
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 3, JUNE 2023 381

A Pluggable Module for Enabling a Trusted Edge
Device Management System Based on Microservice

Shih-Hsiung Lee and Jue-Zhi Liu

Abstract—In the development of the intelligent Internet of
things, edge computing plays a key role. Not only that it has
the characteristics of a quick response, but it can also effectively
reduce the burden of cloud computing. In addition, it can also
extend the application of network edge through the coexistence
and collaboration with the cloud system. However, with a large
number of edge devices being deployed, the previous remote
device management system will face the challenges of resource
constraints and software firmware compatibility. In addition,
implementing remote fault management, configuration manage-
ment, accounting management, performance management, and
security management through edge device management is a key
task. Therefore, this study has designed and implemented a
trusted edge device management system based on a microservice
and a plug-and-play hardware management device. The running
state of the edge device, the functions of remote device control,
and system restart are monitored remotely by in- and out-of-band
management modes. In addition, in terms of data transmission
security, the design concept of a trusted platform module is intro-
duced to realize data encryption and authentication, and ensure
security and reliability. In this paper, the operational feasibility
of management services based on containerized microservice in
edge devices is verified with system benchmarking tools without
affecting system performance. According to the experimental
results, the proposed architecture in this study can be effective
in edge device management.

Index Terms—Edge computing, Internet of things, microser-
vice, remote device management.

I. INTRODUCTION

W ITH the intelligent era and flourishing development
of information technology, mass data produced as

millions of sensors and devices connect through the Internet
of things are sent to cloud servers by embedded systems
(e.g., processors, microcontrollers, and communication tools)
and processed and stored by the cloud management platform.
However, this process brings great pressure on the network
transmission cost [1]. In order to solve these problems, edge
computing has become widely used as a solution in various
industries [2]. According to the edge computing architecture,
moving computing resources to the network edge closer to
end-users or terminal devices can reduce network bandwidth
consumption and improve latency. After deploying Internet of

Manuscript received January 30, 2023 revised May 8, 2023; approved for
publication by Junbeom Hur, Division 3 Editor, May 15, 2023.

This research is financially supported by National Science and Technology
Council of Taiwan (under grant No. 111-2221-E-992 -070 -MY2).

S.-H. Lee and J.-Z. Liu were with the Department of Intelligent Commerce,
National Kaohsiung University of Science and Technology, 58 Shenzhong
Rd., Yanchao Dist., Kaohsiung City 82444, Taiwan, R.O.C. email: {shlee,
f109156110}@nkust.edu.tw.

S.-H. Lee is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2023.000023

things devices, regular software or firmware updates, bug fixes,
potential fault crisis detection, and device maintenance are
needed. Therefore, an efficient device management system is
needed to effectively manage and maintain Internet of things
devices [3], [4]. The Internet of things device management
mainly comprises two aspects: Network management and de-
vice management [5]. The former mainly integrates heteroge-
neous networks and collects and analyzes mass data to provide
effective decisions, while the latter provides information on
device location and status. Ultimately, reliable communica-
tion protocols can help make the Internet of things services
accessible over the network [6]. Therefore, remote fault man-
agement, configuration management, accounting management,
performance management, and security management (FCAPS)
are key tasks for complex and diverse integration scenarios [7].
Add to this, many large international cloud platform providers
launch their edge computing products to expand computing
to edge ports and form service models with cloud collabora-
tion. For example, HUAWEI CLOUD supports product model
definition, visual management of structured data storage, and
device life cycle and assists users in unified remote moni-
toring, management, and edge port maintenance from cloud
platforms [8].

Due to the scale expansion, heterogeneity, and interoper-
ability of the Internet of things, building a highly extensible
and maintainable Internet of things system is challenging.
A microservice architecture, one of the best solutions for
building Internet of things systems, helps realize independent
service deployment and uses heterogeneous technologies to
run on various devices [9], [10]. A microservice is a distributed
structure that separates complex applications into lightweight
services. Each component runs independently in programs and
is managed in a distributed manner. Further, each service has
its own code and can communicate with other services by
defining API. Microservice can minimize the interdependency
between components. Generally speaking, the failure of a
single service has a lower affect on the operation of the entire
system, making its operation highly flexible and secure, which
is almost impossible in a centralized management architecture.
Microservice architectures make systems more extensible and
stable [11]. Therefore, this paper will deploy edge device and
management platform services in a distributed manner based
on microservice architectures.

Data exchange is a basic operation in the Internet of things
ecosystems. However, such open mass communications are
particularly attractive to users with illegal intentions [12].
Therefore, data security and privacy protection are challenges
for edge device management. Insecure edge devices and net-

1229-2370/23/$10.00 © 2023 KICS

382 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 3, JUNE 2023

work communications may become entry points for hacking.
When data are sent to cloud services, intruders can launch at-
tacks to change data integrity, resulting in significant negative
effects on the security of edge device management [13]. There-
fore, the design concept of the trusted platform module (TPM)
will be eventually introduced into the plug-and-play device
proposed in this paper to realize the protection mechanism
of data transmission and authentication. In addition, remote
device management systems now mainly provide local data
processing services through the Internet of things’ gateways
or uploading data to the cloud for centralized processing [14].

