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On the Maximum Buffer Size Achieved in a Class
of Constructions of Optical Priority Queues

Jay Cheng, Shin-Shiang Huang, Hsin-Hung Chou, and Ming-Che Tang

Abstract—The design of optical buffers is an important issue
in all-optical packet switching. One of the most general types of
buffering schemes is priority queues, which includes first-in first-
out (FIFO) queues and last-in first-out (LIFO) queues as special
cases (where the packet arrival times are used for the assignment
of packet priorities). Recently, it was shown in our previous work
that an optical priority queue with buffer size 2O(

√
αM) can be

implemented by using an optical (M +2)× (M +2) (bufferless)
crossbar switch and M fiber delay lines under a simple priority-
based routing policy, where α is a constant that depends on
the parameters used in the constructions. This achieved buffer
size 2O(

√
αM) (which is exponential in

√
M ) is the best result

currently known in the literature and significantly improves
on all previous results (all of which are only polynomial in
M ). In this paper, we focus on our previous constructions of
optical priority queues. The first contribution of this paper is to
derive a closed-form expression for the maximum buffer size
that can be achieved in our previous constructions. Such an
expression is of sufficient theoretical interest itself and can be
used to directly compute the maximum buffer size (in contrast,
the maximum buffer size has to be computed recursively in
our previous work). The second contribution of this paper is
to use the closed-form expression to show that in the regime
that s ≥ 2, k ≥ 2s + 1, and m ≥ 2, where s, k, and m are
parameters used in the constructions, the maximum buffer size
Uk is given by Uk = 2O(

√
M log2 (2s+2) log2 m/((2s+1)m)) under

a mild constraint that is applicable in practical scenarios. This
result can be regarded as a complement to the approximate result
Uk ≈ 2O(

√
M log2 (2s+2) log2 m/((2s+1)m)) in our previous work.

Index Terms—FIFO multiplexers, optical buffers, optical
queues, optical switches, priority queues.

I. INTRODUCTION

THE design and implementation of optical buffers for
contention resolution among packets competing for the

same resources has been well recognized as an important and
challenging issue in all-optical packet switching. One of the
feasible approaches for the implementation of optical buffers
has the following features: (i) Using optical fiber delay lines
as storage media to store optical packets. (ii) Using optical
(bufferless) crossbar switches to route optical packets through
the fiber delay lines.
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We note that optical packets are constantly moving along the
fibers into which they are routed, and they cannot be accessed
until they reach the outputs of the fibers. As a result, such an
approach by using optical fiber delay lines as storage media
does not have random-access capability. Therefore, the delays
of the optical fiber delay lines have to be properly chosen
and the routing policy performed by the optical (bufferless)
crossbar switches also has to be carefully designed. By so
doing, packets can be routed to the right places at the right
times, and exact emulations of the desired optical buffers can
be achieved.

In the last three decades, there have been extensive studies
on the constructions of optical buffers by using the switched-
delay-lines (SDL) approach described above. Indeed, such
an SDL approach has been successfully used to construct a
variety of optical buffers in the literature. These works include:
(i) The early feasibility studies in [1]–[4], (ii) output-buffered
switches in [5]–[10], (iii) first-in first-out (FIFO) multiplexers
in [5] and [10]–[20], (iv) FIFO queues in [20]–[25], (v) last-
in first-out (LIFO) queues in [22], [23], and [26], (vi) priority
queues in [27]–[36], (vii) time slot interchanges in [20] and
[37], (viii) linear compressors/decompressors, non-overtaking
delay lines, and flexible delay lines in [20] and [38]–[43],
and (ix) FIFO/LIFO/absolute contractors in [44]. Furthermore,
results on the fundamental complexity of SDL constructions of
optical queues can be found in [45] and performance analysis
for optical queues has been addressed in [46] and [47].

In this paper (as well as many of the works in the literature),
we focus on the theoretical aspect of the constructions of
optical buffers. We are aware of many important practical
feasibility issues such as: (i) Router buffer sizing problem,
(ii) fault-tolerant capability, and (iii) limitation on the number
of times that an optical packet can recirculate through optical
switches and fiber delay lines. For those who are interested
in such practical feasibility issues, we refer to Sections V-A
and V-C in [36] and the references therein for details. For
review articles on SDL constructions of optical buffers as well
as related implementation and feasibility issues, we refer to
[48]–[53] and the references therein.

One of the most general types of buffering schemes is
priority queues, which includes FIFO queues and LIFO queues
as special cases. A priority queue can be described as follows:
(i) Each packet is associated with a unique priority upon its
arrival, (ii) the packet with the highest priority is sent out
from the queue whenever there is a departure request and there
are packets in the queue, and (iii) the packet with the lowest
priority is dropped from the queue whenever there is a buffer
overflow. We note that the assignment of packet priorities can
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Fig. 1. A construction of an optical priority queue in [27] by using a feedback
system consisting of an optical (M+2)×(M+2) (bufferless) crossbar switch
and M fiber delay lines with delays d1, d2, · · ·, dM .

be arbitrary subject to the constraint that every packet in the
queue has a distinct priority and the relative priority order
between any two packets remains unchanged as long as they
are in the queue. In the special case of a FIFO (resp., LIFO)
queue, the packet arrival times are used for the assignment of
packet priorities so that a packet with earlier arrival time has
higher (resp., lower) priority than a packet with later arrival
time.

The first construction of optical priority queues was given
in [27] by Sarwate and Anantharam of UC Berkeley more
than one and a half decades ago. It was shown in [27] that
an optical priority queue with buffer size O(M2) can be con-
structed by using a feedback system consisting of an optical
(M + 2)× (M + 2) (bufferless) crossbar switch and M fiber
delay lines (see Fig. 1). Since the publication of the paper [27],
there have been several works [28]–[36] on the constructions
of optical priority queues that improve on the O(M2) buffer
size. The buffer size achieved in [36] is 2O(

√
αM), where

α is a constant that depends on the parameters used in the
constructions in [36]. This buffer size 2O(

√
αM) (which is

exponential in
√
M ) dramatically outperforms all previous

results in [27]–[35] (all of which are only polynomial in M )
and is the best result currently available in the literature.

In this paper, we focus on the constructions of optical prior-
ity queues in our previous work [36]. The main contributions
of this paper are as follows:

(i) We derive a closed-form expression for the maximum
buffer size Uk (see (14) and (15) in Theorem 4 in Sec-
tion III-A) that can be achieved in the constructions in [36].
Such a closed-form expression is not only of sufficient theo-
retical interest itself, but also can be used to directly compute
the maximum buffer size. In contrast, the maximum buffer
size has to be computed recursively in [36].

