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Placement of Parameter Server in Wide Area
Network Topology for Geo-Distributed Machine

Learning
Yongyao Li, Chenyu Fan, Xiaoning Zhang, and Yufeng Chen

Abstract—Machine learning (ML) is extensively used in a wide
range of real-world applications that require data all around
world to pursue high accuracy of a global model. Unfortunately,
it is impossible to transmit all gathered raw data to a central
data center for training due to data privacy, data sovereignty
and high communication cost. This brings the idea of geo-
distributed machine learning (Geo-DML), which completes the
training of the global ML model across multiple data centers
with the bottleneck of high communication cost over the limited
wide area networks (WAN) bandwidth. In this paper, we study
on the problem of parameter server (PS) placement in PS
architecture for communication efficiency of Geo-DML. Our
optimization aims to select an appropriate data center as the
PS for global training algorithm based on the communication
cost. We prove the PS placement problem is NP-hard. Further,
we develop an approximation algorithm to solve the problem
using the randomized rounding method. In order to validate the
performance of our proposed algorithm, we conduct large-scale
simulations, and the simulation results on two typical carrier
network topologies show that our proposed algorithm can reduce
the communication cost up to 61.78% over B4 topology and
21.78% over Internet2 network topology.

Index Terms—Geo-distributed machine learning, routing, wide
area networks.

I. INTRODUCTION

MACHINE learning (ML) is a method of data anal-
ysis, which extracts helpful information from large-

scale data to make predictions or decisions without human
intervention [1]. Nowadays, ML algorithms have been adopted
in many classes of applications such as computer vision [2],
speech recognition [3], and natural language processing [4],
etc., where it is difficult to use conventional methods to
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complete complicated tasks. These applications need to collect
and analyze a variety of data including user behaviors, videos,
pictures and voices, etc., which are generated at a very fast
speed from users of all over the world. Many Internet service
providers (ISPs), such as Google [5], Microsoft [6], and
Amazon [7], have tens of data centers around the world to
reduce their services’ access delay for users, and to collect
large-scale data.

A frequently-used approach to train a ML model over vast
data is to transmit all data into one data center by wide area
networks (WAN). However, this approach faces the following
three challenges. The first challenge is high communication
cost. The link bandwidth of WAN is seriously limited, and
transferring such an enormous amount of data to a data
center takes a long time, which undoubtedly results in high
communication cost for ML training. The second challenge
is data privacy. The ML training data possibly comes from
different ISPs. It is difficult to completely share the raw
data in consideration of data security. The third one is data
sovereignty. Nowadays, an increasing number of countries
enact laws to prohibit the data transmission across national
or continental borders [8], [9].

To address these above challenges, the concept of geo-
distributed machine leaning (Geo-DML) is proposed in indus-
try and academia [10], [11]. In the paradigm of Geo-DML,
a large amount of raw data is locally stored in different data
centers, and the ML model training procedure is performed
over the geographically dispersed data sets among data centers
via the communication of WAN links. However, the existing
DML algorithms are suitable for the server cluster with high-
speed local area networks (LAN) (e.g., 10 gigabit ethernet)
within a single data center. In the context of Geo-DML, the
bandwidth of WAN is much smaller than that of high-speed
LAN, which causes a slowdown for DML parameter synchro-
nization. In addition, the link bandwidth of WAN connecting
data centers are mainly determined by the geographic distance.
For example, the link bandwidth between geographically-
close data centers could be up to 12 times higher than that
between distant ones [12]. Therefore, how to accelerate the
training procedure by improving communication efficiency in
Geo-DML is an important issue to be studied.

In the study we mainly consider the parameter server (PS)
architecture for Geo-DML. There are two kinds of computing
nodes in traditional PS architecture, including several workers
which train ML model replicas on data shards in parallel,
and a PS which is responsible for synchronizing these model
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Fig. 1. Centralized hierarchical geo-distributed machine learning structure.

replicas. In the procedure of training, each worker in PS
architecture calculates parameter updates (i.e., gradients) and
then pushes them to the PS. The global model will not be
updated until the PS have received gradients from all workers
in each epoch. Then each worker starts the next-epoch training
after pulling the latest model parameters.

In the context of Geo-DML, traditional PS architecture
is usually hierarchical constructed to avoid severe network
congestion over WAN. A typical centralized hierarchical Geo-
DML structure is shown in Fig. 1. There are some worker data
centers and a central data center as the global PS in the system.
Within each worker data center, there are several worker nodes
and a local PS. Each worker node contains the same model
replica and a shard of input data samples to achieve data
parallelism. The basic training procedure during one epoch
is described as following: 1. After worker nodes completing
the gradient descent calculation, they push the gradients to
the local PS over LAN. The local PS aggregates the received
gradients and push the locally aggregated gradient to the global
PS over WAN. 2. The global PS aggregates the received
gradients. 3. The global PS broadcast the globally aggregated
gradient back to each local PS. Local PSs update their models
by the globally aggregated gradient and broadcast the updated
model parameters to the worker nodes in the corresponding
data center for the next round of gradient descent calculation.