Due to the heterogeneity of edge devices, the past In-
ternet of things remote management mode has been unable
to meet the needs of the current edge devices, and there
is no suitable solution for the compatibility of hardware
architecture and software. Add to this, common remote device
management systems are mostly used for server and data
center management due to construction costs and complex and
necessary management. The common management method
is using the hardware chip of the baseboard management
controller (BMC), independent of the host system, and an
intelligent platform management interface (IPMI), which is a
software communication protocol [15]. An IPMI, independent
of the central processing unit and operating system of the host
system, provides the specifications for computer system self-
management and the protocol definition for management and
monitoring. According to Xu et al. [16], existing Internet of
things devices do not support IPMIs, and the cost restriction of
Internet of things devices makes it difficult to implement IPMI.
Therefore, this paper proposes a plug-and-play management
device to enable an edge-computing management service
system using in- and out-of-band management modes.

With the increasing application requirements of edge com-
puting, the stable operation and reliable management of edge
devices have become significant. In terms of business value,
many enterprises have many problems in management after
edge device deployments, such as running statuses of edge
devices, normal network connections, effective applications,
and system breakdowns. In remote troubleshooting and restart,
reducing the manpower cost of on-site maintenance and the
extra cost arising from machine halting is a major problem.
Therefore, this paper proposes a trusted edge device manage-
ment system based on microservices and a plug-and-play de-
vice to solve the remote management of edge devices. In par-
ticular, these mainly include three parts, namely, plug-and-play
hardware management device, trusted edge computing deploy-
ment management system, and cloud management platform.
Plug-and-play hardware management devices are designed
for effective monitoring, hardware encryption, and automatic
return of the running states of edge devices and for restarting
edge devices in cases of breakdowns. In addition to the
design of the plug-and-play hardware management device,
the trusted deployment management system and cloud man-
agement platform in the edge device are designed to divide
the entire application into a set of independently running
small services by combining microservice architectures and
container virtualization technologies. It includes device real-
time information, historical data query, remote control, and

remote restart systems. This paper implements the containers-
as-a-service (CaaS) to improve the extensibility and compati-
bility of the management system effectively. In order to ensure
secure and reliable data transmission, different transmission
channels and security authentication mechanisms are planned
for different data types. The edge device management system
and the plug-and-play hardware management device proposed
in this paper contain not only in- and out-of-band management
modes but also secure highly compatible deployment manage-
ment service mechanisms. The contributions of this paper are
as follows:

• A plug-and-play hardware management device, inde-
pendent of the edge device system, is designed. The
edge device system is connected to achieve information
extraction, information transmission, data encryption, and
control function.

• The design concept of the trusted platform module is
introduced into the plug-and-play hardware management
device to realize the data encryption protection mecha-
nism and provide the authentication mechanism.

• The Docker and microservice architecture separate the
complex management application into lightweight ser-
vices. Each component performs tasks independently,
which improves the compatibility and isolation of the
framework.

• A cloud management platform is designed to assist
administrators in remote monitoring and maintenance
through secure two-way communications.

• In the management system proposed in this paper, the
additional consumption of CPU, memory, disk, and power
on the edge device is almost negligible. Without affecting
the operation of the edge device, efficient remote edge
device management is realized.

• The proposed system can achieve rapid deployment and
troubleshooting, secure data transmission, reduction of
labor costs, and commercial market demands in practical
applications.

This paper is organized as follows. Section II discusses
the related works and introduces background concepts and
technologies. Section III describes the proposed system ar-
chitecture and provides the details of plug-and-play hardware
management device, microservices in edge node and man-
agement platform, and trusted data transmission mechanism.
Section IV presents the results of the experiment and its
verification. Finally, we conclude this paper.

II. RELATED WORK

Before we introduce our proposed system, we present the
related works and background concepts and technologies on
device management system, microservice for Internet of things
and trusted platform module.

A. Device Management Platform for Internet of Things

With the rapid growth in the number of Internet of things
devices and their heterogeneity, manual device troubleshooting

S.-H. LEE et al.: A PLUGGABLE MODULE FOR ENABLING A TRUSTED ... 383

is no longer suitable for the current environment, promot-
ing the emergence of many Internet of things management
platforms [4]. However, these management solutions need
to consider not only the resource constraints and complex
underlying communication mechanisms of low-power Internet
of things devices but must also have the ability to cope
with heterogeneous technologies. In order to ensure the con-
nectivity, security, and interoperability of these connecting
devices, secure remote access must be performed for network
status monitoring, device hardware and software authentica-
tion, operating parameter configuration, fault detection, and
maintenance [17].

For large-scale Internet of things deployment, a centralized
Internet of things device management may lead to bottlenecks
and massive delays. Mavromatis et al. [18] proposed a frame-
work design of software-defined IoT management (SDIM) for
multidomain wireless sensor networks edge and cloud com-
puting. The proposed architecture uses software defined net-
work (SDN) for device configuration, device control, and fault
detection. In addition, multiaccess edge computing (MEC)
is adopted to allocate resources between cloud and edge
nodes, which can reduce data transmission delay and avoid
bottlenecks in control or management. LwM2M [19] and
NETCONF light IoT [21] device management protocols are
compared by SDIM. The experimental results [18] show
a significant efficiency improvement in device configuration
time, control operation time, fault detection time, and energy
consumption. Silva et al. [5] proposed a new Internet of
things management platform with a user-friendly interface and
extensibility called M4DN.IoT. M4DN.IoT based on Internet
of things management issues, such as extensibility, interop-
erability, energy consumption efficiency, network topology
configuration, QoS, fault tolerance, and security, creates a
management platform and evaluates and validates its perfor-
mance. The management issues proposed by M4DN.IoT are
of a reference value. Internet of things management platforms
and standard protocols are booming. LwM2M is the most
widely accepted Internet of things management protocol in
the world. As the Internet of things management technologies
are becoming mature, there are still some challenges.