(ii) We use the closed-form expression to show that in the
regime that s ≥ 2, k ≥ 2s+1, and m ≥ 2, where s, k, and m
are parameters used in the constructions, the maximum buffer
size Uk is given by Uk = 2O(

√
M log2 (2s+2) log2 m/((2s+1)m))

(see (24) in Theorem 6 in Section IV) under a mild constraint
that is applicable in practical scenarios. As there is no closed-
form expression available for the maximum buffer size in [36],
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Fig. 2. A construction of an optical priority queue in [36] by using an optical
(kmn + 2) × (kmn + 2) (bufferless) crossbar switch and k groups of m
parallel optical n-to-1 FIFO multiplexers with delay one (nFM1’s).

an approximate analysis was resorted to in [36] to obtain the
approximate result Uk ≈ 2O(

√
M log2 (2s+2) log2 m/((2s+1)m))

in this regime. Therefore, our result in this paper complements
the results in [36].

We note the motivation for deriving a closed-form ex-
pression for the maximum buffer size Uk in this pa-
per is to use such an expression to give a rigorous
mathematical proof that the approximate result Uk ≈
2O(

√
M log2 (2s+2) log2 m/((2s+1)m)) in [36] is indeed an exact

result in the regime that s ≥ 2, k ≥ 2s + 1, and m ≥ 2.
It turns out that the closed-form expression obtained in this
paper holds for all regimes of the parameters s, k, and m,
i.e., for all 1 ≤ s ≤ k − 1 and m ≥ 2.

This paper is organized as follows. We first give in Section II
a review of the constructions of optical priority queues in [36].
In Section III, we derive a closed-form expression for the
maximum buffer size and present our numerical results on the
maximum buffer size. Then in Section IV, we show that in the
regime that s ≥ 2, k ≥ 2s+1, and m ≥ 2, the maximum buffer
size Uk is given by Uk = 2O(

√
M log2 (2s+2) log2 m/((2s+1)m))

under a mild constraint that is applicable in practical scenarios.
Finally, we give a brief conclusion in Section V.

II. THE CONSTRUCTIONS IN OUR PREVIOUS WORK

In this section, we review the constructions of optical pri-
ority queues in [36]. The constructions in [36] use a feedback
system (see Fig. 2) consisting of an optical (kmn + 2) ×
(kmn+2) (bufferless) crossbar switch and k groups of optical
n-to-1 FIFO multiplexers with delay one (nFM1’s). The i th
group in Fig. 2 has m parallel optical nFM1’s with the same
buffer size Bi (Bi ≥ 1) for i = 1, 2, · · ·, k.
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In [36], every packet that has to be buffered in the queue
is associated with a distinct buffering tag, and each group of
nFM1’s in Fig. 2 is associated with a unique set of buffering
tags. A packet at the input links of the crossbar switch in
Fig. 2 that has to be buffered in the queue (i.e., the packet is
not routed to the departure link or the loss link) is routed to
the group of nFM1’s whose associated set of buffering tags
contains the buffering tag of the packet. Furthermore, packets
routed to a group of nFM1’s are distributed to the m nFM1’s
in that group in a round-robin fashion so that load balancing
among the nFM1’s in that group can be achieved and hence
the buffering capacity of the nFM1’s can be fully utilized. By
so doing, the highest-priority (resp., lowest-priority) packet
is always available at the input links of the crossbar switch
whenever it needs to be routed to the departure (resp., loss)
link. This is why an optical priority queue can be successfully
constructed in [36].

Indeed, with appropriate choices of the parameters used in
the constructions, a class of constructions of optical priority
queues was obtained in Theorem 7 in [36]. By using the SDL
constructions in [12] to implement the nFM1’s in Fig. 2, it
was further shown in [36] that the construction in Fig. 2 can
be implemented by using a feedback system consisting of an
optical (M + 2) × (M + 2) (bufferless) crossbar switch and
M fiber delay lines as in Fig. 1. The maximum buffer size
Uk that can be achieved in the class of constructions in [36]
and the corresponding value of M in Fig. 1 are recalled in the
following theorem.

Theorem 1 [36, Theorem 9] Suppose 1 ≤ s ≤ k − 1 and
m ≥ 2. Then an optical priority queue with buffer size Uk

can be constructed by using a feedback system consisting of
an optical (M+2)×(M+2) (bufferless) crossbar switch and
M fiber delay lines as in Fig. 1, where

Uk =

k∑
i=1

((m− 1)Bi + 1), (1)

and

M = m

k∑
i=1

((n− 1)⌈logn Bi⌉+ n+ 1), (2)

in which n = min{2s + 1, k} + 1 and B1, B2, · · ·, Bk are
given as follows: If s + 1 ≤ k ≤ 2s, then B1 = Bk = 1 and
B2, B3, · · ·, Bk−1 are recursively given by

Bi = Bk−i+1 =

i−1∑
j=1

((m− 1)Bj + 1), if 2 ≤ i ≤ ⌈k/2⌉. (3)

On the other hand, if k ≥ 2s + 1, then B1 = Bk = 1 and
B2, B3, · · ·, Bk−1 are recursively given by

Bi = Bk−i+1

=

{∑i−1
j=1((m− 1)Bj + 1), if 2 ≤ i ≤ s+ 1,∑i−1
j=i−s((m− 1)Bj + 1), if s+ 2 ≤ i ≤ ⌈k/2⌉.

(4)

As mentioned in Section I that the maximum buffer size
Uk is given by 2O(

√
αM), where α is a constant that depends

on the parameters s, k, and m used in the constructions. We
recall this result in the following theorem.

Theorem 2 [36, Theorem 11] Suppose that 1 ≤ s ≤ k − 1,
m ≥ 2, Uk is given by (1), and M is given by (2).

(i) If s = 1, k ≥ 3, and m ≥ 3, then we have

Uk = 2O(
√

2M log2 (m−1)/(3m)). (5)

(ii) If s ≥ 2, s+ 1 ≤ k ≤ 2s, and m ≥ 2, then we have

Uk = 2O(
√

M log2(k+1) log2 m/(km)). (6)

(iii) If s ≥ 2, k ≥ 2s + 1, and m ≥ 2, then we have the
following approximate result:

Uk ≈ 2O(
√

M log2 (2s+2) log2 m/((2s+1)m)). (7)

For the two simple regimes that “s = 1, k ≥ 3, and
m ≥ 3” and “s ≥ 2, s + 1 ≤ k ≤ 2s, and m ≥ 2” in
Theorem 2(i)(ii), B1, B2, · · ·, Bk can be obtained in closed
forms (see Theorem 10(i)(ii) in [36]), and hence the maximum
buffer size Uk can be obtained as in (5) and (6) in these two
regimes.

