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GaMiCO: Game-slicing based Multi-interface
Computation Offloading in 5G Vehicular Networks

Suhwan Jung, Hyoil Kim, Xinyu Zhang, and Sujit Dey

Abstract—Smart vehicles require constantly running heavy
vehicular computations with their limited computation/energy
resources. 5G vehicular networks have potential to resolve the
issue, by letting the vehicular tasks offloaded to 5G mobile edge
computing (MEC) servers. To better support vehicular computa-
tion offloading, this paper proposes a road-side 5G infrastructure
consisting of multiple millimeter-wave (mmWave) small-cell base
stations (BSs) and a cellular mid-band based macro-cell BS where
each BS is equipped with an MEC server. Then, the vehicles
with mmWave/mid-band dual interfaces can decide which BS
to choose for offloading. We propose a decentralized offloading
decision mechanism where each vehicle tries to minimize the
time-energy joint cost with three choices: local computing,
offloading to a small-cell MEC, offloading to a macro-cell MEC.
In particular, we model the problem as an ordinal potential
game, derive its potential function to ensure the existence of
and finite-time convergence to a Nash equilibrium (NE), analyze
its Price-of-Anarchy, and develop an iterative offloading decision
update algorithm. In doing so, we also consider slicing the global
game into multiple non-overlapping smaller games and running
them in parallel, to investigate the best slicing strategy. Our
extensive simulations show the game’s real-time convergence to
an NE, reveal the NE’s near-optimal performance, and present
the efficacy of the proposed game slicing.

Index Terms—5G, computation offloading, game slicing, mil-
limeter wave, mobile edge computing, potential game, vehicular
network

I. INTRODUCTION

Smart vehicles have emerged as an important trend in
transportation, thanks to the recent advances in autonomous
driving, artificial intelligence (AI), and electric vehicles. While
vehicles’ computing power is consistently growing, it is not
fast enough to handle diversified and heavy tasks such as
processing exploding sensory data, driver monitoring, platoon-
ing, infotainment, etc. Energy consumption in computation is
another critical factor due to the slow evolution of the bat-
tery technology. Therefore, efficiently processing computation-
intensive vehicular tasks has become one of the most important
problems [1], [2].
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Computation offloading is a promising solution to the
computation-intensive vehicular applications. By offloading
local tasks to the resource-rich cloud servers via wireless chan-
nels, smart vehicles can process heavy tasks remotely while
reducing their energy consumption. In case the cloud servers
are located at public clouds (e.g., Amazon’s AWS, Google’s
GCP, Microsoft Azure), however, offloading should suffer
from high latency in accessing the servers. Hence, alleviating
communication latency in offloading has been identified as a
critical issue [3], [4].

Nowadays, 5G mobile edge computing (MEC) is expected
to mitigate such latency effectively, by placing them at the
mobile edge (thus closer to the vehicles). The cloud resources
(henceforth called the MEC server) are usually installed at
a base station (BS), where the BS can be either a macro
cell BS (mBS) or a small cell BS (sBS). There is a tradeoff
between mBS’s MEC server (mMEC) and sBS’s MEC (sMEC)
server: the mMEC has more computing power but can be
accessed through bandwidth-limited cellular bands, while the
sMEC, possibly installed at roadside units (RSUs), has limited
computing power (mainly due to its small form factor) but
can be accessed via millimeter wave (mmWave) links with
extensive bandwidth. As a result, 5G MEC based computation
offloading introduces a unique challenge to smart vehicles:
whether to offload or not, and where to offload (mMEC vs.
sMEC).

Existing work on vehicular task offloading mostly con-
sidered utilizing sub-6GHz mid-bands for the vehicle-to-sBS
wireless link when offloading a task to the sMEC [5]–[8].
Moreover, offloading to the mMEC is assumed to be per-
formed by transmitting the task to the sBS first and then for-
warding it to the mMEC via an optical wired backhaul between
the sBS and the mBS [5], [6], [9], [10]. Such backhaul-based
forwarding, however, would entail a high implementation cost
to deploy a backhaul per each small cell [11]–[13], and
should endure additional non-trivial delays to transmit over
the backhaul, including the conversion delay between electrical
and optical signals, compared to the direct wireless access to
sBSs and mBSs [14], [15].

Unlike the aforementioned approaches, this paper proposes
a multi-interface computation offloading mechanism for 5G
vehicular networks, where each vehicle is equipped with two
wireless interfaces, mid-band and mmWave, and has three
choices for a given task: local computing, offloading to an
mMEC (henceforth called ‘mBS offloading’), and offloading
to a sMEC (henceforth called ‘sBS offloading’). By offloading
tasks wirelessly to both sMEC (via mmWave) and mMEC
(via mid-band), we can solve the issue of implementation cost

1229-2370/23/$10.00 © 2023 KICS



492 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 4, AUGUST 2023

and delay incurred by the wired backhaul. In fact, leveraging
mid-band and mmWave together has been also utilized by 5G
NR to improve network coverage and data rate for mobile
devices [16], [17]. Considering that nowadays 5G cellphones
can support both midband and mmWave band with manage-
able chipset prices, we believe our proposal of dual-interface
vehicular architecture is realistic.

Among the three offloading choices, local computing has the
weakest computing power but does not incur any communica-
tion overhead. If a task is offloaded, however, sBS offloading
incurs less communication overhead than mBS offloading
thanks to larger channel bandwidth, but offers inferior com-
puting power. Therefore, each vehicle should carefully decide
what offloading option to choose so as to jointly minimize
the overall latency and energy consumption of the offloaded
computation.

In particular, we formulate the problem as an ordinal
potential game, to realize distributed offloading decision by
individual vehicles. Some existing work in the offloading
literature have proposed centralized decision making methods
considering multiple MEC server locations at small and macro
cells [18], [19]. In the offloading context, however, it is known
that centralized decision does not scale well with the number
of vehicles, thus leading to an NP-hard problem [20]. On the
other hand, distributed decision-making can ease the burden
of centralized control, for which game theory is a powerful
tool. Hence, we hereby adopt a game theoretic approach to
model the strategic interactions between the vehicles.

Most game theoretic approaches for computation offloading
in vehicular networks assumed a quasi-static scenario, where
the set of vehicles and their channel conditions remain un-
changed during a game period [20]–[23]. Such approaches,
however, are not suitable for high-speed vehicle environments
where the channel’s coherence time reaches only about tens
of milliseconds [24], [25]. Therefore, it is crucial to ensure
the quasi-static assumption in any game theoretic formulation
of vehicular scenarios by designing the game to converge
within the coherence time. To do so, this paper proposes
slicing the global game covering the whole road into smaller
games (henceforth called ‘game slices’) each covering a non-
overlapping road block, so as to run those games in parallel.
In addition, we develop a method of determining the optimal
number of game slices that minimizes the system-wise cost
while satisfying the quasi-static condition.

The contributions of the paper are four-fold as follows.

• This paper proposes a novel multi-interface offloading
architecture with mmWave-based small cells and a cellu-
lar mid-band-based macro cell, where a vehicle has three
computation venues: local, sMEC, and mMEC. To the
best of the authors’ knowledge, this is the first attempt
to consider dual MEC server locations with small cells
operated by mmWave bands.

• The paper presents how to model inter-vehicle com-
petition on offloading resources with a game theoretic
framework. Specifically, the paper casts the problem
into a potential game and proves the existence of Nash
equilibrium (NE) by deriving the corresponding potential

function. In addition, we derive the lower/upper-bounds
of the price of anarchy (PoA) for the game.

• The paper proposes game-slicing based multi-interface
computation offloading (GaMiCO), a practical algorithm
with which vehicles can participate in the offloading game
in a distributed way. This paper analytically shows how
fast the proposed iterative algorithm can converge to a
NE. In addition, the dynamics of the game is shown via
extensive simulations, e.g., how fast a NE is reached in
practice, how good the NE is compared to the optimum,
and how effective the game slicing is for minimizing
the system-wide cost considering various vehicle arrival
rates. Then, we compare the performance of the proposed
algorithm with state-of-the-art game-theoretic offloading
schemes.

