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Channel Prediction Based on Non-Uniform Pilot
Pattern for Mobile Massive MIMO Scenarios

Yi Shi, Xianling Wang, and Zhiyuan Jiang

Abstract—Massive multiple input multiple output (MIMO) is
a broadly used technique that can provide numerous gains in
spectral efficiency. However, the degradation of beamforming
performance due to outdated channel state information at the
transmitter side (CSIT) induced by the mobility of users has
been a significant problem waiting to be solved. It is reported that
system performance will decrease 50 percent even in a moderate
30 km/h speed scenario. However, the CSI cannot be simply
reconstructed through interpolation in high mobility scenarios
due to the limitation of pilot density — the phenomenon is known
as “Doppler aliasing”. To address this, we propose a novel non-
uniform pilot pattern that can provide more spectrum resolution
compared with the uniform pilot currently used in most commu-
nication protocols. Meanwhile, we maintain the density of pilots
in order not to sacrifice the payload resources. Based on the novel
pilot setting, we propose two-channel prediction schemes with
compressive sensing and matrix completion methods. Simulation
results show our scheme can outperform deep learning-based and
auto-regressive-based methods for about 15 percent in terms of
average throughput in the simulated channel generated from the
COST2100 channel model. To further verify the applicability,
we apply our schemes in real channels measured from a channel
sounding campaign, the proposed methods also achieve 5 percent
gain which validates their superiority over conventional methods.

Index Terms—Channel aging, channel prediction, compressive
sensing, massive MIMO, matrix completion.

I. INTRODUCTION

MASSIVE multiple input and multiple output (MIMO)
is a developed technology that has been proven [1]

to greatly promote spectral efficiency. It has attracted a lot
of attention both academically and industrially and has been
applied in many aspects of communication systems, including
interference cancellation, multiplexing and etc. The increasing
degree of freedom brought by the unprecedented number
of the antenna can drastically promote the performance of
beamforming. Most of the beamforming techniques [2], [3]
assume perfect channel state information at the transmitter
side (CSIT) to guarantee the system performance. However,
as a matter of fact, the idealism of CSIT can be jeopardized
by many factors, the mobility of user ends is one of them,
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both in TDD and FDD systems, because the channel will be
outdated when the time it is used in downlink beamforming.
It is reported that there exists a 50% performance degradation
even in 30 km/h mobility scenario [4]. Meanwhile, with the
overwhelming need for communication in moderate, even high
mobility scenarios, such as Internet of vehicles and high-speed
train. This problem should be urgently tackled.

Generally speaking, the channel prediction task of a pilot-
assisted system can be logically divided into two parts: pre-
diction of CSI on the future pilot and non-pilot symbols. To
the best of our knowledge, most of the proposed channel
prediction schemes are focused on addressing the first part and
leverage conventional interpolation methods to reconstruct the
non-pilot symbols. These works can be generally split into two
categories: methods with or without knowing channel temporal
correlation function in advance.

A. Methods with Known Temporal Correlation

In the first category, the temporal correlation function is
supposed to be known in advance according to the channel
model concerned. Among all the considered channel mod-
els, the Jakes model is the most frequently used one. It
assumes N equal-strength rays arrive at a moving receiver
with uniformly distributed angles. In [5], the authors propose a
channel predictor based on the Wiener filter with the temporal
correlation function derived from the Jakes channel model.
Similarly, ref [6], [7] analyze the performance of the Kalman
filter on predicting the channel in the massive MIMO case.
Ref [8] considers a scenario where the mobility of users are
different, resulting in different temporal correlation function
and it proposes an adaptive Kalman filter to address this
problem. In addition, the influence of pilot contamination is
also considered. However, knowing the temporal correlation
function in advance is a strict assumption because the Jakes
model differs a lot from the real-world channel which sig-
nificantly degrades the performance when applied in a real
channel.

B. Methods with Unknown Temporal Correlation

In the second category, the temporal correlation function
is extrapolated from the observed channel instead. Ref [4]
proposes an angular-delay domain prediction scheme based
on the Prony method, an auto-regressive algorithm, to predict
the CSI on dominant angular delay grids. It shows a good
performance in terms of pilot symbol prediction both in
low and high-mobility scenarios. Similarly, ref [9] utilize the
burg method and modified covariance method to calculate the
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temporal correlation coefficient. Besides, some other works
leverage super-resolution methods to extract temporal-related
parameters like the Doppler frequency of each multipath
component (MPC) and then reconstruct the future channel.
It can predict arbitrary future CSI as long as the parameters
do not change. Ref [10] proposes a two-step estimation of
signal parameters via rotational invariance technique (ESPRIT)
algorithm to extract the delay, Doppler shift, and complex
amplitude of each MPC in an orthogonal frequency division
multiplexing (OFDM) MIMO system. Ref [11] considers a
doubly diverting channel and uses the EMVD method to
solve the parameter mismatching problem of ESPRIT. In
addition, deep learning methods have also been applied in
channel prediction. Ref [12] exploits a combination of convo-
lutional neural network (CNN) and long short term memory
RNN (LSTM) to predict future CSI in a 5 minute interval. The
user mobility is not considered in this work. Ref [13] also uses
LSTM to predict future CSI for vehicular beamtracking, but
the acquisition of the CSI on future non-pilot symbols is not
mentioned.

Although the methods in the second category do not rely
on the prior assumption of the channel temporal correlation,
they only evaluate the prediction performance on future pilot
symbols and the observed CSI is evenly spaced in the time
domain which can be acquired with a uniform pilot pattern.
However, if we interpolate the future non-pilot symbols and
take the prediction error on them into consideration, the
performance will drastically degrade in moderate to high user
mobility due to Doppler aliasing caused by the inadequate
density of evenly spaced pilot, which will be further elaborated
in Section II.

C. Contribution of This Paper

• A novel non-uniform pilot design is proposed to enable
the Doppler spectrum sensing in high mobility scenarios,
without sacrificing the payload resources compared with
a uniform pilot case.

• A model-based prediction scheme based on compressive
sensing is proposed. It estimates the sparse Doppler
spectrum on each angular-delay domain grid with the
help of high resolution enabled by massive MIMO. To
address the cyclic predicting problem caused by discrete
Fourier transform (DFT) sparsifying matrix, we introduce
a redundant dictionary and band-exclusion method to find
dominant Doppler peaks. The necessary recovery criteria
is then analyzed. Furthermore, to promote stability of
recovery, we combine with multiple measurement vec-
tor (MMV) and propose Rank-Aware based orthogonal
matching pursuit (OMP) with band-excluded redundant
dictionary (RAMBLE) algorithm.