However, for the broader regime that “s ≥ 2, k ≥ 2s +
1, and m ≥ 2” in Theorem 2(iii), there is no closed-form
expression available in [36] for B1, B2, · · ·, Bk. As a result,
an approximation analysis was used in [36] as described below.
It was first shown in Theorem 10(iii) in [36] that

Bi = Bk−i+1 =

s∑
j=1

αjλ
i
j −

s

s(m− 1)− 1
, (8)

for 1 ≤ i ≤ ⌈k/2⌉. In (8), λ1, λ2, · · ·, λs are the roots of
the characteristic polynomial p(z) = zs −

∑s−1
j=0(m − 1)zj

associated with the s th-order nonhomogeneous linear dif-
ference equation with constant coefficients given by Bi =∑i−1

j=i−s((m − 1)Bj + 1) for s + 1 ≤ i ≤ ⌈k/2⌉, and
α1, α2, · · ·, αs can be obtained by solving the s equations
B1 = 1 and Bi = mi−1 + mi−2−1

m−1 , i = 2, 3, · · ·, s.
Let λ+ be the positive root of p(z) (it was shown in

Lemma 12 in the full version of the paper [36] that p(z)
has only one positive root) and let α+ be the coefficient
corresponding to λ+ in (8). By approximating B1, B2, · · ·, Bk

by Bi = Bk−i+1 ≈ α+λ
i
+ for 1 ≤ i ≤ ⌈k/2⌉, and

substituting the approximate Bi into (1), we have the following
approximate result on Uk

Uk

≈ Ũk

=

2(m− 1)α+λ+
λℓ
+−1

λ+−1 + 2ℓ, if k = 2ℓ,

(m− 1)α+λ+
λℓ+1
+ +λℓ

+−2

λ+−1 + 2ℓ+ 1, if k = 2ℓ+ 1.
(9)

By further approximating λ+ by m, the approximate result on
Uk in (7) was obtained in [36].

In the rest of the paper, we will derive a closed-form
expression for B1, B2, · · ·, Bk (see (13) in Theorem 4 in
Section III-A), and substitute it into (1) to obtain a closed-
form expression for the maximum buffer size Uk (see (14)
and (15) in Theorem 4 in Section III-A) for all regimes of
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the parameters s, k, and m, i.e., for all 1 ≤ s ≤ k − 1 and
m ≥ 2. For the regime that s ≥ 2, k ≥ 2s + 1, and m ≥ 2,
we will use these closed-form expressions to show that Uk is
given by Uk = 2O(

√
M log2 (2s+2) log2 m/((2s+1)m)) (see (24)

in Theorem 6 in Section IV) under a mild constraint that is
applicable in practical scenarios.

III. A CLOSED-FORM EXPRESSION FOR THE MAXIMUM
BUFFER SIZE

In this section, we derive a closed-form expression for the
maximum buffer size and present our numerical results on the
maximum buffer size.

A. The Closed-Form Expression

We first give a lemma that is the key to the derivation of
the closed-form expression for the maximum buffer size in
this paper.

Lemma 3 Suppose that s is a positive integer and a is a
positive real number. Assume that x1 = 1 and xi, i ≥ 2, are
recursively given as follows:

xi =

{∑i−1
j=1(axj + 1), if 2 ≤ i ≤ s+ 1,∑i−1
j=i−s(axj + 1), if i ≥ s+ 2.

(10)

For i ≥ 1, let qi be the unique nonnegative integer such that
qi(s+1)+1 ≤ i ≤ (qi +1)(s+1), i.e., qi = ⌈i/(s+1)⌉− 1.

(i) If i ≥ 3, then xi can be recursively given as follows:

xi =

{
(a+ 1)xi−1 + 1, if 3 ≤ i ≤ s+ 1,

(a+ 1)xi−1 − axi−s−1, if i ≥ s+ 2.
(11)

(ii) If i ≥ 2, then xi can be expressed in closed form as
follows:

xi =

qi∑
j=0

(−1)j(1/j!)

×[j(i− j(s+ 1))j−1a+ (i− j(s+ 1))j(a
2 + a+ 1)]

×aj−1(a+ 1)i−j(s+1)−2 − 1/a, (12)

where (y)j is the Pochhammer symbol given by (y)−1 =
(y)0 = 1 and (y)j = y(y + 1)(y + 2) · · · (y + j − 1) for
every positive integer j.

(iii) The sequence {xi}∞i=1 is strictly increasing.

Proof. See Appendix A.
In the following theorem, we use Lemma 3 to derive closed-

form expressions for B1, B2, · · ·, Bk that are given by (3) and
(4) and for the maximum buffer size Uk that is given by (1).

Theorem 4 Suppose that 1 ≤ s ≤ k − 1 and m ≥ 2. Let
x1 = 1 and let xi be given by the closed-form expression in
(12) (with a = m− 1 in (12)) for 2 ≤ i ≤ ⌈k/2⌉.

(i) We have

Bi = Bk−i+1 = xi for 1 ≤ i ≤ ⌈k/2⌉. (13)

Therefore, we have B1 < B2 < · · · < B⌈k/2⌉.

(ii) Suppose that k is even, say k = 2ℓ for some ℓ ≥ 1. Let
qℓ be given as in Lemma 3. Then we have

Uk =


2m

∑qℓ
r=0 xℓ−r(s+1) + 2qℓ,

if ℓ = qℓ(s+ 1) + 1,

2m
∑qℓ

r=0 xℓ−r(s+1) + 2qℓ + 2,

if qℓ(s+ 1) + 2 ≤ ℓ ≤ (qℓ + 1)(s+ 1).

(14)

(iii) Suppose that k is odd, say k = 2ℓ+ 1 for some ℓ ≥ 1
(note that k ≥ s + 1 ≥ 2). Let qℓ be given as in Lemma 3.
Then we have

Uk

=


2m

∑qℓ
r=0 xℓ−r(s+1) + (m− 1)xℓ+1 + 2qℓ + 1,

if ℓ = qℓ(s+ 1) + 1,

2m
∑qℓ

r=0 xℓ−r(s+1) + (m− 1)xℓ+1 + 2qℓ + 3,

if qℓ(s+ 1) + 2 ≤ ℓ ≤ (qℓ + 1)(s+ 1).

(15)

Proof. (i) It is clear that (13) follows from (3), (4), (10),
and Lemma 3(ii) (with a = m − 1 > 0). From (13) and
Lemma 3(iii), we obtain B1 < B2 < · · · < B⌈k/2⌉.