• The paper evaluates the impact of game slicing on
GaMiCO’s game convergence time, and also shows that
our optimal game slicing technique can satisfy the quasi-
static assumption in practical vehicular offloading sce-
narios. To the best of the authors’ knowledge, our work
is the first paper that slices the global game into parallel
ones to guarantee the quasi-static assumption in vehicular
offloading environments.

The rest of the paper is organized as follows. Section II
introduces related work, and then Section III describes our sys-
tem model. Section IV formulates the multi-interface compu-
tation offloading potential game, and derive its potential func-
tion. Section V elaborates on the proposed offloading game
algorithm, and analyzes the convergence of the algorithm.
Section VI derives the lower and upper bounds of the PoA.
Section VII evaluates the performance and dynamics of the
proposed game, and the paper concludes with Section VIII.

II. RELATED WORK

A 5G network is built upon a multi-tier architecture com-
posed of relays, small cells, and macro cells, designed to
enhance spectral efficiency, coverage, and interference man-
agement [26]. Among the work dealing with MEC offloading
in the 5G network [13], [15], [27]–[29], some studies treated
small cells just as relays between mobile users and the macro
cell’s MEC server [13], [15], [27]. While [13] assumed a wire-
less backhaul between sBS and mBS, [15], [27] considered a
wired backhaul between them. Others assumed that only small
cells are equipped with MEC servers [28], [29], e.g., [28]
proposing small cell cloud computing (SCC) and [29] con-
sidering the offloading decision problem to minimize per-user
energy consumption. As opposed to the aforementioned works,
we assume that MEC servers are placed at both sBS and mBS.

Regarding the work on dual MEC locations at small and
marcro cells (also referred to as the three-tier/layer architec-
ture), [18], [19] have dealt with centralized optimal decision
by a mBS for minimizing per-user cost or maximizing per-
operator revenue. As mentioned in [20]–[22], however, de-
centralized offloading decision has several advantages than
centralized decision, and thus we formulate the multi-interface
offloading problem with game-theoretic approaches. In partic-
ular, the potential game has been considered as a technique
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for decentralized computation offloading. In this vein, [20]
formulated decentralized computation offloading in a multi-
user environment as an ordinal potential game. [21] introduced
a decentralized multi-user multi-channel offloading algorithm.
[22] proposed a distributed multi-channel offloading algorithm
that releases the channel resources of transmission-completed
tasks for transmission-incomplete tasks. Aforementioned stud-
ies, however, considered macro cell’s MEC server as the sole
offloading destination.

Computation offloading has been treated as a powerful tool
for the vehicular network. [9] analyzed the characteristics
and the performance of vehicular Wi-Fi offloading scenarios.
[10] proposed a theoretical model to characterize the per-
formance of mmWave in a highway vehicular network with
blockages. [30] formulated a mmWave beam design problem
with position prediction based beam switching for vehicle-to-
infrastructure communications. Aforementioned works, how-
ever, treated Wi-Fi access points or mmWave BSs just as relays
with no computing resources. Since vehicular applications
usually have stringent latency requirements, it is imperative
to consider small cells as an offloading target.

In terms of dual-MEC computation offloading in vehicular
networks, [5], [6] jointly dealt with offloading decision and
MEC resource allocation considering the MEC servers at
RSUs and at the remote cloud. While they adopted different
types of game theoretic approaches for multi-vehicle offload-
ing decisions, both assumed that offloaded tasks to the remote
cloud should go through the wired backhaul between an RSU
and the remote cloud, which causes non-negligible delay as
discussed earlier in Section I. On the contrary, our dual-MEC
architecture has an advantage in the sense that the mMEC (as
an equivalent to the remote cloud) can be directly accessed by
a vehicle via its own wireless interface.

Only few works [7], [8] have considered offloading to
both of sMEC and mMEC via wireless links. [7] consid-
ered densely-deployed distributed small cells focusing on the
impact of interference and limited resources of sBSs, and
proposed a hierarchical genetic algorithm and a particle swarm
optimization method to minimize the total energy consumption
of all mobile devices. On the other hand, [8] studied the
channel and computation resource allocation problem from
the content provider’s perspective, where the potential game is
utilized to maximize the number of allocated mobile devices
while minimizing the system cost.

To the best of the authors’ knowledge, this paper is the
first game theoretic study that tries to solve the issue of game
convergence within channel coherence time in the vehicular
offloading environment, by splitting the global game into
smaller game slices.

III. SYSTEM MODEL

We consider a set N = {1, 2, · · ·, N} of smart vehicles
with computationally intensive tasks, which are geometrically
covered by two types of BS, a single mBS and multiple sBSs.
Each BS is equipped with its own MEC server, where the
mBS’s server is superior to the sBS’s server in computation.
We also assume the mBS utilizes 5G cellular spectrum under

Fig. 1. Multi-interface computation offloading in 5G vehicular networks.

6 GHz whereas each sBS is a 5G mmWave BS equipped
with a set of phased-arrays [16], [17], [31], [32]. In addition,
each smart vehicle (which is a user equipment) is assumed
to be equipped with two types of network interfaces (mid-
band and mmWave) through which two simultaneous wireless
connections with the mBS and a sBS are maintained. Our
system model is depicted in Fig. 1.

The mmWave spectrum, ranging from 24 GHz to
300 GHz [33], suffers from higher attenuation loss than the
mid-band spectrum. To compensate the loss, beamforming
using high-gain phased array antennas has been considered
for mmWave transmission. Furthermore, the array of phased
arrays (APA) has been proposed to further extend the field-
of-view of mmWave BS’s coverage [34]. Assuming the hybrid
beamforming architecture (i.e., multiple RF chains exist where
each of them is connected to one phased array), we can also
make a mmWave sBS maintain multiple beams simultane-
ously, each associated with a separate vehicle.

We assume periodic offloading where the mBS periodically
announces the start of a new offloading epoch to all the
vehicles within its coverage.1 Then, the vehicles participate
in the announced offloading game concurrently. In addition,
the offloading epoch consists of four sequential steps: of-
floading decision (local vs. sMEC vs. mMEC), (if offloaded)
uplink transmission of the task to sMEC or mMEC, offloaded
computation at the MEC, and downlink transmission of the
computation result to the vehicle. Note that we assume the
downlink transmission time is negligible since the computation
result is usually quite small [20], [21].

We assume N does not change during an offloading period
(i.e., a quasi-static scenario), with little loss of generality as
justified below. To guarantee the quasi-static scenario, two
conditions must be met — the channel state should not change
until the tasks are uplink transmitted, and handover should
not occur until the computed results are transmitted through
the downlink — which can be satisfied as follows. First,
Section VII-C will show that with our game slicing, the tasks

1Considering that various delay-sensitive tasks generate and collect in-
formation periodically [35], [36], we assume that the game also occurs
periodically. In the meantime, we reserve it as our future work to determine
the optimal game period by considering practical task-related factors such as
queuing, task arrival rate, etc.
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can be uplink-transmitted within the channel coherence time
of both mBS and sBS. For instance, for a vehicle moving at
80 km/h, the channel coherence time is obtained as 34.38 ms
for mBS [37] and 40.95 ms for sBS [25].2 In the meantime,
our slicing-based game consumes at most 32.89 ms until
the completion of uplink transmission, thus less than both
coherence times, while the existing game-theoretic approaches
may exceed the coherence times. Second, Section VII-F will
also show that only up to 1.82% of the vehicles would cross
a small or macro cell’s edge until the downlink transmis-
sion completes, suggesting that the quasi-static assumption
becomes valid if such cell-edge located vehicles are guided
not to participate in the game but to compute locally.

We consider that vehicle n has a task to offload which runs
with input data of bn bits and requires cn CPU cycles for
computation. Then, we denote by an ∈ {0, 1, 2} the offloading
decision of vehicle n ∈ N , where an = 0 means local
computing, an = 1 means sBS offloading, and an = 2 means
mBS offloading. We also denote by a = (a1, a2, · · ·, aN ) the
decision profile of all the vehicles.

