences lists have to be defined, in order
to build both the tasks to be offloaded and the network nodes
preferences lists. In this reference, the preference lists of each
task u in U on each network node c are created considering
the following metric

Hu(c) = Pout,c,u, ∀c ∈ C, (17)

where su,c is the service time experienced by task u on node c.
Therefore, on the basis of (17), each u ∈ U sorts in ascending
order the network nodes c ∈ C. Differently, the preferences
lists of each network nodes c is built considering the deadline
associated to each element of U . In fact, each network node c
builds its preferences list by sorting in descending order tasks
belonging to U , considering their deadlines, i.e.,

Ec(u) = td,u,∀u ∈ U . (18)

The matching algorithm, reported in Fig. 2, acts as follows

1) Both the elements in U and C create their own prefer-
ences lists;

2) Each user u ∈ U proposes to be served by the most
preferred c∗u, in accordance with its preference list;

3) Each network node receiving more than one computa-
tion requests selects the most preferred c among those
proposing. Then, it rejects the other requests;

4) Repeat steps 1)–4) until all the users in U have been
allocated.

Note that the proposed approach does not drop tasks in outage
since we assumed as working hypothesis that requests have
soft-deadline constraints. It is important to pose the emphasis
on the fact that, in our problem, the quantity ϵc,i with c ∈ U ,
decreases with respect to the original time deadline value as
the matching algorithm proceeds, giving rise to preferences
lists which dynamically change during the tasks assignment
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procedure. Such a variation of preferences lists during assign-
ment process implies that the matching game here formulated
results to be a matching game with externalities, i.e., a game in
which the preference lists change in dependence on the alloca-
tions performed during the algorithm execution [22]. For this
reason, since existing interdependencies and relations among
the players’ preferences lists exist in the game, preferences
lists need to be updated after each algorithm assignment.

Firstly, crucial property of the matching procedure devel-
oped requiring investigation is the algorithm termination. With
the aim at performing the termination analysis, we focus on
a worst case scenario, in which the following assumptions
have been considered: i) There is only one network node c; ii)
during each iteration, only one task is allocated on the c; In
reference to steps 1)–4) of the algorithm previously introduced,
and on the basis of working hypothesis i) and ii), the algorithm
reaches termination in a number of iteration ι equal to the
number of tasks, i.e., in ι = |U| steps. Removing hypothesis
i) and ii), the corresponding scenario is not worst case, and
the algorithm terminates in a number of steps ι ≤ |U|.

B. Complexity Analysis

In order to discuss the complexity of the proposed task
offloading strategy, it is important to note that the proposed
matching strategy has a computational complexity mainly
related to the preference lists creation process of both the parts
involved in the game, i.e., the tasks U and the network nodes
C, respectively. Therefore, to build its own preference list,
each task orders the elements in the C set, according to (17),
exhibiting a computational complexity, for each task, given by

O(|C| log |C|), (19)

that considering all the tasks in U results to be

O(|U||C| log |C|). (20)

Similarly, the computational complexity required by C for
sorting elements of U is

O(|C||U| log |U|). (21)

Since in the proposed matching game, the preference lists
building processes are the heaviest parts, in terms of tempo-
ral complexity. As a consequence, the overall computational
complexity is

O(|U||C| log |C|) +O(|C||U| log |U|). (22)

Generally, the number of network nodes is lower than the
number of tasks. Then, due to the behavior of the proposed
matching algorithm, the network nodes preference lists are
built only once, since tasks deadlines do not change over time.
Therefore, we have that the overall computational complexity
results to be

O(|U||C| log |C|). (23)

C. Stability of the Proposed Matching Game

Due to the presence of dependencies among the players’
preferences, i.e., externalities, this class of matching games
represents a kind of games for which there not exists any
matching algorithm able to guarantee convergence to a stable
matching [22], [23].

Before stability discussion and analysis, the following
strictly-two-sided exchange-stability (S2ES) definition is given
as a modified version of that originally proposed in [24].

Definition 1. Let Z be the final matching produced by the
algorithm developed. Let Z(u) be the network node matched
with the task u in the matching Z . The outcome matching Z
is a S2ES matching if there not exists a pair of customers
(u1, u2) s.t.:

1) Hu1
(Z(u2)) ≤ Hu1

(Z(u1)) and
2) Hu2

(Z(u1)) ≤ Hu2
(Z(u2)) and

3) EZ(u1)(u2) ≤ EZ(u1)(u1) and
4) EZ(u2)(u1) ≤ EZ(u2)(u2) and
5) ∃ψ ∈ {u1, u2} s.t. at least one of the conditions 1)− 2)

is strictly verified or
6) ∃ϕ ∈ {Z(u1),Z(u2)} s.t. at least one of the conditions

3)− 4) is strictly verified.