(ii) From (1) and (13), we have

Uk =

k∑
i=1

((m− 1)Bi + 1) = 2

ℓ∑
j=1

((m− 1)xj + 1)

= 2

ℓ−qℓ(s+1)∑
j=1

((m− 1)xj + 1)

+

qℓ−1∑
r=0

ℓ−r(s+1)∑
j=ℓ−(r+1)(s+1)+1

((m− 1)xj + 1)

 . (16)

If ℓ = qℓ(s+ 1) + 1, then we have

ℓ−qℓ(s+1)∑
j=1

((m− 1)xj + 1) = (m− 1)x1 + 1 = m

= mx1 = mxℓ−qℓ(s+1). (17)

On the other hand, if qℓ(s+1)+2 ≤ ℓ ≤ (qℓ+1)(s+1), then we
have from (10) (with a = m−1) and 2 ≤ ℓ−qℓ(s+1) ≤ s+1
that

ℓ−qℓ(s+1)∑
j=1

((m− 1)xj + 1)

= xℓ−qℓ(s+1) + ((m− 1)xℓ−qℓ(s+1) + 1)

= mxℓ−qℓ(s+1) + 1. (18)

For 0 ≤ r ≤ qℓ − 1, we have from (10) (with a = m− 1) and
ℓ− r(s+ 1) ≥ qℓ(s+ 1) + 1− (qℓ − 1)(s+ 1) = s+ 2 that

ℓ−r(s+1)∑
j=ℓ−(r+1)(s+1)+1

((m− 1)xj + 1)

= xℓ−r(s+1) + ((m− 1)xℓ−r(s+1) + 1)

= mxℓ−r(s+1) + 1. (19)

By substituting (17)–(19) into (16), we obtain (14).
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buffer size Uk computed directly by (14) and (15), and the maximum buffer
size Uk computed recursively by (1), (3), and (4) for the case that s = 2,
m = 4, and 5 ≤ k ≤ 14.
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Fig. 4. The approximate maximum buffer size Ũk given by (9), the maximum
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size Uk computed recursively by (1), (3), and (4) for the case that s = 3,
m = 4, and 7 ≤ k ≤ 15.

(iii) From (1) and (13), we have

Uk =

k∑
i=1

((m− 1)Bi + 1)

= 2

ℓ∑
j=1

((m− 1)xj + 1) + (m− 1)xℓ+1 + 1. (20)

As it is clear from (16) that 2
∑ℓ

j=1((m− 1)xj + 1) is given
by the right-hand side of (14), we immediately see that (15)
follows from (20) and (14).

B. Numerical Results

We have performed numerical analysis for extensive ranges
of the parameters s, k, and m, and our numerical results show
that the maximum buffer size Uk computed directly by using
the closed-form expressions in (14) and (15) is the same as
that computed recursively by using (1), (3), and (4). This can
be easily seen from Fig. 3 for the case that s = 2, m = 4,
and 5 ≤ k ≤ 14, and from Fig. 4 for the case that s = 3,
m = 4, and 7 ≤ k ≤ 15. Furthermore, these numerical results

TABLE I
THE APPROXIMATE MAXIMUM BUFFER SIZE Ũk AND THE MAXIMUM

BUFFER SIZE Uk FOR THE CASE THAT s = 2, m = 4, AND 5 ≤ k ≤ 19.

s = 2,m = 4
k 5 6 7 8 9

Ũk 91 140 341 533 1285
Uk 86 138 334 530 1275

Ũk − Uk 5 2 7 3 10

k 10 11 12 13 14

Ũk 2023 4856 7671 18390 29088
Uk 2020 4844 7668 18376 29084

Ũk − Uk 3 12 3 14 4

k 15 16 17 18 19

Ũk 69698 110282 264213 418114 1001672
Uk 69681 110278 264194 418110 1001650

Ũk − Uk 17 4 19 4 22

TABLE II
THE APPROXIMATE MAXIMUM BUFFER SIZE Ũk AND THE MAXIMUM

BUFFER SIZE Uk FOR THE CASE THAT s = 3, m = 4, AND 7 ≤ k ≤ 21.

s = 3,m = 4
k 7 8 9 10 11

Ũk 353 555 1382 2196 5446
Uk 346 554 1374 2194 5435

Ũk − Uk 7 1 8 2 11

k 12 13 14 15 16

Ũk 8678 21497 34294 84915 135511
Uk 8676 21484 34292 84900 135508

Ũk − Uk 2 13 2 15 3

k 17 18 19 20 21

Ũk 335498 535455 1325637 2115785 5238040
Uk 335480 535452 1325617 2115782 5238018

Ũk − Uk 18 3 20 3 22

serve as a verification of the correctness of the closed-form
expressions for Uk in (14) and (15).

Our numerical results also show that the approximate maxi-
mum buffer size Ũk given by (9) is very close to the maximum
buffer size Uk. In fact, Ũk is slightly larger than Uk. This is
due to the fact that when we approximate Bi given in (8) by
α+λ

i
+, the terms in (8) that are omitted contribute negatively

to the maximum buffer size. As a result, Ũk is slightly larger
than Uk. Since it is not easy to tell the difference between Ũk

and Uk visually from Figs. 3 and 4, we show the values of
Ũk and Uk in Table I and Table II. It can be easily seen from
Table I and Table II that the difference between Ũk and Uk is at
most equal to 22 in these cases. These numerical results tell us
that the approximate result in [36] gives a slight overestimate
of the maximum buffer size Uk. Fortunately, the difference
between Ũk and Uk is insignificant in most scenarios when
compared with the values of Uk, especially when s, k, and m
are large.

The observation from the numerical results that the approx-
imate maximum buffer size Ũk is very close to the maximum
buffer size Uk is a good indication that the approximate result
in (7) is indeed an exact result as given in (24). In Section IV,
we will use the closed-form expressions in (14) and (15) to
prove that the exact result in (24) holds.
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IV. THE MAXIMUM BUFFER SIZE IN TERMS OF THE
SWITCH SIZE IN FIG. 1

To express the maximum buffer size Uk (which is given by
(1)) in terms of the switch size M (which is given by (2)) in
the regime that s ≥ 2, k ≥ 2s + 1, and m ≥ 2, we need the
following lemma on an upper bound and a lower bound for
the xi’s in Lemma 3 under the constraint that (a + 1)s+1 ≥
qi(s+ 1)a+ 1.

Lemma 5 Suppose that s, a, xi, i ≥ 1, and qi, i ≥ 1, are as
given in Lemma 3. If (a + 1)s+1 ≥ qi(s + 1)a + 1 for some
i ≥ 1, then we have the following upper bound and lower
bound for xi:

xi ≤ (a+ 1)i/a, (21)

and

xi ≥

{
(a+ 1)i−1, if qi = 0,

(a+ 1)i−s−3, if qi ≥ 1.
(22)

Proof. See Appendix B.
Now we use the closed-form expressions in Theorem 4 and

the bounds in Lemma 5 to show that Uk can be expressed in
terms of the switch size M and the parameters s, k, and m
as given by (24) below in the regime that s ≥ 2, k ≥ 2s+ 1,
m ≥ 2.