• To further mitigate the additional estimation error intro-
duced by parameter extraction, a model-free prediction
scheme is then proposed which transfers the channel
prediction task into a matrix completion problem. It can
directly infer future CSI based on past observations. We
first give proof that the number of MPC equals the rank
of a Hankel matrix generated by the observed CSI then

Fig. 1. In the uplink period, the yellow strip represents the pilot slot, the green
strip represents the non-pilot slot and CSI can be measured on pilot slots and
forms an observation window whose size is W, the channel predictor can
predict future CSI for precoding in downlink subframe which is represented
by red strips.

use iterated soft threshold (IST) method to reconstruct
the future CSI in a rank minimization constraint.

• The performance of the proposed algorithms is tested
both in a simulated channel generated by the COST2100
channel model and a real channel measured through a
channel-sounding campaign. The results show that both
algorithms can achieve a good channel capacity compared
with the state-ofthe-art methods.

Notation: We use the following notation throughout the
paper. Bold letter X is used for matrices or vectors. Non-
bold letter x is used for scalars. (·)H and (·)T represent the
conjugate transpose and transpose. We use ∥ · ∥p to denote p
norm. |·| is the absolute value of its argument or the cardinality
of a set. ⟨·⟩ denotes the inner product of two vectors. X ⊗Y
is the Kronecker product of X and Y . vec(·) yields a vector
for a matrix argument and CN (µ, σ2) denotes a complex
circularly symmetric Gaussian random vector with mean µ and
correlation σ2. mod(·) and round(·) are modulo and round
operation, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a TDD massive MIMO OFDM system, the base
station, hereafter denoted by BS, is equipped with a planar
antenna array which has Nt = mn antennas, where m is the
number of columns and n is the number of rows. The user
equipment, hereafter denoted by UE, is equipped with a linear
array that has Nr antenna elements. In the uplink subframe,
the UE will transmit the sounding reference signal (SRS) [14]
for measuring CSI at the BS side and BS will precode the
signal at the downlink subframe with the predicted channel.

Because of the intermittency of the pilot, BS could not ac-
quire consecutive observations of CSI at the uplink subframe,
We let M = {H1, · · ·,H î, î ≤ W} as the measured CSI
set, where H î ∈ CNc×Nr×Nt is the measured CSI at the ith
pilot symbol in a W -length observation window, Nc is the
number of subcarriers. In the downlink subframe, BS will
use a CSI predictor, denoted as G, to predict downlink CSI
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based on past observations. The frame structure and channel
prediction process are depicted in Fig. 1. It is a uniform pilot
design where the interval of the pilot is denoted by Tsrs. In
the uplink period, the yellow strip represents the pilot symbol
and H î can be measured on them and forms an observation
window whose size is W . The green strip represents the non-
pilot symbol. The channel predictor forecasts the future CSI
for precoding in the downlink subframe which is represented
by red strips. A straightforward prediction method is to use the
CSI measured from the last pilot symbol to do beamforming.
However, because of the mobility of UE, the channel will
rapidly change temporally, so maintaining the last measured
CSI will significantly degrade the system performance. Hence,
a more dedicated channel predictor should be designed.

Define Gt(M) as the predicted channel of the tth OFDM
symbol following the observation window. Channel prediction
aims to design an optimal channel predictor, denoted as
Ĝ, to minimize the time average normalized mean squared
error (TNMSE) between predicted CSI and its ground-truth
value, which can be formulated as follows,

Ĝ = argmin
G

lim
T→+∞

1

T

T∑
î=1

∥Gî(M)−H î∥2
∥H î∥2

. (1)

A. Channel Model

The Nr × Nt spatial channel between the BS and UE on
each time-frequency grid can be represented as

Hq,k =
∑
n̂∈Γ

P∑
ĵ=1

αn̂,ĵat(θn̂,ĵ , ψn̂,ĵ)ar(ϕn̂,ĵ) (2)

× ej2πqνn̂,ĵ∆te−j2πkτn̂,ĵ∆f .

We denote Γ as cluster set of the scattering environment,
|Γ| is the number of clusters, each cluster contain P sub-
paths. q is OFDM symbol index, k is subcarrier index.
αn̂,ĵ , θn̂,ĵ , ψn̂,ĵ , ϕn̂,ĵ , νn̂,ĵ , τn̂,ĵ represent fading coefficient, el-
evation of departure (EoD), azimuth of departure (AoD),
azimuth of arrival (AoA), Doppler frequency and delay of
each path respectively. ∆t and ∆f is symbol duration time
and subcarrier spacing. ar(·),at(·) denote the steering vector
at transmitter and receiver end which have the following form,

at(θn̂,ĵ , ψn̂,ĵ) = V x(θn̂,ĵ , ψn̂,ĵ)⊗ V y(θn̂,ĵ , ψn̂,ĵ), (3)

ar(ϕn̂,ĵ) = [1, ejkd sinϕn̂,ĵ , · · ·, ejk(Nr−1)d sinϕn̂,ĵ ]T , (4)

where V x(·) and V y(·) can be viewed as the steering vectors
on the horizontal and vertical direction, respectively, with

vx(θn̂,ĵ , ψn̂,ĵ) =[1, ejkdx cos θn̂,ĵ cosψn̂,ĵ , (5)

· · ·, ejk(n−1)dx cos θn̂,ĵ cosψn̂,ĵ ]T

and

vy(θn̂,ĵ , ψn̂,ĵ) =[1, ejkdy cos θn̂,ĵ sinψn̂,ĵ , (6)

· · ·, ejk(m−1)dy cos θn̂,ĵ sinψn̂,ĵ ]T ,

where k = 2π/λ and λ is the carrier wavelength, d, dx, dy is
the inter-element spacing.

We should notice here that the parameters of each path
in the same cluster will be slightly different, it is practically
reasonable because, for a certain kind of reflector, the incident
angle of all rays will not be exactly the same.

B. Doppler Aliasing

Most of the related channel prediction works focus on
the prediction of future pilot symbols, and then reconstruct
the non-pilot symbol with conventional interpolation methods,
such as the DFT-based method. However, the conventional
interpolation method will incur aliasing when the uniform
pilot is not dense enough, especially in high-mobility cases.
We name this kind of aliasing “Doppler aliasing” and would
illustrate it in the angular-delay channel domain.