In other words, Definition 1 means that a swap is allowed if
it implies an improvement to at least one between the players
involved, and all the rest of the elements do not worsen.
In order to discuss the stability of the proposed matching
algorithm, we suppose the existence of a pair of tasks (u1, u2),
for which the conditions 1)− 2) of Definition 1 results to be
satisfied. Furthermore, let u1 and u2 be s.t. Z(u1) = c1 and
Z(u2) = c2, respectively. This necessarily means that

Hu1(c2) ≤ Hu1(c1), (24)

Hu2
(c1) ≤ Hu2

(c2). (25)

Focusing on condition 5) of Definition 1, by (24) and (25),
and since the proposed assignment policy does not include any
discard strategy, the probability of experiencing a completion
time lower than the deadline cannot decrease during the
assignment process. Therefore, the preference list of each
already matched task cannot change after its assignment.
Therefore, we have that at the most Hu1

(c1) = Hu1
(c2)

and Hu2
(c2) = Hu2

(c1). As a consequence, condition 5) is
not verified. In the same way, supposing that the following
conditions are true

Ec1(u2) ≤ Ec1(u1), (26)

Ec2(u1) ≤ Ec2(u2), (27)

we have that u2 = u⋆c1 and u1 = u⋆c2 . Since Z(u1) = c1
and Z(u2) = c2, this means that at the assignment instant
conditions u1 = u⋆c1 and u2 = u⋆c2 were true. Due to the
fact that once a task is matched its deadline cannot change,
(26) and (27) can be verified only if Ec1(u2) = Ec1(u1) and
Ec2(u1) = Ec2(u2). Therefore, the condition 6) is not verified
and the proposed matching game reaches a configuration
satisfying the S2ES property.
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Fig. 3. Outage probability as a function of the number of tasks, in comparison
to the Markovian analysis and the experimental simulation curve.

Fig. 4. Outage probability as a function of the number of tasks.

V. PERFORMANCE ANALYSIS

This section deals with the performance evaluation of the
proposed tasks offloading scheme for the ECI system under
the working conditions detailed in Section III-A. We start our
analysis by validating the accuracy of the proposed G/G/1
system analysis based on the Lindley’s integral in comparison
to a classical and more affordable Markov approach based on
the assumption of both arrival and service processes as two
independent memoryless processes with same mean values
as those of the original processes. Furthermore, with the
aim at validating the good behavior of the proposed match-
ing algorithm (PMA), we provide performance comparisons
with two alternative algorithms: The kolkata paise restaurant
game (KPRG) [25], and the random algorithm (RA). In

Fig. 5. Outage probability as a function of the ground ENs and 3 UAV-ENs.

Fig. 6. Worst completion time as a function of the number of tasks.

particular, in the RA case, for each task, the network node
on which computation is performed is randomly selected with
a uniform probability. Conversely, the KPRG game consists
of a repeated game in which tasks simultaneously offer to
network nodes to be supported for computation, on the basis
of the preferences exhibited. Therefore, each task u proposes
to the most preferred network EN, i.e., ground EN or UAV-
EN, on the basis of its preference list. Then, each network
EN, receiving more than one proposal, randomly chooses one
of the proposing tasks [22]. As for the system parameters
definition, in compliance with [26], we have assumed, without
loss of generality, for both arrival and service processes
hypoexponential distributions, with pdfs and mean values
given in Table I, considering, if not differently specified,
3 ground ENs and 3 UAV-ENs . Moreover, the deadlines
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TABLE I
SERVICE AND ARRIVAL CHARACTERIZATION.