Theorem 6 Suppose that s ≥ 2, k ≥ 2s+ 1, and m ≥ 2.
(i) Suppose that k is even, say k = 2ℓ for some ℓ ≥ s+ 1

(note that k ≥ 2s+1). Let qℓ be given as in Lemma 3. Assume
that ms+1 ≥ qℓ(s+ 1)(m− 1) + 1. Then we have

2
√

M log2(2s+2) log2 m/((2s+1)m)−4 log2(2s+2)−(s+2) log2 m+1

≤ Uk ≤ 2
√

M log2(2s+2) log2 m/((2s+1)m)+(s+3) log2 m+3. (23)

Therefore, in this case we have

Uk = 2O(
√

M log2 (2s+2) log2 m/((2s+1)m)). (24)

(ii) Suppose that k is odd, say k = 2ℓ + 1 for some ℓ ≥ s
(note that k ≥ 2s+1). Let qℓ be given as in Lemma 3. Assume
that ms+1 ≥ qℓ+1(s+ 1)(m− 1) + 1. Then we have

2
√

M log2(2s+2) log2 m/((2s+1)m)−6 log2(2s+2)−(s+1) log2 m

≤ Uk ≤ 2
√

M log2(2s+2) log2 m/((2s+1)m)+(s+3) log2 m+3.

(25)

Therefore, in this case (24) also holds.

Remark 7 (i) As mentioned earlier in this paper, the exact
result on Uk in (24) can be viewed as a complement to the
approximate result in (7) in the regime that s ≥ 2, k ≥ 2s+1,
m ≥ 2 under the constraints in Theorem 6.

(ii) We note that the constraints ms+1 ≥ qℓ(s+1)(m−1)+1
in Theorem 6(i) and ms+1 ≥ qℓ+1(s + 1)(m − 1) + 1 in
Theorem 6(ii) are not very stringent as they are applicable in
practical scenarios. For example, in Table III we first find the
largest qℓ that satisfies the constraint ms+1 ≥ qℓ(s+ 1)(m−
1)+1, i.e., qℓ = ⌊(ms+1−1)/((s+1)(m−1))⌋, then we find
the largest ℓ that satisfies qℓ(s+1)+1 ≤ ℓ ≤ (qℓ+1)(s+1),

TABLE III
THE MAXIMUM BUFFER SIZE Uk GIVEN BY (14) FOR s = 1 AND

2 ≤ m ≤ 9 AND FOR s = 2 AND 2 ≤ m ≤ 5. IN THIS TABLE, WE SET
qℓ = ⌊(ms+1 − 1)/((s+ 1)(m− 1))⌋ AND k = 2(qℓ + 1)(s+ 1).

s = 1
m 2 3 4 5
qℓ 1 2 2 3
k 8 12 12 16
Uk 28 492 3270 233008

s = 1
m 6 7 8 9
qℓ 3 4 4 5
k 16 20 20 24

Uk 1.2207 × 106 1.7414 × 108 7.6896 × 108 1.7951 × 1011

s = 2
m 2 3 4 5
qℓ 2 4 7 10
k 18 30 48 66

Uk 618 1.1488 × 107 2.0095 × 1014 8.6281 × 1022

i.e., ℓ = (qℓ+1)(s+1), and let k = 2ℓ = 2(qℓ+1)(s+1), and
finally we calculate Uk by using (14) for s = 1 and 2 ≤ m ≤ 9
and for s = 2 and 2 ≤ m ≤ 5. It is clear from Table III that
for moderate values of s, m, and k (the smaller the values of
s, m, and k are, the lower the construction complexity/cost of
the constructions is), the maximum buffer size Uk that can be
achieved is large enough and exceeds the order of millions of
packets that is needed in today’s commercial backbone routers.
For example, for s = 1 and m = 6, we only need k ≥ 16 for
Uk to exceed 106; and for s = 2 and m = 3, we only need
k ≥ 30 for Uk to exceed 106.

(iii) Finally, we note that for the regime that s ≥ 2, s+1 ≤
k ≤ 2s, and m ≥ 2, we have n = min{2s+1, k}+1 = k+1
and by using n = k + 1 (instead of n = 2s+ 2) in the proof
of Theorem 6, we can obtain the same result on Uk as that
given in (6).

Proof. (Proof of Theorem 6)
(i) It is clear from the definition of qi that qi is non-

decreasing in i, and hence we see from the assumption
ms+1 ≥ qℓ(s+1)(m−1)+1 that ms+1 ≥ qi(s+1)(m−1)+1
for 1 ≤ i ≤ ℓ. It then follows from (13), (21), (22),
1/(m− 1) ≤ 2/m (as m ≥ 2), and Bi ≥ 1 that

max{mi−s−3, 1} ≤ Bi ≤ 2mi−1 for 1 ≤ i ≤ ℓ. (26)

It is easy to see from (14), (13), and (26) that

Uk ≥ 2m

qℓ∑
r=0

Bℓ−r(s+1) + 2qℓ ≥ 2mBℓ ≥ 2mℓ−s−2, (27)

and from (14), (13), (26), 2qℓ+2 ≤ qℓ(s+1)+2 ≤ ℓ+1 ≤ mℓ,
and ms+1 ≥ 22 = 4 that

Uk ≤ 2m

qℓ∑
r=0

Bℓ−r(s+1) + 2qℓ + 2

≤ 2m

∞∑
r=0

2mℓ−r(s+1)−1 +mℓ

= 4mℓ/(1− 1/ms+1) +mℓ ≤ (19/3)mℓ ≤ 8mℓ.(28)
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Note that n = min{2s+1, k}+1 = 2s+2 (as k ≥ 2s+1).
From (26), we can see that ⌈log2s+2 Bi⌉ < log2s+2 Bi + 1 ≤
(i−1) log2s+2 m+log2s+2 2+1 ≤ (i−1) log2s+2 m+2 and
⌈log2s+2 Bi⌉ ≥ log2s+2 Bi ≥ max{(i − s − 3) log2s+2 m, 0}
for 1 ≤ i ≤ ℓ. As such, we have from (2) and (13) that

M/m ≤ 2

ℓ∑
i=1

[(2s+ 1)((i− 1) log2s+2 m+ 2) + 2s+ 3]

= (2s+ 1)ℓ(ℓ− 1) log2s+2 m+ (6s+ 5)(2ℓ)

≤ (2s+ 1)(ℓ+ 4/ log2s+2 m)2 log2s+2 m, (29)

and

M/m ≥ 2

s+2∑
i=1

[(2s+ 1)× 0 + 2s+ 3]

+2

ℓ∑
i=s+3

[(2s+ 1)(i− s− 3) log2s+2 m+ 2s+ 3]

≥ (2s+ 1)(ℓ− s− 3)2 log2s+2 m. (30)

Therefore, we see that the first inequality in (23) follows
from Uk ≥ 2mℓ−s−2 = 2(ℓ−s−2) log2 m+1 in (27) and
ℓ ≥

√
M log2(2s+ 2)/((2s+ 1)m log2 m) − 4 log2(2s +

2)/ log2 m in (29). Similarly, we see that the second inequality
in (23) follows from Uk ≤ 8mℓ = 2ℓ log2 m+3 in (28) and
ℓ ≤

√
M log2(2s+ 2)/((2s+ 1)m log2 m) + s+ 3 in (30).