According to Silva et al. [21], there are many important
issues on device management, including deployment, con-
figuration, monitoring, communication, interoperability, and
extensibility. In addition, device authentication, data transmis-
sion security, and maintenance are important challenges in
the Internet of things management systems. These important
issues on management are not only key success factors in
the Internet of things but are also equally important in edge
device management. Therefore, this paper proposes a trusted
edge device management system based on microservices and a
plug-and-play hardware management device. Without affecting
the operation of the edge device, the device’s running state,
the functions of remote device control, and system restart
are monitored remotely by in- and out-of-band management
modes. In addition, in terms of data transmission security, the
design concept of a trusted platform module is introduced to
realize data encryption and authentication and ensure security
and reliability. The Docker and microservice architecture are

adopted to improve the flexibility and extensibility of device
deployment and configuration.

B. Microservice for Device Management System

As virtualization is a basic function in the resource-
constrained Internet of things environment, service providers
face the challenge of deploying various services on Internet
of things devices. In the device management system of a
monolithic structure, all functional services are developed on
a single memory pool. When system functions are updated
or errors fixed, the entire system needs to be restarted, apart
from ensuring the normal running of all other functional
services. Moreover, the failure of some functional services
may cause the entire system’s breakdown. In the Internet of
things environment that requires flexibility, extensibility, and
maintainability, the management model of over-dependence
between services no longer applies, and microservice architec-
tures have become the key to meeting the demand [10], [22].
Microservice architectures use loosely coupled services that
run independently in their processes and communicate through
lightweight communication protocols. In simple terms, the
application is built as a set of small services, with each
service running in its process and deployed independently,
and transfer information (e.g., user queries or data flows)
from one service to another through HTTP resource API [11].
Villamizar et al. [23], taking Amazon, Netflix, and LinkedIn
as examples, analyzed and tested the benefits and effectiveness
of the microservice architecture model in development, testing,
deployment, operation, and upgrade by using the Play Web
framework. The experimental results [23] show that these com-
panies can achieve effective extensibility, agility and reduce
maintenance complexity. Microservices can be achieved by
combining with virtualization technology. Ferreira et al. [24]
proposed a middleware abstraction layer in a home energy
management system (HEMS) that enables data access and
system configuration between hardware and user applications
using the concept of microservices. This paper [24] suggests
that the microservices concept is a valuable option for applica-
tions that require edge computing methods. Kwon et al. [25]
studied the design of microservices architecture based on the
open-source EdgeX framework, which can manage configu-
ration profile information of various IoT devices and support
AI inference model operations, solving the problems of data
processing speed delay and data security vulnerabilities caused
by overloaded data processing centralized in the cloud. Thus,
it can be inferred that microservices play a crucial role in
the Internet of things. The proposed framework in this paper
not only meets the security requirements of data transmission
but also considers the in-and-out of band device management
mechanism, achieving efficient remote edge device manage-
ment.

As a lightweight virtualization technology [26], Docker
can quickly create predictable environments that are isolated
from other applications. Applications can remain consistent
regardless of the deployment environments, making systems
flexible and extensible [27]. Recent studies [28]–[33] show
the growing trend of microservice and Docker service in

384 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 3, JUNE 2023

Fig. 1. Architecture of proposed trusted edge device management system.

IoT environments and explore the tradeoff between flexibility
and performance overhead. According to the experimental
results in the literature [30], [33], the overhead arising from
container-based virtualization technology is negligible, such
as resource consumption, service activation time, and energy
efficiency. Furthermore, there are outstanding advantages in
manageability and extensibility. According to the research lit-
erature [33], Docker Swarm [34] can simplify the deployment
and management of multiple containers. Therefore, Docker
and microservice architectures are used in this paper to realize
device deployment and service management mechanisms. In
the experiment section, the overhead costs of running the
management services based on containerized microservice on
edge devices are estimated with system benchmarking tools,
which proves that the effectiveness of edge devices is not
affected.

C. Trusted Platform Module

Edge computing still has some security concerns, such
as data flow security and access authentication. There-
fore, Ma et al. [35] pointed out that trusted computing and
blockchain technology shall be introduced to improve the
credibility and adaptability of edge computing security mech-
anisms. The concept of trusted computing is proposed by the
trusted computing platform alliance (TCPA). The alliance is
committed to developing secure and reliable hardware com-
puting platforms. In addition, the alliance has expanded and
become the trusted computing group (TCG). Subsequently,
they proposed the hardware security architecture standards for
the TPM [36]. Prakash et al. [37] explained that TPM not only
provides additional security for authentication, encryption, and
signature but also protects BIOS and operating systems of
start-up sequences from tampering. There are software and
hardware implementations in TPM. Aaraj et al. [38] explained
that in embedded systems with limited resources, the cost

of hardware TPM is unacceptable, and computing power and
energy consumption need to be considered in the software im-
plementation. Therefore, this paper introduces the design con-
cept of a trusted platform module. In this paper, electrically-
erasable programmable read-only memory (EEPROM) is em-
bedded into plug-and-play management devices. It combines
with advanced encryption standard (AES) protocol and token
to realize data encryption mechanisms and authentication to
ensure security and reliability.