We also assume that the offloaded task’s code already
exists at MEC servers, which is achievable since the set
of offloadable vehicular tasks should be known in advance
and thus their codes can be pre-installed at MEC servers by
the offloading service provider. Regarding the communication
latency between a vehicle and a BS, we consider uplink
transmission time as a major factor due to potentially heavy
offloading data, while assuming that downlink transmission
time is negligible.

A. Game Slicing Model

As mentioned in Section I, we propose slicing one global
offloading game (that covers the entire road) into parallel non-
overlapping games, each called a ‘game slice’. Each slice
belongs to the set G = {1, 2, · · ·, NGS} with NGS game
slices. In addition, each vehicle belongs to the slice covering
its current location on the road, and thus slice g includes a set
of vehicles Ng and

∑NGS

g=1 |Ng| = N . We also assume that the
mBS’s channel bandwidth, denoted by Bm,3 is distributed to
NGS game slices such as

∑NGS

g=1 Bg
m = Bm, where Bg

m is the
macro cell channel bandwidth allocated to game slice g ∈ G.
Note that Section III-C will explain how Bg

m is allocated to
the vehicles in the slice, while Section VII will evaluate the
impact of game slicing on minimizing the system-wide cost.

Fig. 2 shows how the global game can be sliced into NGS

game slices in a real road environment, where each red box
represents the area a single game slice covers. For instance,
Fig. 2(a) addresses a scenario where NGS = 1, indicating that
all vehicles on the road particiapte in the single global game.
Note that we tried to evenly distribute the traffic load into the
multiple slices, by making per-slice area the same. Although

2Note that the vehicle moving at 80 km/h (equivalently 22.22 m/s) would
associate with its sBS via an allocated beam for 63 ms. Specifically, assuming
the beamwidth is 10◦ for the maximum beam gain [38] and the 8 m high sBS
is right above the road, the length of the road section covered by the beam
becomes 8× tan(5◦)× 2 = 1.4 m, and thus 1.4/22.22× 103 = 63 ms.

3Bm can be also thought as the reserved portion of the cellular bandwidth
for offloading services.

Fig. 2. Game slicing model.

this paper assumes NGS is an exponential power of 2 for
the ease of visualization, how it is sliced can be determined
differently by the offloading service providers.

B. Communication Model: MmWave sBS

We assume that each vehicle can be assigned its own
separate line-of-sight (LoS) beam from its associated sBS by
considering the following deployment scenario: 1) sBS are
installed at a high position and at the both sides of the road,
2) sBS are densely deployed (by nature) and there exist a
large number of phased arrays per sBS. We believe such a
scenario reflects the reality to some extent since sBS can be
installed at tall streetlamps (following the RSU deployment
scenario in the 3GPP TR 37.885 which considers the antenna
height of 5 meters), and the number of phased arrays per
mmWave BS is up to eight nowadays [39] and tends to
increase. According to the experimental evidence in [40],
the probability of a link suffering from LoS blockage when
assuming the 5 meter sBS height is only 2% in the highway
scenario. The paper also showed that more than 99% of
blockages disappear by increasing the BS height to 10 meters,
regardless of deployment scenarios. Based on this evidence,
our orthogonal beam assignment through the LOS path seems
reasonable.

By the assumption, a vehicle’s uplink transmission to its sBS
is not affected by other vehicles’ transmissions, and hence the
uplink data rate rsn of vehicle n (with an = 1) is given as

rsn = Bs · log2(1 + SNRs
n), (1)

where Bs is the mmWave channel bandwidth and SNRs
n is

the signal to noise ratio (SNR) measured at the sBS of vehicle
n. To obtain SNRs

n, we introduce the beamforming antenna
gains [38] to the omnidirectional large-scale path loss model
for a 28 GHz LOS channel in [41], such as

PLLOS
28GHz(d)[dB] =(61.4− (GTX +GRX))

+ 21 log(d) + χσ, (2)

where d (m) is the distance between vehicle n and the sBS, χσ

is normally distributed with zero mean and standard deviation
of σ = 3.6 (dB), and GTX and GRX (both in dB) are
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beamforming antenna gains at the transmitter and the receiver,
respectively.4 Note that GTX and GRX may depend on the
mmWave beam pattern (e.g., beam width).

C. Communication Model: Cellular mBS

We assume each vehicle desires to finish their uplink
transmission to the mBS within td ms, where td ms is a design
parameter according to the target quality of service (QoS)
or quality of experience (QoE) level of the network opera-
tor [43]–[45]. Furthermore, we assume ‘td ms’ is an elastic
deadline, i.e., it is a preference but not a requirement for
vehicles. Then, we can calculate the necessary amount of
bandwidth Wn for vehicle n to complete the uplink trans-
mission in time, such as

Wn =
103 · bn

td · log2(1 + SNRm
n )

, (3)

where bn is the offloading data size and SNRm
n is the SNR

observed at the mBS.5 To obtain SNRm
n , we can refer to the

LTE suburban/rural macro channel model [46].
Since Bg

m, mBS’s channel bandwidth assigned to slice g,
should be shared by the vehicles belonging to the slice, we
consider proportional resource allocation where the allocated
bandwidth of vehicle n ∈ Ng is given as

Bg
m ·

Wn

Wn +
∑

i ̸=n,i∈Ng
Wi · I(ai=2)

, (4)

where I(x) is an indicator fucntion that returns 1 if the
event x is true and 0 otherwise. The intuition of proportional
bandwidth allocation is that offloading users are sensitive to
latency and thus it is important to be fair in providing the same
level of uplink transmission delay to the macro cell users.

Finally, we calculate the uplink data rate of vehicle n as

rmn (ag) =
Bg

m ·Wn

Wn +
∑

i ̸=n,i∈Ng
Wi · I(ai=2)

· log2(1 + SNRm
n ),

(5)

where ag is the decision profile of the vehicles in slice g.

D. Computation Model: Local Computing

When a vehicle chooses local computing, there are two
kinds of cost involved, computational latency and energy
consumption in computation. Denoting by f l

n (cycles/second)
the computing power of vehicle n, the computational latency
tln is derived as

tln =
cn
f l
n

. (6)

Next, denoting by ϵn (J/cycle) the energy consumption per
CPU cycle, the energy consumption eln is given as

eln = ϵn · cn. (7)

4The Doppler effect has been assumed to be mitigated by utilizing Doppler
shift compensation techniques as proposed in [10], [42].

5In reality, the offloading data size also includes extra bits for constructing
a 4G/5G frame, e.g., header size. Since we consider relatively large bn (e.g.,
uniformly distributed in [10, 30] KB) than such overhead, we ignore the
extra bits in this formulation. Including them in the analysis, however, is
straightforward.

Using (6) and (7), the local computing cost Zl
n is given as

Zl
n = eln + λ · tln = cn · (ϵn +

λ

f l
n

), (8)

where λ ∈ [0, 1] is the weighting factor between time and
energy, to capture a vehicle’s preference between them.6 As
λ gets closer to 1, vehicles care more about time than energy.
Note that λ needs to be well-tuned not only to make a good
balance between energy and delay, but also to compensate
their difference in magnitude. In such a vein, Section VII will
evaluate the influence of λ by varying its value.

E. Computation Model: Offloading to sBS’s MEC (sMEC)

Unlike local computing, offloading to sBS or mBS should
deal with additional overhead in uplink transmission to derive
the overall cost. Using (1), we can calculate the time overhead
ts,on incurred by uplink transmission to a sBS as

ts,on = bn/r
s
n. (9)

Denoting by P s
n (W) the uplink transmit power of vehicle n

to its sBS, the energy consumption es,on due to transmission is
derived as

es,on = P s
n · bn/rsn. (10)

Next, we need to calculate the computing time at the sMEC.
denoting by fs the computing power of the sMEC, the
computational latency ts,cn of the offloaded task is given as

ts,cn = cn/fs. (11)

Finally, using (9), (10), and (11), the sBS offloading cost
Zs
n is derived as

Zs
n = es,on + λ · (ts,on + ts,cn ) =

bn
rsn
· (P s

n + λ) + λ · cn
fs

. (12)

As previously mentioned, we have ignored the downlink
transmission time for receiving the processing result of an
offloaded task.