(ii) As in the proof of (i) above, we can use the assumption
ms+1 ≥ qℓ+1(s+ 1)(m− 1) + 1 to show that (26) holds for
1 ≤ i ≤ ℓ+1. It is then easy to see from (15), (13), and (26)
that

Uk ≥ 2m

qℓ∑
r=0

Bℓ−r(s+1) + (m− 1)Bℓ+1 + 2qℓ + 1

≥ 2mBℓ + (m− 1)Bℓ+1 ≥ 2mℓ−s−2 + (m− 1)mℓ−s−2

≥ mℓ−s−1, (31)

and from (15), (13), (26), 2qℓ + 3 ≤ qℓ(s+ 1) + 3 ≤ ℓ+ 2 ≤
2mℓ, and ms+1 ≥ 22 = 4 that

Uk ≤ 2m

qℓ∑
r=0

Bℓ−r(s+1) + (m− 1)Bℓ+1 + 2qℓ + 3

≤ 2m

∞∑
r=0

2mℓ−r(s+1)−1 + 2(m− 1)mℓ + 2mℓ

= 4mℓ/(1− 1/ms+1) + 2mℓ+1

≤ (16/3)mℓ + 2mℓ+1 ≤ 8mℓ+1. (32)

Note that n = min{2s+1, k}+1 = 2s+2 (as k ≥ 2s+1).
As in the proof of (i) above, we have from (2) and (13) that

M/m ≤ 2

ℓ∑
i=1

[(2s+ 1)((i− 1) log2s+2 m+ 2) + 2s+ 3]

+(2s+ 1)(ℓ log2s+2 m+ 2) + 2s+ 3

= (2s+ 1)ℓ2 log2s+2 m+ (6s+ 5)(2ℓ+ 1)

≤ (2s+ 1)(ℓ+ 6/ log2s+2 m)2 log2s+2 m (33)

and

M/m ≥ 2

s+2∑
i=1

[(2s+ 1)× 0 + 2s+ 3]

+2

ℓ∑
i=s+3

[(2s+ 1)(i− s− 3) log2s+2 m+ 2s+ 3]

+(2s+ 1)(ℓ− s− 2) log2s+2 m+ 2s+ 3

≥ (2s+ 1)(ℓ− s− 2)2 log2s+2 m. (34)

Therefore, we see that the first inequality in (25) fol-
lows from Uk ≥ mℓ−s−1 = 2(ℓ−s−1) log2 m in (31) and
ℓ ≥

√
M log2(2s+ 2)/((2s+ 1)m log2 m) − 6 log2(2s +

2)/ log2 m in (33). Similarly, we see that the second inequality
in (25) follows from Uk ≤ 8mℓ+1 = 2(ℓ+1) log2 m+3 in (32)
and ℓ ≤

√
M log2(2s+ 2)/((2s+ 1)m log2 m) + s + 2 in

(34).

V. CONCLUSION

In this paper, we have obtained a closed-form expression
for the maximum buffer size that can be achieved by the con-
structions in [36]. Such an expression is of enough theoretical
interest itself. It not only allows us to directly compute the
maximum buffer size, but also makes it possible for us to
give a rigorous mathematical proof that an approximate result
on the maximum buffer size in [36] is indeed an exact result.
Therefore, this paper complements the work in [36].

APPENDIX A
PROOF OF LEMMA 3

(i) Suppose that i ≥ 3. If 3 ≤ i ≤ s+1, then we have from
(10) and 2 ≤ i− 1 < i ≤ s+ 1 that

xi =

i−1∑
j=1

(axj + 1) =

i−2∑
j=1

(axj + 1) + (axi−1 + 1)

= xi−1 + (axi−1 + 1) = (a+ 1)xi−1 + 1.

On the other hand, if i ≥ s + 2, then we have from (10)
and i > i− 1 ≥ s+ 1 that

xi =

i−1∑
j=i−s

(axj + 1)

=

i−2∑
j=i−s−1

(axj + 1) + (axi−1 + 1)− (axi−s−1 + 1)

= xi−1 + axi−1 − axi−s−1 = (a+ 1)xi−1 − axi−s−1.

(ii) We show by induction on i that (12) holds for i ≥ 2. It
is clear from (10) that

x2 = ax1 + 1 = a× 1 + 1 = (a2 + a+ 1)/a− 1/a.

Thus, we have proved the base case that (12) holds for i = 2
(note that q2 = 0 as 0 · (s+ 1) + 1 < 2 ≤ 1 · (s+ 1)).

Assume as the induction hypothesis that (12) holds up to
i− 1 for some i− 1 ≥ 2. We need to consider the following
three cases.



436 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 4, AUGUST 2023

Case 1: qi = 0. In this case, we have 3 ≤ i ≤ s + 1 and
hence qi−1 = 0 (as 1 < i− 1 < s+ 1). It follows that

xi = (a+ 1)xi−1 + 1

= (a2 + a+ 1)(a+ 1)i−2/a− (a+ 1)/a+ 1

= (a2 + a+ 1)(a+ 1)i−2/a− 1/a,

where the first equality follows from (11) (note that 3 ≤ i ≤
s + 1) and the second equality follows from the induction
hypothesis that (12) holds for i − 1 (note that qi−1 = 0).
Thus, we have proved that (12) holds for i (note that qi = 0).

Case 2: qi ≥ 1 and i = qi(s+1)+1. In this case, we have
qi−1 = qi− 1 (as (qi− 1)(s+1)+1 < i− 1 = qi(s+1)) and
qi−s−1 = qi−1 (as (qi−1)(s+1)+1 = i−s−1 < qi(s+1)).

In the following, we discuss the two subcases qi = 1 and
qi ≥ 2 separately.