III. PROPOSED SYSTEM

The edge device management architecture proposed in this
paper mainly includes plug-and-play hardware management
devices, containerized microservice, data security transmission
and authentication mechanism, edge device service import,
database design, and cloud management platform and con-
figuration, as shown in Fig. 1. Core technologies comprise
the plug-and-play hardware management device supporting
edge devices, data security transmission and authentication
mechanism, virtualization deployment technology, database
design based on memory and disk IO, and management plat-
form design. Management services include real-time data and
historical data processing, edge device control, security trans-
mission, and data flow modules. Authentication and encryption
mechanisms are provided in terms of secure transmission to
ensure data security and accuracy.

The first goal of this paper is to establish a plug-and-play
management device that supports edge devices of Linux
ARM-based systems without affecting the deployed edge
devices. The second goal is to import management services
quickly based on microservice architectures into edge de-
vices without affecting the programs already running on edge
devices. The third goal is to introduce trusted mechanisms
into the device management framework to prevent hackers
from reading and tampering with data. The fourth goal is to

S.-H. LEE et al.: A PLUGGABLE MODULE FOR ENABLING A TRUSTED ... 385

Fig. 2. PCB layout placement of pluggable hardware device.

Fig. 3. Engineering sample of pluggable hardware device.

apply microservice-based architectures to cloud management
platforms to help managers quickly view edge devices and
remotely control devices.

In plug-and-play hardware, in-and-out of band data trans-
mission can perform data encryption and authentication
through a security zone in the hardware. This security zone is
directly embedded in the hardware device and is similar to the
TPM design mechanism. This is a low-cost TPM conceptual
design method. In addition, since the hardware designed in
this paper provides an in-and-out of band transmission mode,
maintainers can quickly perform remote troubleshooting and
monitoring. In terms of deployment and management, the
mechanism of microservices are used in the cloud management
platform and edge devices. The microservice architecture is
considered to be one of the best solutions for building IoT
systems. Through the independent deployment of processes
and the decentralized structure of heterogeneous technologies,
the scalability and stability of the management platform can
be improved. The most important thing is that the microser-
vice mechanism can be rapidly deployed and updated on
edge devices. This feature has commercial value in practical
applications. Therefore, a trusted edge device management
system is realized by the concept of trust, microservice, and
plug-and-play hardware proposed in this paper.

A. Pluggable Hardware Design for Edge Device Management

Baseboard management controllers (BMCs) are usually
used to design the hardware of remote device management
systems, and their hardware is mostly used in data cen-
ters or large server systems. Edge devices are expensive to
build and have limited computing power. In addition, BMCs
are independent of host machines and can be compatible
or integrated with the hardware, firmware, and software of

Fig. 4. Microservice in edge device.

BIOS or UBOOT. BMCs are not perfect now for supporting
Linux ARM-based systems. Therefore, this paper designs
a plug-and-play hardware management device that supports
Linux ARM-based systems. In this paper, Atmega328P [39],
characterized by its low power consumption, is used as the
main microcontroller core. The USB bus is the hardware
interface connecting with the edge device, used for data con-
version and control through serial communications to become
pluggable without affecting the edge device. An independent
network interface is designed on the network communication
hardware architecture to return the state through this network
interface even if the edge device system network fails. In
order to strengthen the security of the whole edge device, the
design concept of TPM is introduced. EEPROM is embedded
into plug-and-play management devices. It combines with
the AES to directly provide encryption and authentication
functions for hardware to increase credibility and reliability.
External GPIO control pins and I2C interfaces are reserved
to obtain peripheral devices, such as remote reset systems,
restart systems, or fan control. This function can effectively
solve the problem that the maintenance personnel only need to
restart devices on-site because 70% of device failures can be
resolved by restarting systems. In addition, to prevent outage
of the plug-and-play management device caused by the failure
of the edge device’s power management circuits, the external
power supply function in the design of the power supply is
provided to ensure the stable operation of the plug-and-play
management device. The hardware is 60 mm long, 40 mm
wide, and 15 mm high. The layout placement of the printed
circuit board is shown in Fig. 2. The actual hardware is shown
in Fig. 3, which shows that the out-of-band management
mechanism is achieved.

B. Microservice in Edge Node

In terms of edge device nodes, this paper takes the em-
bedded Linux-ARM-based system, which can run the Docker
virtualization technology as the main development environ-
ment. Management services are deployed on edge devices.
Meanwhile, Docker and microservice architectures are used
to divide service applications into lightweight and indepen-
dently running services, including hardware monitoring and
automatic return container service, device control container

386 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 3, JUNE 2023

Fig. 5. The flow of starting edge device management service.

service, secure reception tunnel container service, and restart
container service shown in Fig. 4. In addition, the bridge
network of each container, the privilege to connect interface
devices, and container opening and restart mechanisms are
defined by the Docker-compose multi-container deployment
tool [40] in the YAML file format [41]. This paper introduces
a simple edge device management service process, as shown
in Fig. 5. First, the Docker-compose package is installed.
Then, the multi-container deployment file of the edge device
management service is downloaded. Finally, the command is
executed to deploy the containerized management services
rapidly. Container services of edge devices securely transmit
monitored status data to plug-and-play management devices
and deliver data to management platforms.

C. Container Service of Monitoring and Automatic Reprot

The process of monitoring and automatic report in container
service is that the container extracts system operating infor-
mation, including CPU temperature and use rate, GPU tem-
perature and use rate, disk usage, memory usage, fan speed,
system load, device temperature and network connection (in-
cluding physical network connection), and peripheral control.
It also stores data in the Javascript object notation (JSON)
format. AES encryption is conducted after data are sent to the
plug-and-play management device. Since the data length must
be a multiple of 16, data are filled to be multiples of 16 in the
container in advance.