F. Computation Model: Offloading to mBS’s MEC (mMEC)

The derivation of the mBS offloading cost is very similar to
that of sBS offloading, except that mBS’s communication and
computation parameters should be used. First, let us denote by
fm the computational capability of the mMEC, and by Pm

n the
uplink transmit power of vehicle n to the mBS. Then, using
(3) and (5), we can derive the overheads of mBS offloading
similarly to the sBS case, such as

tm,o
n =

bn
rmn (ag)

, em,o
n = Pm

n ·
bn

rmn (ag)
, tm,c

n =
cn
fm

,

(13)

where tm,o
n denotes the time overhead incurred by uplink trans-

mission to the mBS, em,o
n denotes the energy consumption due

to transmission, and tm,c
n denotes the computational latency of

6Before applying the weighted sum of energy and time, they can be
individually normalized for unitless combining. Such an approach, however is
fundamentally the same as ours in (8), as the former is only a scaled version
of the latter.
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the offloaded task. Finally, we can derive the mBS offloading
cost Zm

n using (13), such as

Zm
n = em,o

n + λ · (tm,o
n + tm,c

n ) =
bn(P

m
n + λ)

rmn (ag)
+

cnλ

fm
.

(14)

IV. POTENTIAL GAME FORMULATION

In this section, we present how to formulate the distributed
offloading decision making problem with game theoretic anal-
ysis. We first formulate it as a strategic game, and then show
that the game is a potential game by deriving its potential
function. Note that potential games are known to guarantee
the existence of an NE and finite-time convergence to the NE.

By the communication model in Section III, a vehicle’s local
computing cost and sBS offloading cost are not affected by
other vehicles’ decisions. Therefore, each vehicle can initially
compare its local computing cost with its sBS offloading cost,
to decide which one of them is better (i.e., smaller). Then,
the vehicle compares the chosen option (i.e., local or sBS
offloading) with mBS offloading to make the final decision.
As discussed earlier, the mBS offloading cost is influenced
by other vehicles in the same slice due to the proportional
resource allocation mechanism in (4); as more vehicles offload
to mBS, allocated bandwidth per vehicle decreases and in turn
per-vehicle data rate is impaired, leading to an aggravated
offloading cost in (14). Hence, the vehicles choosing mBS
offloading should participate in the mBS offloading game, until
when no more vehicles want to deviate from their decisions.
In this vein, Section V will propose an iterative decision
update algorithm to guarantee distributed decision making and
convergence.

A. Game Formulation as a Strategic Game

The strategic game is a non-cooperative decentralized game
[47], for which we need to define the set of players, per-player
strategy, and per-player utility (or cost) function. In game slice
g, Ng is the set of players, and the decision of player n ∈ Ng

is given as an ∈ Ag
n = {0, 1, 2} where Ag

n represents the
player’s set of strategies. Then, the strategy space Sg is given
as Sg = Ag

Ng(1)
× Ag

Ng(2)
× · · · × Ag

Ng(|Ng|), where each
element of Sg is called a strategy profile [48]. Note that Ng(k)
denotes kth element of Ng . In the sequel, we will omit the
slice index g unless necessary otherwise.

Now, per-player cost function Zn in slice g is determined
as

Zn(an, a−n) =


Zl
n, if an = 0

Zs
n, if an = 1

Zm
n (ag), if an = 2

(15)

where a−n = (a1, a2, · · ·, a(n−1), a(n+1), · · ·, a|Ng|). Note that
the slice-wide cost is then obtained as

∑
n∈Ng

Zn(a
g), while

the system-wide cost is obtained as
∑NGS

g=1

∑
n∈Ng

Zn(a
g).

Next, we can formulate our game as a strategic game such as
Gg = [Ng,Sg, {Zn}n∈Ng

], where each vehicle (i.e., a player)
wants to minimize its cost given others’ decision profiles, i.e.,

min
an∈Ag

n={0,1,2}
Zn(an, a−n). (16)

Then, the NE of the game is defined as a strategy profile
from which no vehicle intends to deviate as long as others’
strategies remain unchanged [47], and the strategy profile a∗ =
(a∗1, a

∗
2, · · ·, a∗n) is called a pure-strategy NE if and only if

Zn(a
∗
n, a

∗
−n) ≤ Zn(an, a

∗
−n), ∀an ∈ Ag

n,∀n ∈ Ng. (17)

B. Verifying the Game to Be a Potential Game

A game is considered as a potential game if it has a
potential function that maps each player’s strategy update to
the change of the real number the function produces. The
potential game is very useful since it always ensures the
existence of NE. Moreover, any asynchronous update (i.e.,
only one player updates at each given decision time) always
leads to convergence to an NE in finite time.

Our game Gg becomes an ordinal potential game if and
only if a potential function ϕ(ag) : Sg 7→ R exists, such that
∀n ∈ Ng ,

Zn(an, a−n)− Zn(a
′
n, a−n) >0

⇔ ϕ(an, a−n)− ϕ(a′n, a−n) >0, ∀an, a′n ∈ Ag
n. (18)

To derive our game’s potential function, we first state the
dynamics of the game by considering three cases: local com-
puting vs. sBS offloading, local computing vs. mBS offloading,
and sBS offloading vs. mBS offloading.
local computing (an = 0) vs. mBS offloading (an = 2):
Using (8) and (14), Zl

n < Zm
n leads to

T (l,m)
n < Wn +

∑
i ̸=n,i∈Ng

Wi · I{ai=2}, (19)

where

T (l,m)
n =

Bg
m ·Wn · cn · (ϵn + λ

f l
n
− λ

fm
)

bn · (Pm
n + λ)

· log2(1 + SNRm
n ).

(20)

Equation (19) states that if the threshold T
(l,m)
n is smaller than

the sum of required bandwidth by the vehicles choosing mBS
offloading, vehicle n should prefer local computing against
mBS offloading.
sBS offloading (an = 1) vs. mBS offloading (an = 2): Using
(12) and (14), Zs

n < Zm
n leads to

T (s,m)
n < Wn +

∑
i ̸=n,i∈Ng

Wi · I{ai=2}, (21)

where

T (s,m)
n =

Bg
m ·Wn

bn · (Pm
n + λ)

· log2(1 + SNRm
n )

×
(

bn · (P s
n + λ)

Bs · log2(1 + SNRs
n)

+λ · cn ·
(

1

fs
− 1

fm

))
.

(22)
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local computing (an = 0) vs. sBS offloading (an = 1): Using
(8) and (12), Zl

n < Zs
n leads to

cn ·
(
ϵn +

λ

f l
n

)
<

bn(P
s
n + λ)

Bs · log2(1 + SNRs
n)

+ λ · cn
fs

, (23)

which then becomes

T
(s,m)
k > T

(l,m)
k , (24)

by applying (20) and (22).
Now, for vehicle k in slice g, there exist six possible

decision changes, from ak to a′k. Since a vehicle updates its
decision only when it will reduce its cost, (19), (21), and (24)
instantly give us the following necessary conditions:

ak = 0→ a′k = 1 : T
(l,m)
k − T

(s,m)
k > 0, (25)

ak = 1→ a′k = 0 : T
(s,m)
k − T

(l,m)
k > 0, (26)

ak = 0→ a′k = 2 : T
(l,m)
k > Wk +

∑
i̸=n,i∈Ng

Wi · I{ai=2},

(27)

ak = 2→ a′k = 0 : T
(l,m)
k < Wk +

∑
i̸=n,i∈Ng

Wi · I{ai=2},

(28)

ak = 1→ a′k = 2 : T
(s,m)
k > Wk +

∑
i ̸=n,i∈Ng

Wi · I{ai=2},

(29)

ak = 2→ a′k = 1 : T
(s,m)
k < Wk +

∑
i ̸=n,i∈Ng

Wi · I{ai=2}.