Subcase 2(a): qi = 1. In this subcase, we have i = s + 2
and hence

xs+2 = (a+ 1)xs+1 − ax1

= (a2 + a+ 1)(a+ 1)s/a− (a+ 1)/a− a× 1

= (a2 + a+ 1)(a+ 1)s/a− (a+ 1)− 1/a,

where the first equality follows from (11) and the second
equality follows from the induction hypothesis that (12) holds
for i− 1 = s+ 1 (note that qs+1 = 0). Thus, we have proved
that (12) holds for i = s+ 2 (note that qs+2 = 1).

Subcase 2(b): qi ≥ 2. In this subcase, we let yj = i−j(s+1)
for 0 ≤ j ≤ qi and hence we have

xi = (a+ 1)xi−1 − axi−s−1

=

qi−1∑
j=0

(−1)j(1/j!)

×[j(yj − 1)j−1a+ (yj − 1)j(a
2 + a+ 1)]

×aj−1(a+ 1)i−j(s+1)−2 − (a+ 1)/a

−
qi−1∑
j=0

(−1)j(1/j!)

×[j(yj+1)j−1a+ (yj+1)j(a
2 + a+ 1)]

×aj(a+ 1)i−(j+1)(s+1)−2 + 1

= (a2 + a+ 1)(a+ 1)i−2/a

+

qi−1∑
j=1

(−1)j(1/j!)

×{j[(yj − 1)j−1 + (j − 1)(yj)j−2]a

+[(yj − 1)j + j(yj)j−1](a
2 + a+ 1)}

×aj−1(a+ 1)i−j(s+1)−2

−(−1)qi−1aqi−1(a+ 1)− 1/a

=

qi∑
j=0

(−1)j(1/j!)[j(yj)j−1a+ (yj)j(a
2 + a+ 1)]

×aj−1(a+ 1)i−j(s+1)−2 − 1/a,

where the first equality follows from (11) (note that i = qi(s+
1)+1 ≥ 2(s+1)+1 > s+2), the second equality follows from
the induction hypothesis that (12) holds for i−1 and i−s−1

(note that i−s−1 = (qi−1)(s+1)+1 ≥ 1×(s+1)+1 > 2 and
qi−1 = qi−s−1 = qi−1), the third equality follows from yqi =
i−qi(s+1) = 1, (1)qi−2 = (qi−2)!, and (1)qi−1 = (qi−1)!,
and the last equality follows from yqi = 1, (1)qi−1 = (qi−1)!,
(1)qi = (qi)!, and (y − 1)j−1 + (j − 1)yj−2 = (y)j−1 for
1 ≤ j ≤ qi. Thus, we have proved that (12) holds for i.

We note that in Subcase 2(a) the induction hypothesis does
not imply that (12) holds for i = 1 (in fact, x1 is not given
by (12)), and this is why we need to discuss the two subcases
qi = 1 and qi ≥ 2 separately.

Case 3: qi ≥ 1 and qi(s + 1) + 2 ≤ i ≤ (qi + 1)(s + 1).
In this case, we have qi−1 = qi (as qi(s + 1) + 1 ≤ i − 1 <
(qi+1)(s+1)) and qi−s−1 = qi−1 (as (qi−1)(s+1)+1 <
i− s− 1 ≤ qi(s+ 1)).

Similar to the proof in Case 2 above, we prove that (12)
holds for i in this case as follows:

xi = (a+ 1)xi−1 − axi−s−1

=

qi∑
j=0

(−1)j(1/j!)

×[j(yj − 1)j−1a+ (yj − 1)j(a
2 + a+ 1)]

×aj−1(a+ 1)i−j(s+1)−2 − (a+ 1)/a

−
qi−1∑
j=0

(−1)j(1/j!)

×[j(yj+1)j−1a+ (yj+1)j(a
2 + a+ 1)]

×aj(a+ 1)i−(j+1)(s+1)−2 + 1

= (a2 + a+ 1)(a+ 1)i−2/a

+

qi∑
j=1

(−1)j(1/j!)

×{j[(yj − 1)j−1 + (j − 1)(yj)j−2]a

+[(yj − 1)j + j(yj)j−1](a
2 + a+ 1)}

×aj−1(a+ 1)i−j(s+1)−2 − 1/a

=

qi∑
j=0

(−1)j(1/j!)[j(yj)j−1a+ (yj)j(a
2 + a+ 1)]

×aj−1(a+ 1)i−j(s+1)−2 − 1/a,

where the first equality follows from (11) (note that i ≥ qi(s+
1)+2 ≥ 1× (s+1)+2 > s+2), the second equality follows
from the induction hypothesis that (12) holds for i − 1 and
i − s − 1 (note that i − s − 1 ≥ (qi − 1)(s + 1) + 2 ≥ 2,
qi−1 = qi, and qi−s−1 = qi − 1), and the last equality follows
from (y − 1)j−1 + (j − 1)yj−2 = (y)j−1 for 1 ≤ j ≤ qi + 1.

(iii) To show that the sequence {xi}∞i=1 is strictly increasing,
we prove by induction on i that x1 < x2 < · · · < xi for i ≥ 2.
It is clear from (10) and a > 0 that

x2 − x1 = (ax1 + 1)− x1 = a× 1 + 1− 1 = a > 0.

Thus, we have proved the base case that x1 < x2.
Assume as the induction hypothesis that x1 < x2 < · · · <

xi−1 for some i−1 ≥ 2. To complete the induction, it suffices
to prove that xi−1 < xi. We consider the following two cases.

Case 1: 3 ≤ i ≤ s+ 1. In this case, we have

xi − xi−1 = axi−1 + 1 > ax1 + 1 = a× 1 + 1 > 0,



CHENG et al.: ON THE MAXIMUM BUFFER SIZE ACHIEVED IN A CLASS... 437

where the equality follows from (11), the first inequality fol-
lows from a > 0 and the induction hypothesis that xi−1 > x1

(note that i−1 > 1), and the last inequality follow from a > 0.
Case 2: i ≥ s+ 2. In this case, we have

xi − xi−1 = a(xi−1 − xi−s−1) > 0,

where the equality follows from (11), and the inequality
follows from a > 0 and the induction hypothesis that xi−1 >
xi−s−1 (note that 1 ≤ i− s− 1 < i− 1).

APPENDIX B
PROOF OF LEMMA 5

Suppose that (a+ 1)s+1 ≥ qi(s+ 1)a+ 1 for some i ≥ 1.
If i = 1, then qi = 0 and it is clear from x1 = 1 and a > 0
that (21) and (22) hold for i = 1. Therefore, we assume that
i ≥ 2 in the rest of the proof.

Write xi in (12) as follows:

xi =

qi∑
j=0

(−1)jδj − 1/a, (35)

where

δj = (1/j!)[j(i− j(s+ 1))j−1a

+(i− j(s+ 1))j(a
2 + a+ 1)]

×aj−1(a+ 1)i−j(s+1)−2, (36)

for 0 ≤ j ≤ qi. Note that it is easy to see that δj > 0 (as
i− j(s+ 1) ≥ i− qi(s+ 1) ≥ 1 and a > 0) for 0 ≤ j ≤ qi.
Then we consider the cases qi = 0 and qi ≥ 1 separately.