D. Container Services of Secure Reception Tunnel, Device
Control, and Restart

The process of secure reception tunnel, device control,
and restart in container services is that when sending device
control requests, the cloud management platform will carry
out WebSocket handshaking protocol with the plug-and-play
management device and transmit control instructions, includ-
ing device control and system operation. After receiving
messages, the plug-and-play device communicates with the
secure reception tunnel container through serial ports and
transmits instructions. The secure reception tunnel container
determines event types and sends operating instructions to
appropriate containers. There are mainly device control and
system restart. In terms of device control, pulse-width modu-
lation (PWM) is used in this paper to adjust the fan speed. In
cases of overtemperature devices, the administrator can adjust

Fig. 6. Microservice in management platform.

the fan speed through the cloud management platform. The
compulsory system restart of the plug-and-play management
device is different. Moreover, the application scenario of the
restart container service is used when the device runs normally.
However, when the device is abnormal and unresponsive, the
edge device is forcibly restarted by external GPIO pins from
the plug-and-play management device.

E. Microservice in Management Platform
As shown in Fig. 6, the cloud management platform archi-

tecture is mainly composed of 5 Docker containers: Web server
container service, web container service, secure transmission
tunnel connection container service, and database management
container service. The database management container service
consists of MongoDB [42] and Redis databases [43]. In the
face of real-time demand, the real-time response is achieved
through the Redis database, which reads and writes fast. The
data stored in memory for a certain period will be written
back and updated to the MongoDB database, making the data
management more flexible. In addition, the interdependent
containers connected to the same bridge network allow con-
tainers to communicate with each other. On the other hand,
containers not connected to the bridge network will be isolated
from other containers. In the edge device and plug-and-play
management device, data are transmitted to the management
platform through encrypted SSH tunnels. The administrator
can manage and maintain the edge device remotely with the
browser. Its main functions are real-time device status view,
historical data query, a remote device controlling and system
restart, and in- and out-of-band management mechanism.

F. Real Time Data Monitoring and Historical Data Query
The real-time data monitoring is that the plug-and-play

hardware management device automatically transmits the data
to the cloud server through the HTTP2 communication proto-
col. In particular, the verification process after data entering
the cloud management platform consists of the following steps.
The cloud management platform obtains the identity tokens
of all users from the Redis database and verifies whether they
are valid. AES decryption keys are extracted according to the
identity tokens. After decryption, the data will be temporarily
saved to Redis and displayed on web pages.

The historical data of the edge device status are mainly
stored in MongoDB. If the network of the edge device fails (in-
band), its previous information can still be queried through the

S.-H. LEE et al.: A PLUGGABLE MODULE FOR ENABLING A TRUSTED ... 387

cloud management platform. The Redis database is used for
quick response in querying recent device data to make the
data management more flexible, while MongoDB is used for
previous data.

G. Remote Device Controlling
The remote device controlling is mainly achieved by the

plug-and-play management device, which can be performed
even if the edge device network fails. There are two service
functions in this process: Remote fan control and system
restart. The edge device normally running sends instructions to
its container services through the plug-and-play management
device. When the operating command from the outside world
cannot be received because the edge device runs abnormally
or the system crashes, the plug-and-play management device
can be used to restart the system forcibly and implement the
out-of-band management mechanism.

H. Trusted Data Transmission Mechanism
In this paper, a trusted mechanism is imported into the

edge device management framework to ensure secure data
transmission and authentication to prevent tampering or hacker
infringement. The two types of transmitted and controlled
objects include web browsers and edge devices. Meanwhile,
HTTP2 [44] and WebSocket [45] are used as transport pro-
tocols, as shown in Fig. 7. In terms of the web browser,
HTTPS is used for encryption to ensure secure communication
between the browser and the cloud management platform.
The browser is encrypted by SSL/TLS [46] and connected
to the Nginx container by HTTP2. The Nginx container proxy
sends requests to the web container, while the web container
examines whether the accounts and passwords stored in the
database are correct and grants access to users. Furthermore,
the encrypted method from hardware side is based on the
concept of TPM to strengthen the security of data transmission
of the edge device. Concerning the plug-and-play hardware
management device, encryption keys and tokens are generated
in advance and stored in EEPROM. The encryption standard
uses AES to provide encryption and authentication directly
on the plug-and-play hardware management device. The data
are authenticated while being sent to the server, which greatly
reduces the vulnerabilities during data access. In addition, two
encryption mechanisms are provided in this paper to encrypt
the data using plug-and-play hardware management device,
as shown in Fig. 8. In the first method, monitoring data are
transmitted, through the USB interface, from the edge device
to the plug-and-play management device. The plug-and-play
management device gets the key from its EEPROM, encrypts
the data, and obtains the tokens to authenticate the transmitted
data. In the second method, the edge device sends encryption
authentication requests, and the plug-and-play management
device sends back the key and the tokens to the edge device.
Meanwhile, the edge device is used for encryption and trans-
mission. The two methods can achieve the in- and out-of-band
management mechanisms, and appropriate data transmission
methods can be implemented for platforms with different
computing capabilities.

Fig. 7. The mechanism of trusted communication.

Fig. 8. Two mechanisms for different applications.

Fig. 9. Real system environment scenario.

IV. EXPERIMENT

A. System Environment Construction

In the experimental environment construction in this
paper, NVIDIA Jetson Nano [47], an embedded Linux
ARM-based system device, is adopted as the edge device.
The plug-and-play hardware management device is developed
in this study, as shown in Fig. 3. Table I shows the detailed
specifications of the edge device used in this paper. Fig. 9
shows the entity construction.