Define hq,k,r: as the rth column of Hq,k, which is the
antenna pair response related to the rth receive antenna, we
first construct H̄q,r ∈ CNt×Nc as,

H̄q,r = [hq,1,r:,hq,2,r:, · · ·,hq,Nc,r:], (7)

where the subscript denotes the qth symbol and the rth
receive antenna. The angular-delay domain channel can then
be expressed as,

Ĥq,r = (Dm ⊗Dn)H̄q,rD
H
Nc
, (8)

where Dk̂ ∈ Ck̂×k̂ is a normalized Discrete Fourier Transform
matrix of k̂th order. We denote the channel on the (i, j)th
angular-delay grid as Ĥq,r(i, j),

Next we define

Fq,r(i, j) =

W−1∑
q=1

Ĥq,r(i, j)e
−j 2π

W kq, q = 0, 1, · · ·,W − 1,

(9)
as the Doppler spectrum component of ĥr(i, j) =
[Ĥ1,r(i, j), · · ·, ĤW,r(i, j)]

T ∈ CW×1 and we let

fr(i, j) = [F1,r(i, j), · · ·, FW,r(i, j)], (10)

as the Doppler spectrum of the rth antenna on the (i, j)th
angular-delay domain grid in the observation window.

According to the Nyquist sampling theorem, for a lowpass
like fr(i, j), with its upper frequency denoted as fH(i, j),
if we want to reconstruct the Doppler spectrum from evenly
spaced channel measurements, the minimum sampling rate
should satisfy,

fs =
1

Tsrs
> 2fH(i, j). (11)

If Tsrs violates (11), the Doppler spectrum will be aliasing and
can not be reconstructed through a lowpass filter. According
to νn̂,ĵ = v cosβn̂,ĵ/λ, v, βn̂,ĵ , λ is the velocity, intersection
angle and wavelength of each path. When UE mobility in-
creases, the Doppler frequency of each path will increase,
and the sampling rate should be correspondingly greater to
satisfy the sampling theorem, it means that pilots should be
denser, but in reality, time-frequency resources are limited,
denser pilots also mean sacrifice of payload resources.
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C. Bandpass Sinc Interpolation

To address the problem proposed above, we first consider
a special case that makes the problem easier to be tackled. In
high mobility scenario, the Doppler frequency of each cluster
will become larger and if all the Doppler frequencies are
gathered in a certain range, the Doppler spectrum can then be
viewed as a bandpass signal, then bandpass interpolation can
be applied to reconstruct if it satisfies the following requisition.

For a bandpass signal which upper and lower frequency are
fH and fL, the sampling rate fs should satisfy

2fH

m̂+ 1
≤ fs ≤

2fL

m̂
, (12)

where m̂ > 0 is an integer and satisfy

m̂ ≤ fL

B
, (13)

where B is the bandwidth of the signal. Then we can apply the
following method to interpolate the CSI of non-SRS symbols.

Ĥt,r(i, j) =
2ωc∆T

π

+∞∑
ñ=−∞

Ĥñ∆t,r(i, j) sin

(
ωc(t− ñ∆T )

ωc(t− ñ∆T )

)
× cos(ωc(t− ñ∆T )),

(14)

where ωc = 2πfc, fc is the center frequency of a bandpass
signal.

Under the bandpass signal assumption, we can reconstruct
the CSI without increasing the density of pilots through band-
pass interpolation. However, this method will face two main
problems: firstly, the bandwidth and upper/lower frequency
of the Doppler spectrum are hard to estimate in practice.
Secondly, it’s an ideal hypothesis that the Doppler spectrum
is a bandpass signal, when there are lowpass frequency com-
ponents on the Doppler spectrum that violates the assumption,
bandpass interpolation will no longer work because it will still
involve aliasing.

To overcome the problems mentioned above, we introduce
two methods that combine the prediction on pilot and non-
pilot symbols as an integral. The first one is a model-based
algorithm called RAMBLE, which uses compressive sensing
to extract each non-zero component on the Doppler spectrum
and infers future CSI after reconstructing the channel. The
second one is model-free, which leverages the matrix interpo-
lation method to directly infer CSI based on past observations
without extracting channel parameters.

III. COMPRESSIVE SENSING BASED PREDICTION SCHEME

A. Compressive Sensing (CS) and Non-Uniform Pilot Design

Let y ∈ Cn denote a vector signal, CS considers a
compressed measurement yc = Φy, where Φ ∈ Cm×n

is a sensing matrix, with m < n, therefore CS is solving
an underdetermined equation, it is only applicable when y
is sparse, since y is normally not sparse in its shape, its
sparse representation can be obtained through a sparsifying
transform Ψ , in order to reconstruct the signal in sub-Nyquist

Fig. 2. This figure shows the non-uniform pilot pattern design, the minimum
interval of pilot is denoted by ∆Tmin and the density of pilot is remain the
same as in uniform case.

rate, the sensing matrix should be well-designed to satisfy the
restricted isometry property (RIP) [15]

(1− δ)∥y∥2 ≤ ∥Φy∥2 ≤ (1 + δ)∥y∥2, (15)

where 0 ≤ δ ≤ 1 is the RIP parameter. Typically, a random
matrix with entries independently sampled from a subgaussian
distribution can satisfy this property.

In our scenario, the sensing matrix reflects the sampling
pattern of pilots, the Gaussian random matrix is not available
here because BS can not acquire the CSI on every OFDM
symbol, as a substitution, we choose a random binary matrix
denoted as S. If a symbol is chosen to insert a pilot, the
corresponding entry is set to one, otherwise, it will be zero.
Therefore, the pilot is no longer uniform because of the
randomness.

S =

W︷ ︸︸ ︷

1 0 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · 1


}
ρW (16)

The sampling matrix is characterized by two parameters,
∆Tmin and ρ, where ∆Tmin denotes the minimum spacing
of non-uniform SRS and it determines the Doppler frequency
resolution of the non-uniform pilot. In order to have enough
granularity to resolve the maximum Doppler frequency, ∆Tmin

should satisfy 1/∆Tmin > fH(i, j). ρ denotes the density
of pilots in the observation window. To guarantee fairness,
we should not increase the density of the non-uniform pilot
compared with the traditional scheme, so we keep the non-
uniform pilot density the same as in the uniform case, without
compromising the available data resources. Therefore, the total
number of the non-uniform pilot in the observation window
can be expressed ρW = ⌊W∆t/Tsrs⌋. The non-uniform pilot
pattern design is depicted in Fig. 2.

To reconstruct the Doppler spectrum from measurements,
we can formulate the optimization problem on the (i, j)th
angular-delay domain grid (ADG) of each receive antenna.

F̂ = argmin
f

∥fr(i, j)∥0

s.t., yr(i, j) = SDH
Wfr(i, j),

(17)
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where yr(i, j) is the available observations on the selected
ADG. The above problem can be solved if the Doppler
spectrum of ADG is sparse enough, thanks to the sparse
property of the angular delay domain, each ADG is influenced
by a few clusters in which angular and delay are nearby.
Hence, the number of dominant clusters in each ADG is
approximately the sparsity of its Doppler spectrum. This is
partially applicable if each cluster contains only one path. Each
cluster has its Doppler frequency distribution because there is
more than one path in each cluster, the influence of this will
be further discussed in the next subsection. Problem (17) is
both numerically unstable and an NP-complete problem that
requires an exhaustive enumeration of all possible combina-
tions for the locations of the nonzero entries in fr(i, j) [16].
A classical method is minimize the L-1 norm instead, so (17)
is transformed to

F̂ = argmin
f

∥fr(i, j)∥1

s.t., yr(i, j) = SDH
Wfr(i, j).