Case 1: qi = 0. In this case, we have from (35), (36), a > 0,
and i ≥ 2 that

xi = δ0 − 1/a = (a2 + a+ 1)(a+ 1)i−2/a− 1/a

=

{
(a+ 1)i/a− (a+ 1)i−2 − 1/a ≤ (a+ 1)i/a,

(a+ 1)i−1 + (a+ 1)i−2/a− 1/a ≥ (a+ 1)i−1.
(37)

Thus, (21) and (22) hold in this case.
Case 2: qi ≥ 1. In this case, we first show that the sequence

{δj}qij=1 is strictly decreasing. Suppose 1 ≤ j ≤ qi − 1. Note
that

δj+1 = (1/(j + 1)!)[(j + 1)(i− (j + 1)(s+ 1))ja

+(i− (j + 1)(s+ 1))j+1(a
2 + a+ 1)]

×aj(a+ 1)i−(j+1)(s+1)−2. (38)

To show that δj > δj+1, we give upper bounds for the two
terms (i − (j + 1)(s + 1))j and (i − (j + 1)(s + 1))j+1 that
appear in the expression for δj+1 in (38). Specifically, we have

(i− (j + 1)(s+ 1))j

= (i− (j + 1)(s+ 1))j−1(i− (j + 1)(s+ 1) + j − 1)

≤ (i− j(s+ 1))j−1(qi − 1)(s+ 1), (39)

where the inequality follows from (i − j(s + 1))j−1 ≥ (i −
(j+1)(s+1))j−1 > 0 (as 1 ≤ j ≤ qi − 1 and i− j(s+1) >
i − (j + 1)(s + 1) ≥ i − qi(s + 1) ≥ 1) and 0 < i − (j +

1)(s+1)+ j− 1 ≤ (qi+1)(s+1)− (j+1)(s+1)+ j− 1 =
(qi−1)(s+1)− (j−1)s ≤ (qi−1)(s+1). Similarly we have

(i− (j + 1)(s+ 1))j+1

= (i− (j + 1)(s+ 1))j(i− (j + 1)(s+ 1) + j)

≤ (i− j(s+ 1))j((qi − 1)(s+ 1) + 1). (40)

As such, we have

δj − δj+1

= (1/j!)[j(i− j(s+ 1))j−1a

+(i− j(s+ 1))j(a
2 + a+ 1)]aj−1(a+ 1)i−j(s+1)−2

−(1/(j + 1)!)[(j + 1)(i− (j + 1)(s+ 1))ja

+(i− (j + 1)(s+ 1))j+1(a
2 + a+ 1)]

×aj(a+ 1)i−(j+1)(s+1)−2

≥ (1/j!)[j(a+ 1)s+1 − (qi − 1)(s+ 1)a]

×(i− j(s+ 1))j−1a
j(a+ 1)i−(j+1)(s+1)−2

+(1/(j + 1)!)

×[(j + 1)(a+ 1)s+1 − ((qi − 1)(s+ 1) + 1)a]

×(i− j(s+ 1))j(a
2 + a+ 1)aj−1(a+ 1)i−(j+1)(s+1)−2

> 0, (41)

where the equality follows from (36) and (38), the first
inequality follows from a > 0, (39), and (40), and the last
inequality follows from j ≥ 1 and (a+1)s+1 ≥ qi(s+1)a+1.

Now we use the strict monotonicity of the sequence {δj}qij=1

in (41) to show that

δ0 − δ1 − 1/a ≤ xi ≤ δ0 − 1/a. (42)

Specifically, if qi is odd, say qi = 2ℓ−1 for some ℓ ≥ 1, then
it follows from (35), the strict monotonicity of the sequence
{δj}qij=1, and the positivity of the δ′js that

xi = δ0 −
ℓ−1∑
j=1

(δ2j−1 − δ2j)− δ2ℓ−1 − 1/a ≤ δ0 − 1/a,

and

xi = δ0 − δ1 +

ℓ−1∑
j=1

(δ2j − δ2j+1)− 1/a ≥ δ0 − δ1 − 1/a.

Similarly, if qi is even, say qi = 2ℓ for some ℓ ≥ 1, then we
also have

xi = δ0 −
ℓ∑

j=1

(δ2j−1 − δ2j)− 1/a ≤ δ0 − 1/a,

and

xi = δ0 − δ1 +

ℓ−1∑
j=1

(δ2j − δ2j+1) + δ2ℓ − 1/a

≥ δ0 − δ1 − 1/a.

Finally, we have from (42) and δ0 − 1/a ≤ (a + 1)i/a in
(37) that

xi ≤ δ0 − 1/a ≤ (a+ 1)i/a.
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Thus, (21) holds in this case. To show that (22) holds in this
case, we note from (42) and (36) that

xi

≥ δ0 − δ1 − 1/a

= (a2 + a+ 1)(a+ 1)i−2/a

−[a+ (i− s− 1)(a2 + a+ 1)](a+ 1)i−s−3 − 1/a

= [(a+ 1)s+1 − (i− s− 1)a](a2 + a+ 1)(a+ 1)i−s−3/a

−a(a+ 1)i−s−3 − 1/a. (43)

If qi(s + 1) + 1 ≤ i ≤ (qi + 1)(s + 1) − 1, then we have
(a + 1)s+1 − (i − s − 1)a ≥ qi(s + 1)a + 1 − (qi(s + 1) −
1)a = a + 1, and hence it follows from (43), a > 0, and
i− s− 2 ≥ (qi − 1)(s+ 1) ≥ 0 that

xi ≥ (a2 + a+ 1)(a+ 1)i−s−2/a− a(a+ 1)i−s−3 − 1/a

= (a+ 1)i−s−3 + (a2 + 1)(a+ 1)i−s−2/a− 1/a

≥ (a+ 1)i−s−3. (44)

On the other hand, if i = (qi + 1)(s + 1), then we have
(a+ 1)s+1 − (i− s− 1)a ≥ qi(s+ 1)a+ 1− qi(s+ 1)a = 1,
and hence it follows from (43), a > 0, and i − s − 3 =
qi(s+ 1)− 2 ≥ 1× 2− 2 = 0 that

xi ≥ (a2 + a+ 1)(a+ 1)i−s−3/a− a(a+ 1)i−s−3 − 1/a

= (a+ 1)i−s−3 + (a+ 1)i−s−3/a− 1/a

≥ (a+ 1)i−s−3. (45)

Thus, we see from (44) and (45) that (22) holds in this case.
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