B. Management Platform

1) Real time information: The administrator can choose
edge devices based on the deployed IP address. In order
to provide the real-time running status of the device, the
advanced flask-socketIO package library is used for real-time
push, which can realize two-way communications through

388 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 3, JUNE 2023

Fig. 10. Web user interface of real time data.

TABLE I
EDGE DEVICE ENVIRONMENT.

NVIDIA Jetson Nano
CPU Quad-core Arm® Cortex®-A57
GPU 128i NVIDIA Maxwell™ GPU
Memory 4 GB 64-bit LPDDR4 25.6 GB/s
Storage MicroSD 64 GB
OS Ubuntu 18.04 LTS
Linux kernel 4.9.201-tegra
Power 5 W

Software package • Docker 19.03.6
• Docker compose 1.29.2

WebSocket and Polling. The main information includes fan
speed, CPU and GPU use rate, CPU and GPU temperature,
phase-locked loops (PLL) and arctic oscillation (AO) temper-
atures, system load, memory and disk use rate, and network
state. The actual management interface operation is shown in
Fig. 10.

2) Historical data information: The administrator can view
the historical data of the device through the management
platform. The Redis database is used for quick response in
querying recent device data, while the MongoDB database for
previous data. Due to the batch writeback database mechanism
adopted in this paper, data are first stored in the memory-based
database and then written back to the disk-based database after
a certain storage period to make the database management
more flexible.

3) Remote device controlling: The remote control function
can communicate with the plug-and-play management device
via WebSocket and control the fan and restart the system. The
administrator can control the fan speed by inputting PWM
values (0–255) if the device temperature is too high. There
are two methods to restart the system. The in-band method is
used when the system runs normally. On the other hand, the
out-of-band method is used, which can force the system to
restart remotely, regardless of whether the edge device system
crashes or stops unexpectedly.

Fig. 11. CPU benchmark test in edge device.

C. Performance Evaluation

In recent years, whether containers cause additional perfor-
mance overheads has been studied and explored in a large
amount of literature. According to the literature, containers
have little effect on CPU, memory I/O, and disk I/O. Due to
a large number of complex calculations and tasks performed
by the edge device, the additional performance overheads of
management services must be reduced. Therefore, this paper
examines whether there is any additional performance over-
head arising from deploying the containerized management
service on edge devices. In addition, there is Jtop, a monitor
program in the NVIDIA Jetson Nano development software
package. Hence, this paper compares the containerized man-
agement service with Jtop and tests its performance cost.

1) CPU benchmark test: This paper uses the Sysbench
stress test tool [48] to test CPU performance. The experimental
results are shown in Fig. 11. “Event” refers to the number of
events that the CPU can process per second. Regardless of
whether the containerized management service is enabled on
the edge device, the CPU performance results are almost the
same. However, the CPU performance is significantly reduced
after the Jetson system monitor program is executed.

2) Memory bandwidth benchmark test: The mbw com-
mand [49], which determines the available memory bandwidth
by replicating mass data, is used in this paper to test and

S.-H. LEE et al.: A PLUGGABLE MODULE FOR ENABLING A TRUSTED ... 389

Fig. 12. Memory benchmark test in edge device.

Fig. 13. Disk I/O benchmark test in edge device.

evaluate the memory I/O performance by performing three
different test projects (i.e., memcpy, dumb, and mcblock).
The experimental results are shown in Fig. 12. The overhead
arising from deploying the containerized management service
of this paper is negligible.

3) Disk I/O benchmark test: This paper uses the Sysbench
stress test tool to test the disk I/O performance. Before the
disk I/O performance evaluation, the data file to be tested
shall be first generated, and the generated data file must be
at least larger than the memory. If the data in the archive
can be fully stored in memory, the system will cache most
data so that the results cannot effectively evaluate the intensive
workload of disk I/O. The results are shown in Fig. 13. The
performance overhead can be negligible regardless of whether
the containerized management service is started.

4) Power consumption: In addition to performing its com-
puting tasks, the edge device needs to complete management
services. Therefore, this paper evaluates the additional power
consumption generated by the management service on the edge
device. The results are shown in Fig. 14. The power consumed
to run the management service in this paper increases from
1.96 W to 1.979 W. However, only the 0.019 W increase
means that the extra power consumption generated by this
management service is almost negligible.

5) Secure sockets layer server test: The cloud management
platform may be hacked or make important information stolen.
Therefore, the cloud management platform SSL certificate and

Fig. 14. Power consumption evaluation in edge device.

Fig. 15. SSL report by SSL labs.

browser security are significant key factors. In this paper,
Qualys SSL LABS [50] is used to test the security level of
the cloud management platform SSL certificate. The cloud
management platform implemented in this paper is scored A+,
the highest security level, as shown in Fig. 15.

6) Security analysis: The edge computing device manage-
ment framework proposed in this paper introduces trusted
mechanisms for data encryption and identity authentication
to ensure secure data transmission and authentication. Token-
based identity authentication is adopted to prevent tampering
and intrusion by hackers. HTTPS is used to encrypt com-
munication between the browser and the cloud management
platform to ensure secure communication. Therefore, the ar-
chitecture proposed in this paper has the following claims in
terms of security analysis:

1) The proposed mechanism can resist man-in-the-middle
attacks: When transmitting messages, even if hackers
intercept the packets using address resolution proto-
col (ARP) spoofing, the encrypted packets cannot be
tampered with and can only be modified arbitrarily
because the data between the transmission channels is
encrypted using AES. Due to the identity authentication
mechanism of the token, the packets that have been
arbitrarily modified will be judged as illegal messages.