(18)

There are many well-known algorithms to solve (18), such
as basis pursuit [17], orthogonal basis pursuit [18] and iterative
thresholding algorithm [19], we choose OMP for its simplicity.
OMP is an iterative method, it finds the atom that has the
highest inner product with the signal and subtracts from the
signal during each iteration.

After extracting all the non-zero Doppler components from
the observations, we use regularized least squared method [20]
to fit the amplitude of each Doppler frequency component to
mitigate the influence of processing noise during channel esti-
mation. Then the CSI can be reconstructed with a summation
of all the frequency components and the future CSI can be
deduced by increasing the time index.

However, if we use an orthonormal DFT basis as the
sparsifying matrix, the predicted CSI will be the duplication
of the observations because of the periodic property of DFT
which can be expressed as follows.

ωkN = ωk+mNN , (19)

where ω = e−2πi/N . This phenomenon is depicted in Fig. 3,
the left and right figures show the amplitude and angle
temporal variation of CSI on a certain ADG, the yellow
frame represents the observation window and the green frame
represents the prediction, which is the duplication of the
observation.

In the real world, it is impossible that the actual Doppler
frequency locates exactly based on the DFT, so the real
channel will not be periodic. To address the problems, we
resort to a Redundant dictionary to supply extra resolution
capability.

B. Redundant Dictionary Based Channel Prediction Method

Normally, the signal will be sparse on an orthonormal basis.
However, more often than not, sparsity is expressed not in
terms of an orthonormal basis but in terms of an overcomplete
dictionary. In this setting, the dictionary need not be orthonor-
mal or even incoherent and often it will be overcomplete,
meaning it has far more columns than rows. In our scenario,
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Fig. 3. The left and right figures show the variation of amplitude and phase
of observed CSI and predicted CSI respectively, the yellow frame is the
observation part and the red one is the predicted part. It can be seen from the
graph that the prediction is the duplication of the observation because of the
cyclic property of DFT.

to decrease the gap between real Doppler frequency and DFT
basis, we use oversampled DFT matrix as a dictionary, so
yr(i, j) can be expressed by a redundant dictionary which is
the first ρW rows of the Hermitian transpose of a FW order
DFT matrix

yr(i, j) = SD̂
H

FW f̂r(i, j), (20)

where D̂FW is shown in (21), and F is the refinement factor,
which reflects the frequency resolution of the dictionary. The
gap between real frequency and DFT basis will be smaller
when F increases. However, a large F will induce the neigh-
boring columns of D̂FW strongly coherent, which will cause
OMP to choose two adjacent columns consecutively, it often
happens because there is more than one path in a cluster [21]
and the parameters of them will not be identified which will
cause a small range of Doppler spread. Hence, the contribution
of the selected spike could not be eliminated from the residual.
There are two negative effects brought by this problem, the
first one is the projection computation in OMP will become
ill-conditioned [22], and the second one is not all the dominant
Doppler spikes can be found because some estimated Doppler
indexes will assemble on the same spike. To circumvent this,
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D̂FW =
1√
FW

W︷ ︸︸ ︷
1 1 1 1 · · · 1

1 ω ω2 ω3 · · · ωW−1

...
...

...
...

. . .
...

1 ωFW−1 ω2(FW−1) ω3(FW−1) · · · ω(W−1)(FW−1)


}
FW (21)

|RH
1 ΦSmax | =|Fmax +

∑
j ̸=Smax∩j∈ΥSmax

FjΦ
H
j ΦSmax + · · ·+

∑
j∈ΥK

FjΦ
H
j ΦSmax + eHΦSmax |

≥ Fmax − Fmax(δ − 1)η̂ − Fmax(K − 1)δη − ∥e∥2

(22)

we use the band exclusion method introduced in [23]. First,
define the coherent band of the dictionary as follows.

Let η > 0. Define the η-coherence band of column k to be
the set

Bη(k) =
{
i|µ(i, k) > η

}
, (23)

where µ(i, k) =
|ΦH

i
Φk|

∥Φi∥2∥Φk∥2

the η-coherence band of the

index set S is
Bη(S) = ∪k∈SBη(k), (24)

and denote B(2)
η (k) = Bη(Bη(k)). Then we can modify the

matching step in OMP as follows:

imax = argmin
i

∣∣∣⟨ΦH
i
,R⟩

∣∣∣ , i ̸∈ B(2)
η (Ω), (25)

where Ω is the estimated index set. Equation (25) skips the
neighboring zone of each estimated Doppler component under
the assumption that the Doppler frequencies of every two
clusters should be separated at least B(2)

η (k) apart. This is
acceptable because clusters are normally spatially uncorre-
lated. Besides, we uniformly add a few adjacent frequencies
near each estimated non-zero Doppler to simulate the Doppler
frequency distribution in a single cluster after iteration reaches
its end. The algorithm is illustrated in Algorithm 1. The
modifications compared with traditional OMP are highlighted
with boxes.

Next, we will analyze the recovery stability of Algorithm 1,
first define Υi as the Doppler index set spanned by the
ith Doppler spike in one ADG, which can be expressed
as Υi = {Si − δ/2, · · ·, Si + δ/2}, where Si is the center
Doppler frequency and δ is the Doppler index spread. In a
practical case, the non-Doppler term in fr will not be strictly
zero, so the range of a Doppler spike can be defined by a man-
ually set threshold. Next, define Π[f̂r(i, j)] = {S1, · · ·, SK}
where K is the number of spikes. An ideal recovery is defined
as each estimated Doppler index being within the η-coherence
band of each element in Π[f̂r(i, j)].

Theorem 1 (stable recovery criteria for band-excluded
OMP):

Let f̂r(m̂, n̂) has K non-zero spikes and the length of
each spike is δ. Let η > 0 and η̂ = maxµ(i, j) ∀i, j ∈
[Sk−δ/2, · · ·, Sk+δ/2]. Suppose that

Bη(a) ∩B(2)
η (b) = ∅ ∀a, b ∈ Π[f̂r(m̂, n̂)], (26)

if

(2K − 1)δη + (δ − 1)η̂ + 2
∥e∥2
Fmax

< 1, (27)

and

Fmax(ηδK − 1) + 2η(K − 1)Amax + 2∥e∥2
Fmin[1− η̂(δ − 1)− ηδK]

≤ 1, (28)

are satisfied where

Amax =
1

1− η(K − 2)
[Fmax + Fmax(δ − 1)η̂ (29)

+ Fmax(K − 1)δη + ∥e∥2],

and Fmax = max f̂r(i, j) and Fmin = min f̂r(i, j), then the
reconstructed Doppler index will fall in Bη(Π[f̂r(i, j)]).