(30)

Using these relationships, we can show that the multi-
interface computation offloading decision game is a potential
game by constructing its potential function ϕ with given
decision profile a, as stated in the following theorem.

Theorem 1: The proposed multi-interface computation of-
floading decision game is an ordinal potential game with a
potential function ϕ(ag) given as

ϕ(ag)

=
∑
i∈Ng

Wi · T (s,m)
i · I{ai=1} +

∑
i∈Ng

Wi · T (l,m)
i · I{ai=0}

+
1

2

∑
i∈Ng

2Wi +
∑

j ̸=i,j∈Ng

Wj · I{aj=2}

 ·Wi · I{ai=2}.

(31)

Proof: We need to show that (18) holds for all possible
six combinations of (an, a

′
k). To do so, we rewrite ϕ(ag) as

ϕ(ak, a−k), and for i, j ∈ Ng we apply three possible values

of ak to (31) such as

ϕ(ak = 0, a−k) =
∑
i ̸=k

Wi · T (s,m)
i · I{ai=1}

+Wk · T (l,m)
k +

∑
i ̸=k

Wi · T (l,m)
i · I{ai=0}

+
∑
i ̸=k

W 2
i · I{ai=2}

+
1

2

∑
i ̸=k

(∑
j ̸=i
j ̸=k

Wj · I{ai=2}

)
Wi · I{ai=2},

(32)

ϕ(ak = 1, a−k) =Wk · T (s,m)
k +

∑
i̸=k

Wi · T (s,m)
i · I{ai=1}

+
∑
i ̸=k

Wi · T (l,m)
i · I{ai=0}

+
∑
i ̸=k

W 2
i · I{ai=2}

+
1

2

∑
i ̸=k

(∑
j ̸=i
j ̸=k

Wj · I{ai=2}

)
Wi · I{ai=2},

(33)

ϕ(ak = 2, a−k) =
∑
i ̸=k

Wi · T (s,m)
i · I{ai=1}

+
∑
i ̸=k

Wi · T (l,m)
i · I{ai=0}

+W 2
k +

∑
i ̸=k

(W 2
i +WkWi) · I{ai=2}

+
1

2

∑
i ̸=k

(∑
j ̸=i
j ̸=k

Wj · I{ai=2}

)
Wi · I{ai=2}.

(34)

Then, when ak = 0→ a′k = 1 happens, it means vehicle k’s
sBS offloading cost is smaller than its local computing cost,
i.e., Zk(ak, a−k)−Zk(a

′
k, a−k) > 0. In addition, by (32) and

(33), we have

ϕ(ak, a−k)− ϕ(a′k, a−k) = Wk · (T (l,m)
k − T

(s,m)
k ) > 0,

(35)

where the last inequality comes from (25). As a result, it
satisfies the definition of ordinal potential games in (18).
Similarly, the decision update ak = 1 → a′k = 0 means
Zk(ak, a−k)−Zk(a

′
k, a−k) > 0, which also satisfies (18) such

that

ϕ(ak, a−k)− ϕ(a′k, a−k) = Wk · (T (s,m)
k − T

(l,m)
k ) > 0,

(36)

where the last inequality comes from (26).
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Next, when ak = 0 → a′k = 2 happens, vehicle k’s mBS
offloading cost is smaller than its local computing cost, i.e.,
Zk(ak, a−k)− Zk(a

′
k, a−k) > 0. By (32) and (34), we have

ϕ(ak, a−k)− ϕ(a′k, a−k)

= Wk ·
(
T

(l,m)
k −Wk −

∑
i ̸=k,i∈Ng

Wi · I(ai=2)

)
> 0, (37)

where the last inequality comes from (27), thus satisfying (18).
On the other hand, when ak = 2 → a′k = 0, (18) is also
satisfied since

ϕ(ak, a−k)− ϕ(a′k, a−k)

= Wk ·
(
Wk +

∑
i ̸=k,i∈Ng

Wi · I(ai=2) − T
(l,m)
k

)
> 0, (38)

where the last inequality comes from (28).
Finally, when ak = 1→ a′k = 2, (33) and (34) provide

ϕ(ak, a−k)− ϕ(a′k, a−k)

= Wk ·
(
T

(s,m)
k −Wk −

∑
i ̸=k,i∈Ng

Wi · I(ai=2)

)
> 0, (39)

where the last inequality comes from (29), leading to (18).
Similarly, according to (30), ak = 2→ a′k = 1 leads to

ϕ(ak, a−k)− ϕ(a′k, a−k)

= Wk ·
(
Wk +

∑
i ̸=k,i∈Ng

Wi · I(ai=2) − T
(s,m)
k

)
> 0, (40)

thus satisfying (18).
As a result, all six cases satisfy (18), which completes the

proof.
By the property of ordinal potential games, Theorem 1 also

confirms that our game should have a Nash equilibrium and it
can be reached in finite time by developing a proper iterative
decision update algorithm, where the latter will be discussed
in the next section.

V. GAME-SLICING BASED MULTI-INTERFACE
COMPUTATION OFFLOADING ALGORITHM

One key feature of the ordinal potential game is that it
should be an asynchronous improvement process to ensure
finite time convergence to a NE [47], [48]. It means that only
one vehicle should be allowed to update its decision at a time.
To fulfill the requirement, this section proposes the iterative of-
floading decision update algorithm called game-slicing based
multi-interface computation offloading (GaMiCO) that satis-
fies the asynchronous improvement property. The proposed
algorithm also addresses another important issue: how each
vehicle can obtain the information necessary for its distributed
decision update. This arises since the mBS communication
model in (4) states that per-vehicle uplink channel resources
depend on the aggregate demand of the vehicles offloading
to the mBS. Therefore, each vehicle needs to know the sum
demand while not knowing which vehicles are choosing mBS
offloading.

Algorithm 1 provides the pseudo-code of the proposed
algorithm. At first, every vehicle assumes that all the ve-
hicles in the same slice initially choose local computing,

i.e., an = 0,∀n (line 4), and then determines its initial
decision (line 5).7 When the derived decision is either an = 0
or an = 1, the vehicle exits the algorithm while performing
corresponding operation, i.e., local computing or offloading to
sBS (lines 7 and 8). Otherwise, the vehicle will participate
in the mBS offloading game by sending the ‘Offloading
Request’ message to the mBS, with Wn enclosed (line 11). We
assume this uplink transmission occurs simultaneously among
the vehicles with an = 2 in the same uplink subframe of
5G, where each vehicle is using its own assigned physical
resource block (PRB). After collecting all the requests, the
mBS broadcasts the calculated sum demand to the vehicles
via the ‘Offloading Response’ message (lines 12–13). The
vehicles involved in the game will go through a repeated
process with multiple iterations until convergence to a NE is
reached (lines 10–26). Specifically, each vehicle re-calculates
its best decision among three options (line 14), and if the
result is to deviate from an = 2 then the vehicle will send the
‘Change Decision’ message to the mBS (line 16). Again, such
transmissions from multiple vehicles occur in the same uplink
subframe. Then, the mBS selects one vehicle among them
randomly, and broadcasts the ‘Change Approval’ message with
the chosen vehicle’s id and the updated sum demand to exclude
Wn of the chosen one (line 17). The selected vehicle changes
its decision (line 18) while other vehicles keep their decisions
as before (line 21). When the mBS no longer receives any
Change Decision message, it broadcasts the ‘Convergence’
message to announce that a NE is reached and then the game
is finished (line 26).