2) The proposed mechanism can resist impersonation at-
tacks: The encryption key and token are pre-burned in
the hardware device (EEPROM) and are a mechanism of
the TPM. Hackers must know the relevant information of
a legitimate device to impersonate the device, and in this

390 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 3, JUNE 2023

situation, hackers cannot easily impersonate a device.

V. CONCLUSION

This paper proposes a trusted edge device management
system based on a microservice, mainly composed of a cloud
management platform, plug-and-play hardware management
device, and virtualization deployment technology to realize in-
and out-of-band management modes. The design concept of
the trusted platform module is introduced to the plug-and-play
hardware management device to realize the data encryption
mechanism and authentication. The system can effectively
provide important information of the edge device and inter-
operability, including real-time device information, historical
data query, remote control, and remote restart system. This
paper designs a management service deployment mechanism,
which integrates Docker and microservice architecture and
provides rapidity, extensibility, and compatibility for deploying
cloud management platforms and edge device management
services. In addition, different transmission tunnel and security
authentication mechanisms are provided among different edge
devices, cloud management platforms, and browsers, including
AES encryption and decryption, identity token authentication,
encrypted SSH tunnel, and HTTPS. In terms of experimental
data, the additional consumption of CPU, memory, disk,
and power on the edge device is almost negligible in the
management system proposed in this paper. In future work,
we will consider the proposed platform’s lightweight secure
data transmission and authentication mechanisms in edge
computing environments and verify the secure linkage of each
module within the entire system scope.

REFERENCES

[1] W. Yu et al., “A survey on the edge computing for the Internet of things,”
IEEE Access, vol. 6, pp. 6900–6919, 2018.

[2] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for the
Internet of things: A case study,” IEEE Internet Things J., vol. 5, no. 2,
pp. 1275–1284, Apr. 2018.

[3] S. Sinche et al., “Towards effective IoT management,” in Proc. IEEE
SENSORS, 2018.

[4] M. Asemani, F. Abdollahei, and F. Jabbari, “Understanding IoT platforms
: Towards a comprehensive definition and main characteristic description,”
in Proc. IEEE ICWR, 2019.

[5] J. D. C. Silva, J. J. P. C. Rodrigues, K. Saleem, S. A. Kozlov, and R.
A. L. Rabêlo, “M4DN.IoT-A networks and devices management platform
for Internet of things,” IEEE Access, vol. 7, pp. 53305–53313, 2019.

[6] J. de C. Silva, J. J. P. C. Rodrigues, J. Al-Muhtadi, R. A. L. Rabêlo, and
V. Furtado, “Management platforms and protocols for Internet of things:
A survey”, Sensors, vol. 19, no. 3, p. 676, 2019.

[7] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
“Internet of things: A survey on enabling technologies, protocols, and
applications,” IEEE Commun. Surveys Tuts, vol. 17, no. 4, pp. 2347–2376,
2015.

[8] H. Zhang et al., “Research and application of industrial equipment
management service system based on cloud-edge collaboration,” in Proc.
CAC, 2019.

[9] N. Dragoni et al., “Microservices: Yesterday today and tomorrow” in
Present and Ulterior Software Engineering, Cham, Switzerland:Springer,
pp. 195–216, 2017.

[10] C. Santana, B. Alencar, and C. Prazeres, “Microservices: A mapping
study for Internet of things solutions,” in Proc. IEEE NCA, 2018.

[11] D. Lu, D. Huang, A. Walenstein, and D. Medhi, “A secure microservice
framework for IoT,” in Proc. IEEE SOSE, 2017.

[12] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K.
Markakis, “A survey on the Internet of things (IoT) forensics: Challenges,
approaches, and open issues,” IEEE Commun. Surveys Tuts., vol. 22,
no. 2, pp. 1191–1221, 2020.

[13] A. H. Shehab and S. T. Faraj Al-Janabi, “Microsoft Azure IoT-based
edge computing for smart homes,” in Proc. IEEE DASA, 2020.

[14] F. Samie et al., “Fast operation mode selection for highly efficient IoT
edge devices,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 39, no. 3, pp. 572–584, Mar. 2020.

[15] Intel Corporation, “Intelligent platform management interface specifica-
tion v2.0 rev. 1.1,” Intel Corporation, Hewlett-Packard, NEC, Dell, Tech.
Rep., 2013.

[16] M. Xu et al., “Dominance as a new trusted computing primitive for the
Internet of things,” in Proc. IEEE SP, 2019.

[17] S. Sinche et al., “A survey of IoT management protocols and frame-
works,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 1168–1190,
2020.

[18] A. Mavromatis et al., “A software-defined IoT device management
framework for edge and cloud computing,” IEEE Internet Things J.,
vol. 7, no. 3, pp. 1718–1735, Mar. 2020.

[19] “Lightweight machine to machine technical specification. Approved
version 1.0.1,” Open Mobile Alliance, San Diego, CA, USA, Rep., Jul.
2017.

[20] J. S. V. Perelman, M. Ersue, and K. Watsen, “Network configuration
protocol light (NETCONF Light),” Internet Eng. Task Force, Fremont,
CA, USA, 2014.

[21] J. de C. Silva, J. J. P. C. Rodrigues, J. Al-Muhtadi, R. A. L. Rabêlo, and
V. Furtado, “Management platforms and protocols for Internet of things:
A survey,” Sensors, vol. 19, no.3, p. 676, 2019.