C
Service process Arrival process

Computation speedpdf Mean value pdf Mean value

Ground EN 1 b(t) = 0.25(e−
1
5
t − e−t) 1.2 a(t) = 0.83(e−

5
7
t − e−5t) 5.7 8 Mbits/s

Ground EN 2 b(t) = e−
1
7
t − e−

1
6
t 0.30 a(t) = 0.5(e−

1
7
t − e−

1
5
t) 2.24 10 Mbits/s

Ground EN 3 b(t) = 0.84(e−
3
4
t − e−7t) 7.75 a(t) = 0.53(e−

1
2
t − e−8t) 8.5 5 Mbits/s

UAV-EN 1 b(t) = 0.52(e−
1
2
t − e−10t) 10.5 a(t) = 2.25(e−

9
5
t − e−9t) 10.8 4 Mbits/s

UAV-EN 2 b(t) = 1.76(e−
3
2
t − e−10t) 11.5 a(t) = 0.51(e−20t − e−

1
2
t) 20.5 3 Mbits/s

UAV-EN 3 b(t) = 2.5(e−
9
5
t − e−6t) 7.8 a(t) = 1.6(e−

7
5
t − e−11t) 12.4 2 Mbits/s

Fig. 7. Worst completion time as a function of the of the ground ENs and 3
UAV-ENs.

associated to tasks belonging to U have been assumed heavy
tailed distributed within the interval [30, 110] ms. Finally, we
have assumed the probability that one UAV can be connected
to almost one ground SBS, i.e., pc, equal to 0.8 and that
the network topologies considered in deriving our simulation
results are formed by ground ENs and UAV-ENs uniformly
selected from the appropriate EN configuration alternatives as
reported in Table I. Hence, with the ambition to highlight the
advantages of the proposed analytical framework based on the
G/G/1 model and Lindley’s analysis, we compare in Fig. 3,
the obtained analytical predictions in terms of tasks outage
probability with simulation results and analytical predictions
obtained by resorting to the equivalent M/M/1 model (i.e.,
where the memoryless arrival an service processes have the
same mean values of the actual ones) for which the the waiting
time CDF can be derived in a closed form as [4]:

WM
c (t) = 1− ρce

−µc(1−ρc)t, (28)

where ρc is the ratio between the mean arrival and service
rates of the equivalent memoryless processes for node c, with
c ∈ C. Finally, in deriving these results we have assumed,
as stated before, pc = 0.8. Fig. 3 clearly exhibits the better

Fig. 8. Outage probability as a function of the number of additional UAVs.

accuracy of the G/G/1 model based on the Lindley’s integral
in comparison with the Markov approximation. Moreover, this
figure highlights a very good fitting between the obtained
analytical predictions and the simulation results that further
validates the proposed analysis. As it is evident to note,
the outage probability gets worse as the number of tasks
increases. This is due to the fact that a higher number of tasks
means a greater mean completion time, since the proposed
approach does not drop any request. Furthermore, with the
aim at confirming the goodness of the proposed PMA task
offloading approach in comparison with the RA and KPRG
alternatives, (all based on the G/G/1 model), Fig. 4 shows
the outage probability as the number of tasks in U increases
and pc = 0.8. As it is evident to note in the figure, the
PMA approach exhibits better performance in comparison
with the two considered alternatives. Such a trend is due to
the fact that the PMA, through the preference lists metrics,
minimizes the tasks completion time, that directly impacts
the minimization of the outage probability. Differently, both
the KPRG and the PMA introduce in the decision-making
process a randomness which negatively impacts the system
performance. In addition to this, Fig. 5 shows the outage
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Fig. 9. Outage probability as a function of the number of additional ECs.

probability as the number of ground ENs grows keeping the
number of UAV-ENs fixed at 3 for pc = 0.8. Also in this
case, the PMA results to be the best strategy in comparison to
the alternative schemes taken into account. From Fig. 5, we
can note that the outage probability decreases as the number
of network nodes increases. This is a consequence of the fact
that, as the number of network nodes grows, the computation
capability of the system improves, impacting positively on
the outage probability behavior. Likewise, Fig. 6 depicts the
worst completion time as a function of the number of tasks.
Once again, the PMA achieves lower values of the worst
completion time, denoting that the proposed matching strategy
actually provides a suitable tasks allocation discipline for the
problem addressed. The same trend is confirmed in Fig. 7,
where the worst completion time is shown as a function of the
number of ground ENs, for a number UAV-ENs equal to 3 and
pc = 0.8. In addition, Fig. 8 depicts the system performance
when we have an additional number of UAVs equal to the
value reported in the x-axis. In the same way, Fig. 9 exhibits
the performance behavior when an additional number of ECs
equal to the value reported in the x-axis is introduced in the
network. Consequently, the crossed analysis of Figs. 8 and 9
highlight that to increase the number of ECs lower the outage
probability faster than the introduction of the same number of
UAVs. This is evident since ECs have a greater computational
capability than UAVs.