A. Convergence Analysis of the Algorithm

Despite the fact that a potential game ensures finite-time
convergence, it is practically important to understand how fast
it would converge to a NE. To address this, we first investigate
the time complexity of the algorithm using the big O notation
and then analyze the upperbound of the time required for
the algorithm to converge. Because the time complexity is
dominated by the algorithm’s most time-consuming parts, we
focus on the offloading decision process corresponding to
lines 14–24. Denoting by Mg the upperbound of the number
of iterations until convergence, Ng vehicles perform argmin
until Mg iterations in the worst case. Since the complexity of
each iteration is O(Ng), the time complexity of the algorithm
becomes O(Mg ×Ng).

Next, we analyze the upperbound of the convergence time
of the algorithm. Algorithm 1 would require at most (3+2Mg)
TTIs (transmission time intervals), considering that each up-
link/downlink transmission takes one subframe and a subframe
corresponds to one TTI. More specifically, the initial exchange
of Offloading Request and Offloading Response messages costs
two TTIs, each iteration also needs two TTIs for Change
Decision and Change Approval messages, and the final Con-

7Assuming an = 0, ∀n at initialization is reasonable since it will give
the least mBS offloading cost (the cost grows as more vehicles join mBS
offloading). That is, if vehicle n wouldn’t choose mBS offloading even
when an = 0, ∀n, it will never choose it in any circumstances (thus not
necessitating joining the mBS offloading game.
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Algorithm 1 Game-slicing based multi-interface computation
offloading (GaMiCO)

1: define an(t) as an at decision iteration t
2: set t = 0
3: initialization (for each vehicle n ∈ Ng):
4: assume an′(0) = 0, ∀n′ ̸= n, n′ ∈ Ng

5: compute an(0) = argminan∈{0,1,2} Zn(an, a−n)
6: end initialization
7: if an(0) = 0 then run the task locally and exit
8: else if an(0) = 1 then offload the task to sBS and exit
9: end if

10: repeat for each vehicle n and each iteration t:
11: send Offloading Request to mBS with Wn enclosed
12: receive Offloading Response from mBS
13: with

∑
i∈Ng

Wi · I{ai=2} enclosed
14: compute a′n(t) = argminan∈{0,1,2} Zn(an, a−n)
15: if an(t) ̸= a′n(t) then
16: send Change Decision to mBS
17: if receive Change Approval from mBS then
18: update an(t+ 1) = a′n(t)
19: if an(t+ 1) ̸= 2 then go to line 7
20: end if
21: else keep the original decision: an(t+ 1) = an(t)
22: end if
23: else keep the original decision: an(t+ 1) = an(t)
24: end if
25: update the iteration: t← t+ 1
26: until Convergence is received from mBS

vergence announcement takes another TTI. Note that in 5G
NR, one TTI equals to 0.125 ms [49].

To derive Mg , we consider the upperbound of the potential
function ϕ(ag) (denoted by Pmax) and the minimum amount
of decrease in ϕ(ag) when a vehicle changes its decision
(denoted by Pmin). Then, Mg can be determined as

Mg = ⌈Pmax/Pmin⌉, (41)

following the approach introduced in [21].
Let us define Dmax

n for vehicle n ∈ Ng as

Dmax
n = Wn ·max

T (s,m)
n , T (l,m)

n ,Wn +
1

2

∑
j ̸=n,j∈Ng

Wj

 .

(42)

Then, by the form of ϕ(a) in (31), Pmax is obtained as

Pmax =
∑
i∈Ng

Dmax
i . (43)

Next, the definition of Pmin implies that ϕ(ak, a−k) −
ϕ(a′k, a−k) ≥ Pmin. To obtain Pmin, we define Dmin

n as

Dmin
n = min

{
Wn ·

∣∣∣T (s,m)
n − T (l,m)

n

∣∣∣ ,
Wn ·

∣∣∣∣∣∣T (l,m)
n −

∑
i∈Ng

Wi

∣∣∣∣∣∣ , Wn ·

∣∣∣∣∣∣T (s,m)
n −

∑
i∈Ng

Wi

∣∣∣∣∣∣
}
.

(44)

Note that each term inside the min operator states the differ-
ence in the potential function due to the three types of decision
changes, i.e., between local computing and sBS offloading,
local computing and mBS offloading, and sBS offloading and
mBS offloading, each corresponding to (35) and (36), (37) and
(38), and (39) and (40), respectively. Then, Pmin is obtained
as

Pmin = min
n

Dmin
n . (45)

In Section VII, we will numerically evaluate the number of
iterations required for convergence in practical scenarios, to
show that the algorithm actually converges much earlier than
the derived Mg in most cases.

VI. PRICE OF ANARCHY ANALYSIS

The price of anarchy (PoA) measures how much ‘game
theoretic competition’ can approximate the performance of
‘cooperation between game players’ [50]. Following the defini-
tion, this section analyzes the efficiency of our multi-interface
computation offloading game slicing by quantifying the ratio
of the worst-case NE performance to the optimal performance
(achieved by the centralized solution), in a term of the system-
wide cost

∑NGS

g=1

∑
n∈Ng

Zn(a
g).

Let āg = (āNg(1), āNg(2), · · ·, āNg(|Ng|)) be the optimal
decision profile minimizing the system-wide cost in slice g,
and âg = (âNg(1), âNg(2), · · ·, âNg(|Ng|)) be the worst-case
NE such that âg = argmaxag∈Sg

∑NGS

g=1

∑
n∈Ng

Zn(a
g).

Then, the PoA is defined as

PoA =

∑NGS

g=1

∑
n∈Ng

Zn(â
g)∑NGS

g=1

∑
n∈Ng

Zn(āg)
, (46)

where a smaller PoA implies that the game shows better
performance.

Unfortunately, it is mathematically intractable to derive an
exact decision profile that can achieve the worst-case NE.
Moreover, it is infeasible to derive the optimal centralized
solution due to the exponentially-growing search space with
the number of vehicles. Therefore, following the approach pre-
sented in [20], [21], we investigate the upper and lower bounds
of the PoA instead, to analyze how far the performance of the
proposed game can deviate from the optimal performance. To
do so, we define two terms, Zm

n,min and Zm
n,max, which are the

minimum and the maximum mBS offloading cost of vehicle n,
respectively, provided that n chooses mBS offloading. Zm

n,min

is achieved when only vehicle n selects mBS offloading, so
that it can fully utilize the mBS’s channel bandwidth. In such
a case, by (4) and (5), the uplink data rate of vehicle n in slice
g is maximized as

rmn,max = Bg
m · log2(1 + SNRm

n ), (47)

and thus Zm
n,min is derived as

Zm
n,min =

bn · (Pm
n + λ)

Bg
m · log2(1 + SNRm

n )
+

cnλ

fm
, (48)

by applying rmn,max to rmn (ag) in (14).
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Zm
n,max is obtained when all the users in the same slice

select mBS offloading, where vehicle n’s uplink data rate is
minimized as

rmn,min =
Bg

m ·Wn∑
i∈Ng

Wi
· log2(1 + SNRm

n ), (49)

and hence Zm
n,max becomes

Zm
n,max =

bn · (Pm
n + λ)

Bg
m · log2(1 + SNRm

n )
·
∑

i∈Ng
Wi

Wn
+

cnλ

fm
. (50)

Now, we can show the two bounds of the PoA in the
following theorem.

Theorem 2: The PoA of the proposed multi-interface
computation offloading game is bounded as

1 ≤ PoA ≤
∑NGS

g=1

∑
n∈Ng

max{min{Zl
n, Z

s
n}, Zm

n,max}∑NGS

g=1

∑
n∈Ng

min{Zl
n, Z

s
n, Z

m
n,min}

. (51)

Proof: Since āg minimizes the system-wide cost, the PoA
should be lower-bounded by 1. For the upper bound of PoA,
we need to find the lower bound of

∑
n∈Ng

Zn(ā
g) and the

upper bound of
∑

n∈Ng
Zn(â

g).
If vehicle n performs mBS offloading in the optimal solution

āg , i.e., ān = 2, we have

Zn(ā
g) = Zm

n (āg) ≥ Zm
n,min ≥ min{Zl

n, Z
s
n, Z

m
n,min}.