Proof 1: Firstly, we will prove that the first chosen index
would fall in Π[(f̂r(i, j)], Let Smax be the index of the
largest component in the absolute value of f̂r(i, j). In the
first iteration, R1 =

∑K
i=1

∑
j∈Υ1

FjΦj , the subscript of R
denotes the iteration index and the subscript of Φ denotes the
column index. In addition, we ignore the superscript of F here
for simplicity, as shown in (22).

For ∀l ̸∈ Bη(Π[f̂r(i, j)])

|RH
1 Φl| =|

∑
j∈Υ1

FjΦ
H
j Φl + · · ·+

∑
j∈ΥK

FjΦ
H
j Φl + eHΦl|

≤FmaxKδη + ∥e∥2 ,
(30)

if the right-hand side of (22) is greater than the right-hand
side of (30), we get

(2K − 1)δη + (δ − 1)η̂ + 2
∥e∥2
Fmax

< 1. (31)

Then the first chosen index will be Smax. Next we suppose the
first k − 1 selected indices are in Bη(Si), Si ∈ Π(f̂r(i, j)),
the k − 1th residual can be expressed as

Rk−1 = f̂r(i, j)−AI1ΦI1 −AI2ΦI2 − · · · −AIk−1
ΦIk−1

,
(32)
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where {AI1 , AI2 , · · ·, AIk−1
} is the estimated coefficients, we

can derive each coefficient as

AIi =
∑
j∈Υ1

FjΦ
H
j ΦIi +

∑
j∈Υ2

FjΦ
H
j ΦIi + · · ·

+
∑
j∈ΥK

FjΦ
H
j ΦIi + eHΦIi

−
∑
n ̸=i

AInΦ
H
InΦIi , i = 1, · · ·, k − 1,

(33)

which implies

|AIi | ≤ Fmax + Fmax(δ − 1)η̂ + Fmax(K − 1)δη + ∥e∥2
+ η

∑
n ̸=i

|AIn |, i = 1, · · ·, k − 1

(34)

Let Amax = maxj=1,···,k−1 |AIj |, (34) can then be

Amax ≤ Fmax + Fmax(δ − 1)η̂ + Fmax(K − 1)δη + ∥e∥2
+ η(k − 2)Amax.

(35)

hence,

Amax ≤ 1

1− η(k − 2)
[Fmax + Fmax(δ − 1)η̂

+ Fmax(K − 1)δη + ∥e∥2],
(36)

when k = K, the right-hand side of (36) will get its maximum
value.

Now we show that the kth selected index will fall in
Bη(Π(f̂r(i, j))). For the kth residual, we have (37). For
∀l ̸∈ B

(2)
η (S1, · · ·, Sk−1) ∪Bη(Sk, · · ·, SK)

RH
k−1Φ = |

∑
j∈Υ1

FjΦ
H
j Φl + · · ·+

∑
j∈ΥK

FjΦ
H
j Φl + eHΦl

−AI1Φ
H
I1Φl − · · · −AIk−1

ΦH
Ik−1

Φl|
≤ ηFminKδ + ∥e∥2 + η(k − 1)Amax

(39)
If the right-hand side of (37) is gerater than the right-hand
side of (39), we get

Fmax(ηδK − 1) + 2η(K − 1)Amax + 2∥e∥2
Fmin[1− η̂(δ − 1)− ηKδ]

≤ 1, (40)

which end our proof.
Remark 1: From the above stable recovery criteria, there

exists a compromise among η, δ, K, Fmax/Fmin. If we wants
to recover the Doppler spectrum with more spikes with a fixed
refinement factor, η should be smaller which is equivalent
to more time domain samples. The recovery probability will
decrease if there are more distinct Doppler components in one
spike or the dynamic range Fmax/Fmin is large. In addition,
(26) is not a strict requirement because clusters will normally
be separately located.

C. Multiple Measurement Vector

To further improve the recovery stability in the presence of
noise and the increasing number of non-zero Doppler spikes,
MMV method is leveraged to further excavate the potential of
multiple antenna at the receiver end.

Algorithm 1: Redundant dictionary OMP-based angu-
lar delay domain channel prediction

1 Input: Observation M,

redundant dictionaryΦ = SD̂
H

FW , threshold γ,
regularization factor ξ, fs =

1
∆Tmin

, band exclusion
factor η

2 Stage1: Transform channel to angular delay domain
3 Ĥq,r = (Dm ⊗Dn)H̄q,rD

H
Nc

r = 1· · ·Nr
4 Stage2: Find non-zero position of Doppler

spectrum on each ADG
5 for r = 1 : Nr do
6 for each ADG do
7 yr(i, j) = [Ĥ1,r(i, j)· · ·Ĥ|M|,r(i, j)]
8 Initialization: R = yr(i, j), L = ∅, k = 0

9 while ∥R∥2

∥yr(i,j)∥2
> γ do

10 pos = argmaxi(|⟨Φ
H
i ,R⟩|), i ̸∈ B(2)

η (Ω)

11 Add Φpos to L
12 Set Φpos as zero column
13 Z = (LHL)−1Lyr(i, j)
14 R = yr(i, j)−LZ
15 Ω(k) = pos
16 k = k + 1

17 Stage3: Fitting the complex amplitude with RLS
18 Uniformly padding frequencies inΩ

19 Transform Ω to real Doppler frequency f̂

20 Ai,j = ej2πf̂(j)(i−1)/fs

21 Ẑ = (AHA+ ξI)−1AHyr(i, j)
22 Stage4: Predicting future CSI
23 Given ∀t > W

24 H̃t,r(i, j) =
∑ ˆ|f |
l=1 ẑ(l)e

j2πf̂(l) t−1
fs

25 Output: H̃r, r = 1· · ·Nr

First define the support of a collection of vectors
X = [x1, · · ·, xl] as the union over all individual supports,

supp(X) =
⋃
i

supp(xi). (41)

In other words, a joint sparse matrix defined above contains
several sparse vectors where the non-zero component in each
of them is in the same position. Given the definition of X , a
noiseless MMV problem can be defined as follows,

Given Y ∈ Cm×l and Φ̂ ∈ Cm×n with m < n

X̂ = argmin
X

|supp(X)| s.t.Y = Φ̂X. (42)

It is a special case when l = 1 then X shrinks into a vector
form which is named by single measurement vector (SMV)
problem. It can be solved previous reconstruction method be-
cause algorithm 1 treats each receive antenna as an individual.