VI. CONCLUSIONS

This paper has focused on a scenario of a hybrid network
environment, where computational capabilities are available
at the ground ENs and on-board of UAVs. Such network
infrastructure has to host computation of a newly arrived set
of delay sensitive tasks, assuming the presence of existing
nominal flows on the network. The focus of the paper is the
minimization of the outage probability of a set of newly arrived

tasks under the assumption that the involvement of all the
computation nodes in serving nominal data flows are charac-
terized by general independent arrival and service processes.
As a consequence, each network node has been modeled as a
G/G/1 system and the Lindley’s integral analysis, conducted
on the basis of the spectrum factorization method [4], has
been used in defining the proposed tasks allocation approach
based on matching theory principles. Then, the stability of the
proposed matching tasks allocation procedure has been also
theoretically proved. Finally, with the aim at validating the
proposed solution, different allocation procedures have been
considered for comparison purposes. The better behavior of
the proposed approach has resulted clearly evident from all
the results provided here. Future works may include different
scheduling policies, also introducing preemption disciplines
to prioritize tasks based on the deadline. In addition, another
interesting development for this research may be the investi-
gation of per-flow performance bounds involving martingale
envelopes theory.

REFERENCES

[1] P. P. Ray, “A review on 6G for space-air-ground integrated network: Key
enablers, open challenges, and future direction,” J. King Saud Univ. -
Comput. Information Sciences, vol. 34, no. 9, pp. 6949–6976, 2022.

[2] Y. Shi and Y. Zhu, “Research on aided reading system of digital library
based on text image features and edge computing,” IEEE Access, vol. 8,
pp. 205980–205988, 2020.

[3] V. Kartashevskiy, N. Kireeva, M. Buranova, and L. Chupakhina, “Study
of queuing system G/G/1 with an arbitrary distribution of time parameter
system,” in Proc. IEEE PIC S&T, 2015.

[4] L. Kleinrock and K. M. R. Collection, Queueing Systems, Volume I, ser.
A Wiley-Interscience publication. Wiley, 1974. [Online]. Available:
https://books.google.it/books?id=rUbxAAAAMAAJ

[5] H. Huang and A. V. Savkin, “An algorithm of efficient proactive
placement of autonomous drones for maximum coverage in cellular
networks,” IEEE Wireless Commun. Lett., vol. 7, no. 6, pp. 994–997,
2018.

[6] B. Shahzaad, A. Bouguettaya, S. Mistry, and A. G. Neiat, “Composing
drone-as-a-service (DaaS) for delivery,” in Proc. IEEE ICWS, 2019.

[7] M. Alwateer, S. W. Loke, and N. Fernando, “Enabling drone ser-
vices: Drone crowdsourcing and drone scripting,” IEEE Access, vol. 7,
pp. 110035–110049, 2019.

[8] S. Kim and I. Moon, “Traveling salesman problem with a drone station,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 1, pp. 42–52, 2019.

[9] J. Huang, S. Xu, J. Zhang, and Y. Wu, “Resource allocation and
3d deployment of UAVs-assisted MEC network with air-ground
cooperation,” Sensors, vol. 22, no. 7, 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/7/2590

[10] M. Alwateer and S. W. Loke, “A two-layered task servicing model
for drone services: Overview and preliminary results,” in Proc. IEEE
PerCom Workshops, 2019.

[11] V. Tarasov, “Transformation of queueing systems into systems with time
delay,” in Proc. IEEE PIC S&T, 2021.

[12] W. He, C. Guo, and X. Wang, “Age of information aware resource
allocation and packet sampling control in vehicular networks,” IEEE
Wireless Commun. Lett., vol. 11, no. 11, pp. 2245–2249, 2022.

[13] Y. Tang, M. H. Cheung, and T.-M. Lok, “Delay-tolerant UAV-assisted
communication: Online trajectory design and user association,” IEEE
Trans. Veh. Technol., vol. 71, no. 12, pp. 13137–13151, 2022.

[14] V. Adusumilli and V. TG, “Traffic characterization based stochastic
modelling of network-on-chip,” IEEE Trans. Comput., vol. 72, no. 4,
pp. 1215–1222, 2023.

[15] B. Yang, X. Cao, C. Yuen, and L. Qian, “Offloading optimization in
edge computing for deep-learning-enabled target tracking by Internet of
UAVs,” IEEE Internet Things J., vol. 8, no. 12, pp. 9878–9893, 2021.