Otherwise (i.e., ān = 0 or 1), we have

Zn(ā
g) = min{Zl

n, Z
s
n} ≥ min{Zl

n, Z
s
n, Z

m
n,min}.

So, we can conclude that

Zn(ā
g) ≥ min{Zl

n, Z
s
n, Z

m
n,min}. (52)

If vehicle n performs mBS offloading in the NE solution
âg , i.e., ân = 2, we have

Zn(â
g) = Zm

n (âg) ≤ Zm
n,max ≤ max{min{Zl

n, Z
s
n}, Zm

n,max}.

Otherwise (i.e., ân = 0 or 1), we have

Zn(â
g) = min{Zl

n, Z
s
n} ≤ max{min{Zl

n, Z
s
n}, Zm

n,max}.

So, we can conclude that

Zn(â
g) ≤ max{min{Zl

n, Z
s
n}, Zm

n,max}. (53)

Finally, we can obtain the upper bound of the PoA by
applying (52) and (53) to (46).

In Section VII, we will numerically evaluate the system-
wide cost achieved by the optimal decision set, to show how
the proposed game theoretic approach performs well compared
to the centralized optimal method.

ds
dmdd

macro cell BS

small cell BS

Fig. 3. The simulation scenario and topology.

VII. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
game theoretic mechanism via numerical simulations. Fig. 3
illustrates our simulation scenario, where a mBS with 1 km
coverage radius [51] coexists with multiple sBSs deployed on
both sides of a six-lane highway.8 The mBS is dm meters away
from the center of the road and the inter-sBS distance is ds
meters. We set dm = 500 m and ds = 100 m [52] making 32
sBSs deployed in the whole network (16 sBSs on each side
of the road).

For each sBS, we set the channel bandwidth
as Bs = 100 MHz and the transmit power as
P s
n = 23 dBm [53].9 We also set GTX = GRX = 24.5 dBi

for the mmWave path loss model, utilizing a configuration
of 10◦ beamwidth given by 12 × 12 antenna elements on
a 66 mm × 66 mm plate [38], [54].10 For the mBS, we
set the transmit power as Pm

n = 23 dBm.11 Then, we set
the mBS channel bandwidth to Bm = 100 MHz in VII-A
through VII-G (to observe the impact of the arrival rate on
game slicing),12 while in VII-H we vary the mBS bandwidth
in finding the optimal number of game slices that minimizes
the system-wide cost at various vehicle arrival rates, to
consider practical scenarios.

For the tasks to offload, the input data size bn is uniformly
distributed in [10, 30] KB and the required number of CPU
cycles is cn = 2500 (cycles/bit). For local computing, we set
ϵn = 1.2 (nJ/cycle) according to [55], [56], and set the com-
puting power of a vehicle as f l

n = 2.5 GHz. For computing
at MEC servers, we set the computational capability of the
mMEC and the sMEC as fm = 10 GHz [1] and fs = 5 GHz,
respectively. In addition, considering the system-level require-
ments of various vehicular network applications [43]–[45],
we set the elastic deadline for uplink transmission to the mBS
as td = 100 ms.

8We have chosen a highway scenario for the smart vehicles, since it is
considered as an early-stage deployment site of autonomous driving due to
less unpredictability (e.g., no pedestrians, no traffic lights).

923 dBm is the maximum total radiated power (TRP) for power class 3.
10Considering the form factor of a vehicle, the assumed antenna size seems

practical.
1123 dBm is the maximum uplink transmit power of power class 3 for non

high power UE (HPUE).
12We assume the mBS bandwidth is fully utilized, which is possible in

suburban/rural highway scenarios considered in this paper.
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The arrival and mobility pattens of vehicles are sim-
ulated by the widely-used SUMO (Simulation of Urban
MObility) simulator [57]. Specifically, we assume the ve-
hicles have an average speed of 80 km/h while arriving
at the road section in Fig. 3 with varying arrival rates as
{0.2, 0.6, 1.0, 1.4, 1.8} (vehicles/sec), corresponding to an av-
erage of {21, 54, 84, 110, 137} (vehicles) on the road. For
a given arrival rate, we run one hundred simulations each
with different data size realizations, and in each simulation
run we wait until the road is fully occupied by vehicles and
then take the snapshot of vehicle locations at ten independent
time moments. In a snapshot, each vehicle’s mBS and sBS
uplink channels are generated by the 3GPP channel model,
where a vehicle chooses the closest sBS as its sBS. Then, we
run Algorithm 1 in each snapshot, and observe the average
performance over one thousand snapshots (since there are ten
runs, each with one hundred snapshots).

We set λ, the weighting factor between time and energy, to
0.5, while it varies in Section VII-E to investigate its impact
on the system dynamics.

A. Impact of Game Slicing on the System-wide Cost

Fig. 4 illustrates the evolution of the system-wide cost with
Algorithm 1’s iteration, for various arrival rates. According to
the arrival rate, Fig. 5 shows that some values of NGS could
make the game convergence plus uplink transmission time
grow beyond the channel coherence time,13, thus violating the
quasi-static assumption in Section III (i.e., game convergence
and uplink transmission must be completed within the channel
coherence time). Therefore, we have excluded such cases in
each of Fig. 4 (like in (d) and (e)). Then, we analyze the effect
of game slicing on the system-wide cost. When the arrival
rate is 0.2, no slicing (i.e., NGS = 1) minimizes the system-
wide cost. As the arrival rate gradually increases, however,
the cost-minimizing number of game slices (in terms of NGS)
varies. For the arrival rates {0.6, 1.0, 1.4, 1.8} (corresponding
to a total of {54, 84, 110, 137} vehicles respectively), the
optimal NGS is found as {1, 8, 16, 32}. In conclusion, unlike
the existing game theoretic work without game slicing, our
approach of slicing the game according to the traffic volume
is more beneficial in minimizing the system-wide cost. In
Section VII-D, we will compare the performance of our
algorithm with other state-of-the-art game-theoretic offloading
schemes. Then in Section VII-G, we will further investigate
the impacts of game slicing on the cost and PoA.

B. Convergence Time to a NE with Varying Arrival Rate

In every case of Fig. 4, the system-wide cost tends to
decrease with iterations, eventually converging to a minimal
value once an NE is reached. For each arrival rate in Fig.
4, we consider the optimal number of game slices minimiz-
ing the system-wide cost. Then, thus-obtained case’s NE is
reached after {2, 13, 14, 16, 12} iterations, corresponding to
the five arrival rate values. Since the algorithm consumes

13Since mBS’s channel coherence time (34.38 ms) is tighter than sBS’s
(40.95 ms), we have considered mBS’s channel coherence time.

(3 + 2 · (the number of iterations until convergence)) TTIs as
derived in Section V-A, the observed iterations correspond to
{0.88, 3.63, 3.88, 4.38, 3.38} ms respectively. On the contrary,
in the legacy game theoretic approaches without game slicing
(i.e., NGS = 1), the convergence time becomes worse as
{0.88, 3.63, 12.38, 23.63, 32.63} ms for those arrival rates.

We then compare the observed number of iterations un-
til convergence with M , the upperbound of the number
of decision iterations required for convergence in (41).
For the five arrival rates considered, M is calculated as
M = {17, 50, 74, 101, 246} iterations respectively, and hence
the proposed algorithm converges to an NE much faster than
the maximal possible iterations predicted by M .

Moreover, Fig. 6 presents the total number of vehicles on
the road, the number of vehicles offloading to mBS at NE,
and the number of vehicles offloading to sBS at NE, each
obtained by averaging over ten snapshots. Naturally, all three
numbers tend to increase with arrival rate, while the number
of ‘mBS offloading’ vehicles grows more slowly than that
of ‘sBS offloading’ vehicles, gradually saturating due to the
bandwidth competition in mBS’s uplink channel.