For the SMV problem, it is well known that a necessary and
sufficient condition for the measurements y = Φx to uniquely
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|RH
k−1ΦSk

| =|
∑
j∈Υ1

FjΦH
j ΦSk

+ · · ·+
∑
j∈ΥK

FjΦH
j ΦSk

+ e∗ΦSk
−AI1Φ

H
I1ΦSk

− · · · −AIk−1
ΦH
Ik−1

ΦSk
|

≥ Fmin − η̂(δ − 1)Fmin − η(K − 1)δFmax − ∥e∥2 − η(k − 1)Amax

(37)

[vec(Ĥq,r + n)]i =[(DNc ⊗Dm ⊗Dn)vec(H̄q,r + n)]i

=
∑
n∈Γ

P∑
j=1

αk1,k2,k3mnNcSa(2π(θ̂k1 − θn,j)
m

2
)Sa(2π(ψ̂k2 − ψn,j)

n

2
)Sa(2π(τ̂k3 − τn,j)

Nc

2
) +

σ2

mnNc

(38)

determine each k-sparse vector x is given by

k <
spark(Φ)

2
, (43)

where spark of Φ is defined as the smallest number of columns
of Φ that are linearly independent.

Similarly, a sufficient condition from the measurements
Y = Φ̂X , to uniquely determine the jointly sparse matrix
X has been proposed in [24],

|supp(X)| < spark(Φ)− 1 + rank(Y )

2
, (44)

which implies that the measurements can be reduced if the
rank of Y is greater than 1.

In our scenario, the receive antenna can be considered as
multiple measurements, We can thus combine f̂r(i, j), r =
1, · · ·, Nr as a matrix F (i, j)

F (i, j) = [f̂1(i, j), f̂2(i, j), · · ·, f̂Nr
(i, j)]. (45)

To implement the MMV algorithm on F (i, j), one should
first guarantee that F (i, j) satisfies the joint sparse property.

Theorem 2 (asymptotic joint sparse property):
For ∀i, j = 1, · · ·, Nr, i ̸= j

lim
Nc,Nt→+∞

supp(f̂ i(k, q)) = supp(f̂ j(k, q)). (46)

Proof 2:
Without loss of generality, consider an additive noise in-

duced by channel measurement, denoted by n ∼ CN (0, 1).
For the rth receive antenna, the observed channel in each AGD
can then be expressed as follows, [·]i here denotes the ith entry
of a vector as shown in (38):

where k1 = mod(i, n), k2 = round(i/n), k3 =
round(i/mn). θ̂k1 ,ψ̂k2 ,τ̂k3 are equivalent estimation value on
each grid. When m,n,Nc approximate to infinity, the gap
between estimation value and real value becomes smaller due
to the higher resolution, then Sa(·)will change into Dirac
function, which implies that the Doppler spectrum of each
receiving antenna on an ADG will contain the same single
path and will not be influenced by the power of other ADGs,
which end our proof.

Remark 2: The above definition implies that when the
number of antenna and subcarrier goes to infinity, the ob-
servation will be a rank-deficient matrix, which causes the
MMV to compromise its ability to decrease the number of
measurements but to mitigate the influence of channel noise.

To implement MMV into our scheme, we adopt the rank-aware
method proposed in [25], it decomposes the measurement
matrix to orthogonal basis and computes the projection power
of each column on it, we still adopt band exclusion strategy
while selecting the columns. The details of the algorithm are
illustrated in Algorithm 2. We name the rank-aware based
omp with band-excluded redundant dictionary as RAMBLE
algorithm.

IV. MATRIX COMPLETION PREDICTION SCHEME

The previously proposed algorithm relies on the channel
modeling of the real-world channel, it estimates the Doppler
parameters from the observed channel and reconstructs the
future channel based on known channel function. In this
section, a model-free channel prediction scheme is proposed
which does not rely on the modeling of channel. It directly
deduces the future channel solely based on past observations.

The problem is still considered in the angular-delay domain,
for the (i, j)th grid of the rth receive antenna, construct
a Hankel matrix with the past observations as follows, the
subscript of receive antenna is omitted for the simplicity of
expression:

B =


Ĥ1,r(i, j) Ĥ2,r(i, j) · · · ĤW+1

2 ,r(i, j)

Ĥ2,r(i, j) Ĥ3,r(i, j) · · · ĤW+3
2 ,r(i, j)

...
...

. . .
...

ĤW+1
2 ,r(i, j) ĤW+3

2 ,r(i, j) · · · ĤW,r(i, j)

 .
(47)

As one can not get all the CSI in the observation window,
the actual B will be a sparse matrix with many entries left
zero. Considering the predicted CSI, B will be padded with a
lower triangle matrix of zero which represents the future CSI,
denote the padded matrix as B̂

B̂ =


Ĥ1,r(i, j) 0 · · · ĤW+N+1

2 ,r(i, j)

0 Ĥ3,r(i, j) · · · 0

...
...

. . .
...

ĤW+N+1
2 ,r(i, j) 0 · · · 0N×N

 ,
(48)

where 0N×N is a lower triangle matrix of zero.
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Algorithm 2: Rank-aware based OMP channel predic-
tion with band-excluded redundant dictionary

1 Input: Observation M , Φ = SD̂
H

FW , threshold γ,
regularization factor ξ, fs =

1
∆Tmin

, band exclusion
factor η

2 Stage1: Transform channel to angular delay domain
3 Ĥq,r = (Dm ⊗Dn)H̄q,rD

H
Nc

Hj ∈ M r =
1, · · ·, Nr

4 Stage2: Generate measurement matrix from
different antennas

5 H̆j = [Ĥj,1, Ĥj,2, · · ·, Ĥj,Nr ]
6 for each ADG do
7 Y (i, j) = [H̆1(i, j)· · ·H̆ |M|(i, j)] ∈ CρW×Nr

8 Stage3: Find non-zero position of Doppler
spectrum on each ADG

9 for each ADG do
10 Initialization: R = Y (i, j), L = ∅, k = 0,

Φ
′
= Φ

11 while ∥R∥
∥Y (i,j)∥ > γ do

12 Calculate orthonomal basis for residual:
U (n−1) = Orth(R(n−1))

13 pos = argmaxi(∥⟨Φ
H
i ,U

(n−1)⟩∥2) i ̸∈
B

(2)
η (Ω)

14 Ω(k) = pos
15 Add Φpos to L
16 Set Φpos as zero column
17 Z = (LHL)−1LHY (i, j)
18 Calculate orthogonal projector

P⊥
Ω = I −ΦΩΦ

H
Ω

19 R(n) = Y (i, j)−LZ

20 Φ
′
= P⊥

ΩΦ

21 Normalize each column of Φ
′

22 k = k + 1

23 Stage3: Fitting the complex amplitude with RLS
24 Stage4: Predicting subsequent CSI
25 Output: H̃r,t, r = 1, · · ·, Nr

Therefore, the prediction of future CSI can now be trans-
formed to complete B̂ of those zeros entries. Meanwhile, a
criteria is needed to help supervise the reconstruction process.
First, we will prove that if Ĥq,r(i, j) can be expressed as a
sum of exponential, the rank of B̂ constructed from Ĥq,r(i, j)
is equal to the number of components in Ĥq,r(i, j).