[16] X. Cao et al., “Reconfigurable intelligent surface-assisted aerial-
terrestrial communications via multi-task learning,” IEEE J. Sel. Areas
Commun., vol. 39, no. 10, pp. 3035–3050, 2021.



224 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 2, APRIL 2024

[17] F. Jiang et al., “Mars: A DRL-based multi-task resource scheduling
framework for UAV with IRS-assisted mobile edge computing system,”
IEEE Trans. Cloud Comput., vol. 11, no. 4, pp. 3700–3712, 2023.

[18] X. Song, M. Cheng, L. Lei, and Y. Yang, “Multitask and multiobjec-
tive joint resource optimization for UAV-assisted air-ground integrated
networks under emergency scenarios,” IEEE Internet Things J., vol. 10,
no. 23, pp. 20342–20357, 2023.

[19] Y. Zhang, J. Guo, Y. Cai, and Y. Wu, “Research on autonomous 6TiSCH
network resource demand calculation based on queuing theory,” in Proc.
IEEE ICAIBD, 2022.

[20] F. Chiariotti, B. Soret, and P. Popovski, “Latency and peak age of
information in non-preemptive multipath communications,” IEEE Trans.
Commun., vol. 70, no. 8, pp. 5336–5352, 2022.

[21] C. Chaccour et al., “Can terahertz provide high-rate reliable low-latency
communications for wireless VR?” IEEE Internet Things J., vol. 9,
no. 12, pp. 9712–9729, 2022.

[22] D. Manlove, Algorithmics of matching under preferences. World
Scientific, 2013, vol. 2.

[23] S. Bayat, Y. Li, L. Song, and Z. Han, “Matching theory: Applications in
wireless communications,” IEEE Signal Process. Mag., vol. 33, no. 6,
pp. 103–122, 2016.

[24] E. Bodine-Baron et al., “Peer effects and stability in matching markets,”
vol. 6982, pp. 117–129, 2011.

[25] T. Park and W. Saad, “Kolkata paise restaurant game for resource
allocation in the Internet of things,” in Proc. IEEE ACSSC, 2017.

[26] K. S. Trivedi, Probability & Statistics with Reliability, Queuing, and
Computer Science Applications. John Wiley & Sons, Ltd, 07 2016.

Benedetta Picano (M’20) received the B.S. degree
in Computer Science, as the M.Sc. degree in Com-
puter Engineering, from the University of Florence,
where she received the Ph.D. degree in Information
Engineering. She was a Visiting Researcher at the
University of Houston. Her research fields include
matching theory, nonlinear time series analysis,
digital twins, microservices, resource allocation in
edge and fog computing infrastructures, and machine
learning.

Romano Fantacci (F’05) is a Full Professor of
Computer Networks at the University of Florence,
Florence, Italy, where he heads the Wireless Net-
works Research Lab. He received the M.S. degree
in Electrical Engineering from the University of
Florence, Italy and the Ph.D. degree in Computer
Networks from the University of Florence, Italy. His
current research interests encompass several fields
of wireless engineering and computer communica-
tion networking including, in particular, performance
evaluation and optimization of wireless networks,

emerging generations of wireless standards, cognitive wireless communica-
tions and networks, and satellite communications and systems. Dr. Fantacci
was elected Fellow of the IEEE in 2005 for contributions to wireless communi-
cation networks. He received several awards for his research, including the IEE
Benefactor Premium, the 2002 IEEE Distinguished Contributions to Satellite
Communications Award, the 2015 IEEE WTC Recognition Award, the IEEE
sister society AEIT Young Research Award and the IARIA Best Paper
Award, the IEEE IWCMC’16 Best Paper Award and the IEEE Globecom’
16 Best Paper Award. He served as Area Editor for IEEE Trans. Wireless
Commun., Associate Editor for IEEE Trans. on Commun., IEEE Trans.
Wireless Commun. Regional Editor for IET Communications and Associate
Editor for several non-IEEE Technical Journals. He guest edited special issues
for IEEE Journals and Magazines and served as Symposium Chair of several
IEEE conferences, including VTC, WCNC, PIRMC, ICC and Globecom. Dr.
Fantacci currently serves on the Board of Governors of the IEEE sister society
AEIT, as Area Editor for IEEE IoT Journal and as member of the Steering
Committee of IEEE Wireless Comm. Letters.