[22] P. Di Francesco, P. Lago and I. Malavolta, “Migrating towards microser-
vice architectures: An industrial survey,” in Proc. IEEE ICSA, 2018.

[23] M. Villamizar et al., “Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the cloud,” in Proc.
IEEE 10CCC, 2015.

[24] L. C. B. C. Ferreira et al., “Edge computing and microservices mid-
dleware for home energy management systems,” IEEE Access, vol. 10,
pp. 109663–109676, 2022.

[25] T. -G. Kwon and K. Ro, “A Study on edge computing-based mi-
croservices architecture supporting IoT device management and artificial
intelligence inference,” in ICEIC, 2023.

[26] X. Sun, Y. Liang, and H. Huang, “Design and implementation of Internet
of things platform based on microservice and lightweight container,” in
Proc. IEEE ITAIC, 2020.

[27] X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, “Application
deployment using microservice and docker containers: Framework and
optimization”, J. Netw. Comput. Appl., vol. 119, pp. 97–109, Oct. 2018.

[28] W. Jin, R. Xu, T. You, Y. -G. Hong, and D. Kim, “Secure edge computing
management based on independent microservices providers for gateway-
centric IoT networks,” IEEE Access, vol. 8, pp. 187975–187990, 2020.

[29] N. D. Nguyen, L. -A. Phan, D. -H. Park, S. Kim, and T. Kim, “Elas-
ticFog: Elastic resource provisioning in container-based fog computing,”
IEEE Access, vol. 8, pp. 183879–183890, 2020.

[30] R. Morabito, “Virtualization on Internet of things edge devices with
container technologies: A performance evaluation,” IEEE Access, vol. 5,
pp. 8835–8850, 2017.

[31] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, “Container-as-a-service
at the ddge: Trade-off between energy efficiency and service availability at
fog nano data centers,” IEEE Wireless Commun., vol. 24, no. 3, pp. 48–56,
Jun. 2017.

[32] L. Deshpande and K. Liu, “Edge computing embedded
platform with container migration,” in Proc. IEEE Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, 2017.

[33] R. Morabito, I. Farris, A. Iera, and T. Taleb, “Evaluating performance
of containerized IoT services for clustered devices at the network edge,”
IEEE Internet things J., vol. 4, no. 4, pp. 1019–1030, Aug. 2017.

[34] Docker Swarm. [Online]. Available: https://docs.docker.com/engine/swa
rm/. (accessed on 23 August 2021).

[35] B. Ma et al., “Security of edge computing based on trusted computing,”
in Proc. ISSSR, 2020.

[36] TPM main part 1 design principles: Specification version 1. 2, Trusted
Computing Group, 2011.

[37] V. Prakash, A. Williams, L. Garg, C. Savaglio, and S. Bawa, “Cloud
and edge computing-based computer forensics: Challenges and open
problems,” Electronics, vol. 10, no. 11, p. 1229, May 2021.

[38] N. Aaraj, A. Raghunathan, S. Ravi, and N. K. Jha, “Energy and
execution time analysis of a software-based trusted platform module,”
in Proc. IEEE DATE, 2007.

S.-H. LEE et al.: A PLUGGABLE MODULE FOR ENABLING A TRUSTED ... 391

[39] ATmega328P Data Sheet. [Online]. Available: http://ww1.microchip.co
m/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P
-DS-DS40002061A.pdf.

[40] Docker Compose. [Online]. Available: https://docs.docker.com/compos
e/.

[41] YAML-a human friendly data serialization standard. [Online]. Available:
https://yaml.org/.

[42] MongoDB. [Online]. Available: https://www.mongodb.com/.
[43] Redis. [Online]. Available: https://redis.io/.
[44] FC7540—HTTP/2. [Online]. Available:https://tools.ietf.org/html/rfc754

0.
[45] RFC6455—WebSocket. [Online]. Available: https://tools.ietf.org/html/

rfc6455.
[46] Rescorla, E., “The transport layer security (TLS) Protocol Version 1.3”,

RFC 8446, Aug. 2018.
[47] NVIDIA Jetson Nano. [Online]. Available: https://www.nvidia.com/e

n-us/autonomous-machines/embedded-systems/jetson-nano/.
[48] Sysbench tool. [Online]. Available:https://github.com/akopytov/sysben

ch.
[49] mbw-memory bandwidth benchmark tool. [Online]. Available: http://ma

npages.ubuntu.com/manpages/bionic/man1/mbw.1.html.
[50] Qualys SSL LABS. [Online]. Available: https://www.ssllabs.com/ssltes

t/.

Shih-Hsiung Lee is currently an Associate Profes-
sor of the Department of Intelligent Commerce at
National Kaohsiung University of Science and Tech-
nology. He received the B.Sc. degree in Department
of Applied Mathematics from National Chung Hsing
University in 2007, the M.Sc. degree in Department
of Computer Science and Information Engineering
from National Cheng Kung University in 2009 and
the Ph.D. degree in Institute of Computer and Com-
munication Engineering from National Cheng Kung
University in 2018. His research interests include

Internet of things, intelligent computing, signal processing, deep learning,
machine learning, and computer vision.

Jue-Zhi Liu is currently pursing the M.S. degree
with the Department of Intelligent Commerce at Na-
tional Kaohsiung University of Science and Technol-
ogy, Taiwan. His research interests include Internet
of things, ubiquitous learning, and network security.