Proof 3: Suppose a signal is the sum of exponential which
can be expressed as

Sn =

K∑
k=1

ake
j2πfkn n = 0, · · ·, L, (49)

where L is the total length of the signal, then one can construct

a Hankel matrix from Sn

M s =


S0 S1 · · · SN−1

S1 S2 · · · SN
...

...
. . .

...
SM SM+1 · · · SM+N−1

 , (50)

where both M and N are integer and satisfy L =M +N −1,
M and N should be equal to guarantee M s be a square matrix.
According to [26], M s can then be decomposed as

M s = ΩMAΩH
N . (51)

A is a diagonal matrix with its entries be the amplitude of
each exponential.

A = diag(a1, a2, · · ·, aK) (52)

Ωx is a x×K Vandermond matrix defined as follows.

Ωx =


1 1 · · · 1

ejf1 ejf2 · · · ejfK

...
...

. . .
...

ejf1(x−1) ejf2(x−1) · · · ejfK(x−1)

 . (53)

Equation (51) implies that for ∀i, j = 1, · · ·,K, and i ̸= j,
if fi ̸= fj , then the rank of M is equal to the number of
exponential components in Sn. based on our channel model,
the entries in B̂ satisfies (49), therefore, the rank of B̂ is
approximately equal to the number of Doppler spike in the
corresponding ADG. To satisfy the sparse property of the
scattering environment, the aim of reconstruction is to use the
least number of the component to fit observations, which is
equivalent to minimizing the rank of B̂.

One can now reconstruct the matrix with a rank minimiza-
tion constraint, the optimization problem can be formulated as
follows.

B̄ = argmin rank(B̂)

s.t., B̄i,j = B̂i,j B̂i,j ̸= 0,
(54)

where the subscript represents the non-zero entry in the ith
column and the jth row, denotes the set of non-zero entry
index tuple as κ. However, (54) is an NP-hard problem, an
alternative way is to minimize the nuclear norm of B̂. Then
(54) becomes

B̄ = argmin ∥B̂∥∗
s.t., B̄i,j = B̂i,j B̂i,j ̸= 0,

(55)

where ∥B̂∥∗ is the sum of singular values of B̂.
To solve the above problem, soft iterative thresholding (SIT)

proposed in [27] is leveraged. It is an iterative algorithm,
in the kth iteration, it decomposes B̂ through singular value
decomposition (SVD) as B̂ = UΣV H , where U and V are
unitary matrix and Σ is a positive diagonal matrix. Then for
each τ > 0, define singular value shrinkage operator Dτ as

Dτ (Σ) = diag({σi − τ}+), (56)
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Algorithm 3: Matrix completion based channel pre-
diction method

1 Input: Observation M
2 Ĥq,r = (Dm ⊗Dn)H̄q,rD

H
Nc

Hj ∈ M r =
1· · ·Nr

3 Stage2: Predicting future CSI
4 for r = 1 : Nr do
5 for each ADG do
6 Construct Hankel matrix B̂ from

observations Ĥq,r

7 Complete B̂ with SIT

8 Stage3: Lowpass interpolation of future CSI
9 Output: H̃r, r = 1· · ·Nr

where t+ is the positive part of t, namely t+ = max(0, t), this
operator effectively shrinking singular values to zero. Then, if
we apply this operator to B̂, we get

Dτ (B̂) = UDτ (Σ)V ∗. (57)

To maintain the non-zero entries equal to the initial value in
each iteration, it takes following step for a fixed τ > 0 and a
sequence {δk} of positive step sizes.

B̃
k−1

= Dτ (B̂
k−1

), (58)

B̂
k
= B̂

k−1
+ δk(B̂

0
− B̃

k−1

κ ), (59)

where B̃
k−1

κ is a matrix with its non-zero entry index the same
as B̂

0
and its non-zero entry value the same as B̃

k−1
.

Because the neighboring entry in the Hankel matrix is
equally spaced depending on the minimum interval of the
non-uniform pilot, if the minimum interval exceeds the in-
terval between two OFDM symbols, after iteration reaches its
maximum value, we leverage the lowpass DFT interpolation
method mentioned before to reconstruct all the future CSI
based on the predicted output of MC. The details are listed in
Algorithm 3.

V. SIMULATION RESULTS

A symbol level simulation is conducted where BS will
operate beamforming to the transmitted signal according to
the predicted channel. Eigen-based method [28] is used as the
precoding method and MMSE is used at the user end as the
equalization method.

The proposed algorithms are applied in both simulated
channels and real channels acquired from channel sounding.
Firstly, the COST2100 channel model [21] is used to generate
a simulated channel with its setting listed in Table I. We choose
semi-urban-300M as our channel scenario and set the carrier
frequency and bandwidth to 3.5 GHz and 20 MHz respectively
which is a default setting in the long term evolution (LTE)
system. The scattering environment consists of 25 clusters and
each of them contains 5 MPC. BS is equipped with a 4 × 8
planar array and each antenna is unipolar and omni-directional.
Both single and multi-user cases are considered and we set the

TABLE I
COST2100 SETTINGS.

Parameter Value
Channel type Semi-urban-300M

Center frequency 3.5 GHz
|Γ| 25
P 5

Bandwidth 20 MHz
Nt 32 (4× 8 UPA)
Nr 4 ULA (single-user) or 2 ULA (multi-user)

BS position [0, 0, 10] m
User velocity 60 km/h or 120 km/h
User number 1 or 4

Single-user position [200, 400, 0] m

Multi-user position [200,−400, 0] m [100,−500, 0] m
[300,−300, 0] m [400,−200, 0] m

TABLE II
COMPARISON OF TNMSE BETWEEN UNIFORM AND NON-UNIFORM

PILOTS AT DIFFERENT VELOCITIES.

60 km/h 120 km/h
Even pilot 0.8234 1.0082

Non-uniform pilot 0.5298 0.6313
Random pilot 0.5844 0.6983

number of user antenna as 4 and 2 in single and multi-user
cases, respectively. Two velocities, 60 km/h and 120 km/h, are
simulated covering moderate and high-speed scenarios.