C. Impact of Game Slicing on the Quasi-static Assumption
In this simulation, we show the impact of game slicing on

ensuring the quasi-static assumption. Figs. 7 and 8 show the
combined time taken for the game to converge and the tasks to
be uplink-transmitted after that, with and without game slicing,
respectively. Fig. 7 shows that with game slicing, it takes at
most 32.89 ms even in the worst case, which is less than the
channel coherence time. On the contrary, Fig. 8 shows that
without game slicing, it may exceed the channel coherence
time as the arrival rate increases. In addition, the combined
time shows a large variance among the vehicles in Fig. 7
whereas the variance becomes negligible in Fig. 8. This is
because the vehicles belonging to the same game slice have
the same game convergence time while having a similar uplink
transmission time given by (4),14 while the vehicles belonging
to different slices would have different game convergence and
uplink transmission times. In conclusion, with varying arrival
rate, the quasi-static assumption can be guaranteed only by
applying our game slicing method.

D. Comparison with Other Baseline Offloading Schemes
We evaluate our GaMiCO in comparison with the following

game-theoretic offloading schemes, in terms of the system-
wide cost and the game convergence time.

• Local computing only (LCO): An algorithm where
vehicles always compute their tasks locally.

• Distributed computation offloading algorithm (DCO):
The algorithm in [21] that addresses the problem of
making decisions between local computing and mBS
offloading, considering how multiple mobile users can
efficiently achieve wireless access coordination.

• Distributed multi-channel computation offloading al-
gorithm (DMCO): The algorithm in [22] that pro-
poses offloading decision-making between local and mBS

14Note that in Fig. 8, there is only one slice – the single global game.
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Fig. 4. The evolution of system-wide cost with varying arrival rate.
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while releasing the channel resources of transmission-
completed tasks for transmission-incomplete tasks.

Regarding the system-wide cost, both GaMiCO and DMCO
achieve the best performance where GaMiCO performs better
than DMCO at high arrival rates while DMCO is better at low
rates, as shown in Fig. 9. In terms of the game convergence
time, however, GaMiCO performs the best among all the
algorithms, as shown in Fig. 10. More importantly, the game
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Fig. 7. The combined time taken for the game to converge and the tasks to
be uplink-transmitted, with game slicing.
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be uplink-transmitted, without game slicing.

convergence time remains very small and steady in GaMiCO,
whereas it increases fast with arrival rate in other algorithms.
In conclusion, the proposed GaMiCO algorithm not only
shows the best performance in minimizing the system-wide
cost but also successfully suppresses the game convergence
time thus ensuring the quasi-static assumption.
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Fig. 9. The evolution of system-wide cost with varying arrival rate compared
to other game-theoretic approaches.
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Fig. 10. The evolution of game convergence time with varying arrival rate
compared to other game-theoretic approaches.
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E. Per-vehicle Decision with Varying λ

In this test, we present the impact of varying λ on the
achieved NE. Fig. 11 shows that as λ grows, more vehicles
try to offload to the mBS, regardless of the arrival rate. This is
because the considered task requires heavy computation, and
hence the computing latency at a MEC server affects vehicles’
offloading decision significantly. That is, the larger λ gets, time
cost reduction is more crucial, thus making the vehicles prefer
mBS’s superior MEC server against sBS’s MEC server.

F. Impact of Mobility During a Game Period

In this simulation, we show the impact of vehicle mobility
on the quasi-static assumption made in Section III. It is
possible that a cell-edge located vehicle should leave its
game due to the change of its associated sBS or the mBS.
We measured the number of such vehicles, with the vehicle
arrival rate varying as {0.2, 0.6, 1.0, 1.4, 1.8}. On average,
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Fig. 12. Optimal vs. System-wide cost.

only {0, 1.82, 1.13, 1.63, 1.25}% of the vehicles (respectively)
are changing their cell association during a game period, thus
having little impact on the proposed game framework.

G. Goodness of NE Compared to the Optimum

In this simulation, we evaluate the goodness of the achieved
NE by comparing it to the optimal solution, in terms of the
average system-wide cost (over one thousand snapshots), and
also analyze the impact of game slicing on minimizing the
system-wide cost. The optimal profile is obtained by a brute-
force search method that enumerates all possible decision pro-
files and measures the cost of each profile.15 Then, we measure
the ratio of the average system-wide cost to the centralized
optimal cost (based on the obtained optimal profile), denoted
by ‘% against centralized optimal cost’, to show how much
more cost our scheme incurs than the optimum.

Fig. 12 suggests that a proper number of game slices (i.e.,
NGS) can effectively minimize the system-wide cost, where
the best NGS varies with the arrival rate. It also shows that
optimizing the system-wide cost does not necessarily achieve
the best performance compared to the centralized optimal
cost, i.e., ‘% against centralized optimal cost’. Nevertheless,
the performance loss (i.e., extra cost incurred) at the NE
is measured as at most 3.59%, showing that our algorithm
achieves a near-optimal performance. Considering that finding
the optimal profile requires perfect information on all the
vehicles and should deal with enormous search space, the
observed performance loss (by applying game theory) seems
quite reasonable.

H. Optimal Number of Game Slices for the Minimal Cost

In this simulation, we observe the tendency of the optimal
number of game slices which minimizes the system-wide cost
when various mBS bandwidths and arrival rates are considered
(over one thousand snapshots). Fig. 13 shows that the optimal
number of game slices varies according to a given pair of mBS
bandwidth and arrival rate, presenting two different trends.
First, when the mBS bandwidth is fixed, the optimal number
of game slices tends to increase as the arrival rate grows.
Similarly, when the arrival rate is fixed, the optimal number

15When the brute-search method is used, the time required to find the
optimal overhead increases exponentially with the number of vehicles per
game. Hence, Fig. 12 omits some of the optimal cost values which incurred
prohibitively large computational time.



504 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 4, AUGUST 2023

1
2

2.0

4

1.8

8

1.6 100

16

1.4 90

O
p

ti
m

a
l 

 N
G

S

1.2 80

arrival rate (vehicles/sec)

701.0 60

mBS bandwidth (MHz)

0.8 50

32

0.6 40
300.4

200.2 10

Fig. 13. Optimal NGS minimizing the system-wide cost under heterogeneous
input data distributions.

1
2

2.0

4

1.8

8

1.6 100

16

1.4 90

O
p

ti
m

a
l 

 N
G

S

1.2 80

arrival rate (vehicles/sec)

701.0 60

mBS bandwidth (MHz)

0.8 50

32

0.6 40
300.4

200.2 10

Fig. 14. Optimal NGS minimizing the system-wide cost under homogeneous
input data distributions.

of game slices increases as more mBS bandwidth is given
while experiencing sudden drops at 40 MHz (for the arrival
rates from 0.4 to 2.0) and around 80–90 MHz (for the arrival
rates from 1.0 to 2.0). In fact, such drops are rooted at the
randomness of the system-wide cost due to the heterogeneous
input data distributions. More specifically, the system-wide
cost at 40 MHz turns out almost indistinguishable between
NGS = 8 and NGS = 16 (only up to 0.83% difference) thus
making the optimal NGS to be 8 while at 30 and 50 MHz
it is 16. The sudden drop around 80–90 MHz occurs due to
the same reason. With homogeneous distribution, however, no
such dropping happens as shown in Fig. 14, since there exists
no randomness in input data distributions.

Note that the results in Figs. 13 and 14 can be used to
establish optimal offloading service provisioning with minimal
system-wide cost.

VIII. CONCLUSION

This paper considered multi-interface computation offload-
ing in 5G vehicular networks, and proposed how to model it as
an ordinal potential game. We further considered game slicing
and derived the potential function to justify the potential
game formulation, and proposed an offloading decision game
algorithm with finite-time convergence to the NE. We have
analyzed the upperbound of the decision iterations towards
convergence and the price of anarchy of the proposed game.
Then, our extensive simulations have shown that our algorithm
converges to an NE in finite time, which is as good as the
centralized optimal solution. It has also been shown that the

system-wide cost can be minimized by finding the optimal
number of game slices according to various traffic conditions.
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