The relationship between channel prediction error versus
user mobility is first shown in uniform pilot and non-uniform
pilot cases with the proposed RAMBLE method. It predicts
the CSI on the adjacent future symbol after the observation
window, then the window will slide forward which represents
the acquirement of newly updated CSI from channel estimation
and the prediction will be operated again. The window size
is set to 400 and the interval between symbols is 0.5 ms.
In addition, the pilot symbol interval in the uniform pilot
case is set to 5 ms which is a default SRS interval in the
LTE protocol. For non-uniform pilot design, two strategies are
tested: non-uniform pilot which meets the minimum interval
criteria, and random pilot which ignores the previous criteria
so the minimum spacing will be arbitrary. Both non-uniform
patterns guarantee the same pilot density as in the uniform
case so the density ρ will equal 0.025. It can be seen from
Table II that non-uniform pilot can outperform uniform pilot in
both 60 km/h and 120 km/h velocity, which implies that non-
uniform pilot can provide more resolution to distinguish higher
Doppler frequency. Meanwhile, it shows a better performance
compared with the random pilot because the latter provides
more resolution than it needs which will cause the pilot
distribution in the observation window to become imbalanced.

Secondly, the advantage of MMV over SMV is depicted
in Fig. 4 which shows TNMSE versus channel measurement
noise in 60 km/h and 120 km/h user velocity. One can
observe from Fig. 4 that MMV can outperform SMV in low
and high SNR regimes, which implies that it can not only
combat channel measurement noise but also offer more extra
measurements because SMV deems each receive antenna as an
individual and MMV leverages the extra information brought
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Fig. 4. TNMSE vs. channel measurement noise level in 60 km/h and
120 km/h user speed.

by multiple measurements.
Next, to manifest the superiority of our algorithms, we

take the algorithm proposed in [4] and bayesian regularized
neural network (BRNN) [29] as our baselines, both of them
use uniform pilot patterns. The former uses the vector Prony
method to predict the channel on the future pilot symbol in
the angular-delay domain, the order of the Prony method is
set to 3. The BRNN is a neural network using Bayesian
regularization, the complex CSI is separated into real and
imaginary parts and stacked together as the network input.
The number of hidden layer neurons is set to 50 and the
tangent sigmoid is used as an activation function. We then
use the lowpass/bandpass DFT interpolation method to predict
the CSI on non-pilot symbols based on the profile of the
Doppler spectrum. We assume here that the profile, center
frequency, and bandwidth of the Doppler spectrum can be
served as prior although they are not acquirable in practice.
The window size of both algorithms is set the same as
RAMBLE and MC as 400. The average throughput loss in
single user case is depicted in Fig. 5, the performance of
the Prony+ interpolation method and BRNN+ interpolation
method is quite limited due to the aliasing of the Doppler
spectrum. With the help of increased resolution brought by
the non-uniform pilot, RAMBLE and MC achieve a good
performance both in low and high SNR regimes.

In addition, the non-ideal characteristic of the actual system
is also considered which has a channel estimation delay,
meaning that RAMBLE and MC can not get the instantaneous
channel measurement when the observation window is sliding
forward. Therefore, the updated CSI is excluded from the
observation window and the result is shown in Fig. 6. The
performance of both proposed algorithms can still outperform
the traditional methods to a great extent.

The curve of average throughput loss versus SNR in the
multiuser case is depicted in Fig. 8, and the number of users
is set to 4. It can be shown from the graph that the proposed
algorithms can reduce the average throughput loss by about 10
percent and MC shows a better performance compared with
RAMBLE.
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Fig. 5. Average throughput loss vs. SNR, noise-free channel measurements,
Nt = 32.
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Fig. 6. Average throughput loss vs. SNR, noise-free channel measurements
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To further showcase the proposed algorithms can be applied
to the real measured channel. A channel-sounding campaign is
conducted on campus. A 3.5 GHz channel sounder is adopted
and it is equipped with a 3 × 8 bipolar antenna panel at the
transmitter end and a two-element array at the receiver end.
The channel is measured fixedly with 3 m interval and the
route is depicted in Fig. 7 where the red star is the location of
the transmitter and the red line represents the channel sounding
route. To generate mobility from stationary channel data, we
uniformly extract points from the route to simulate a mobile
scenario, the equivalent speed will get greater if the spacing
between the extracted points increases. The simulation result is
shown in Fig. 9, both MC and RAMBLE outperform the Prony
method for about 5 percent, which verify the applicability
of the proposed algorithm. In addition, MC performs better
than RAMBLE in real channel cases, which benefits from its
direct usage of channel observations, avoiding incurring extra
noise while estimating the intermediate parameters based on
the channel model.
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Fig. 7. Channel sounding route and transmitter location.
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Fig. 8. Average throughput loss vs. SNR in different velocities, noise-free
channel measurements, 4 UEs, Nt = 32.
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Fig. 9. Average throughput loss versus SNR in real measured channel case.

VI. CONCLUSION AND FUTURE WORK

In this work, the existing problem of current channel predic-
tion schemes is first pointed out, which is the Doppler aliasing
problem in moderate to high mobility scenarios because of

the density limitation of the uniform pilot pattern. Hence the
reconstruction performance of non-pilot symbols will drasti-
cally degrade. To solve this, a non-uniform pilot pattern is
proposed that differs from the uniform pilot pattern used in
most communication protocols. Then two channel prediction
methods are proposed, the first one uses compressive sensing
to reconstruct the Doppler spectrum of each angular-delay
domain grid. To solve the repetition problem induced by the
orthonormal DFT transformation matrix, redundant dictionary,
and band exclusion are introduced to mitigate the basis mis-
matching problem. To further combat the channel-measuring
noise and increase recovery stability, multiple measurements
from different receiving antennas are leveraged to promote
the performance. To bridge the gap between the real channel
and channel model, the second method is data-driven which
considers the channel prediction task as a matrix completion
problem constrained by the rank of the Hankel matrix con-
structed from measurements.

Simulation results show that the proposed methods can
outperform the state-ofthe-art algorithms both in the simulated
channel and real measured channel in terms of throughput. In
the simulated multiuser channel setting, the proposed methods
can reduce the average channel throughput loss by about
15 percent both in 60 and 120 km/h user speed. The appli-
cability of the proposed algorithms, in reality, is also verified
with a measured channel where the proposed algorithm can
get about 5 percent channel throughput-loss gain compared
with conventional algorithms.

In this paper, there is a latent assumption that the support
of the Doppler spectrum in the observation window is time-
invariant, which implies that the Doppler frequency of each
cluster should not change greatly in a certain period of time.
Therefore, a smaller window size is chosen when the mobility
becomes larger, which will lessen the available channel mea-
surements and degrade the recovery performance. However, if
one extends the “Doppler stationary” to a broader sense, which
means the variation of Doppler support is a fixed function
of time, this kind of long-term stationary could enlarge the
window size and further promote the performance. Secondly,
the discussion of the non-uniform pilot pattern in this paper
only considers the minimum spacing, the optimum pattern of
the non-uniform pilot is still an open problem [30].
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