In this paper, we study on the problem of PS placement in
PS architecture for communication efficiency of Geo-DML,
which aims to select an appropriate data center as the PS
for the global ML training based on the communication
time. Since the PS placement problem is proved NP-hard,
we propose an approximation algorithm using the randomized
rounding method [13] named approximate parameter server
placement (APSP). In the APSP algorithm, we select the
appropriate one from all the data centers as the global PS
based on the communication time in each epoch. In order
to validate the performance of our proposed algorithm, we
conduct large-scale simulations, and the simulation results on
two typical carrier network topologies show that our proposed
algorithm can reduce the communication cost up to 61.78%
over B4 topology [30] and 21.78% over Internet2 network
topology. As far as we know, our paper is the first study to
investigate the PS placement problem in Geo-DML.

The main contributions of our work are summarized as

follows.
• We investigate the problem of PS placement in PS archi-

tecture for Geo-DML, and formulate the studied problem
as an optimization model.

• Since the formulated optimization model is NP-hard, we
propose an approximation algorithm using the randomized
rounding method with a bounded approximation factor
named APSP to solve this problem. Further, we analyze the
approximation performance of APSP algorithm and give the
approximation factor for link capacity constraint.

• Extensive simulation results on two typical carrier network
topologies show that our proposed algorithm can reduce the
communication cost up to 18% in average.
The rest of this paper is organized as follows. In Section II,

we briefly review the literatures related to our work. In
Section III, we give a motivation example of our work and
formulate the studied problem as an optimization model. In
Section IV, we describe our solution and present our proposed
algorithm. We show the simulation results in Section V and
give our conclusion in Section VI.

II. RELATED WORK

To analyze the large amount of data with a fast growing
rate all around world, distributed training is the effective
way to maintain capability and scalability while keeping cost
controllable. Recently, some Geo-DML architecture have been
proposed for global data analysis across multiple data centers.

Some prior works are aware of the challenge of global-
ization of model training and establish the arising problem
of analyzing the data generated globally in the context of
data analytics systems (e.g., [16]–[19], [21], [27]). These
works show the very optimistic WAN bandwidth reduction
and improvement of system performance using a WAN-aware
data analytics framework. For instance, Pu et al. [16] pre-
sented a system for low latency Geo-Distributed analytics
named Iridium, which achieved low query response times by
optimizing placement of both data and tasks of the queries.
The experiment showed that the Iridium sped up queries by
3×–19× and lowered WAN usage by 15%–64% compared to
existing baselines. Vulimiri et al. [17] proposed WANalytics,
a system that pushed computation to edge data centers, auto-
matically optimizing workflow execution plans and replicating
data when needed. Their Hadoop-based prototype delivered
250× reduction in WAN bandwidth on a production workload
from Microsoft. Nevertheless, their goal was not to run an ML
procedure efficiently on WAN, which has highly dissimilar
challenges from data analytics systems.

There are also some works focused on Geo-DML from
different perspectives. Gaia [10] first discussed the problem of
running an ML system on geo-distributed data and formalized
challenges in Geo-DML. They proposed a Geo-DML structure
decoupling the communication within a data center from
that between data centers, which allowed different commu-
nication and consistency models for each data center. They
also proposed a synchronization ML model named approx-
imation synchronous parallel (ASP), whose main idea was
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dynamically eliminating unimportant communication between
data centers with correctness guarantee of ML algorithms.
Their experiment showed that Gaia provides 1.8×–53.5×
speedup over two state-of-the-art DML systems over WAN.
Cano et al. [22] proposed a Geo-DML system that offset the
generally communication-intensive nature of ML algorithms
by employing and extending communication-sparse ones. The
experimental evaluation indicated that their approach could
outperform other state-of-the-art systems by several orders of
magnitude when measuring X-DC transfers, as well as respect
stricter sovereignty constraints. WeightGrad [11] was a two
level structure (TLS) Geo-DML system built on the frame of
PS architecture [14], [15] that was used for communication
over both LAN and WAN. For local convergence, WeightGrad
provided networks with loss-aware weight quantization and
gradient quantization. For global convergence, it utilized the
idea of ASP to abandon insignificant communication between
data centers while guaranteeing the correctness of deep neural
network (DNN) models. Experiments of WeightGrad showed
5.36× speedup over baseline and 1.4×–2.26× speedup com-
pared with the four state-of-the-art DML systems.

Some works studied the routing and scheduling issues in
geo-distributed networks. Zhao et al. [23] proposed RAPIER,
a framework of coflow-aware network optimization that in-
tegrated routing and scheduling for better application per-
formance. In their experiments, RAPIER reduced the aver-
age coflow completion time by up to 79.30% compared to
the scheduling-only solution. [24]–[26] also started to con-
sider coflow level optimization in Geo-Distributed networks.
Hung et al. [27] presented job scheduling algorithms coordi-
nating job scheduling across data centers with low overhead.
It gained 50% improvement in average job completion time
over the shortest remaining processing time based approaches.
In [28], the heaviest-load-first (HLF) algorithm was proposed
for intra-job scheduling and shortest weighted remaining time
first (SWRTF) algorithm for inter-job scheduling. In the
simulations, HLF reduced the iteration communication time
by 64.97% compared to the circuit scheduler Sunflow, and
SWRTF saved 42.9%, 54.2%, and 27.2% of weighted job
completion time compared to shortest-job-first, Baraat and
weighted-first algorithms, respectively.

Though these works focused on certain aspects of
Geo-DML, there is still a lot of room for improvement in
reducing the communication cost. In the general architecture
of Geo-DML, there will be a global PS to execute the global
aggregation. Since the data centers participating in training are
geo-distributed over WAN, a proper selection of the global
PS location can benefit the reduction of communication time
during the training procedure. To our knowledge, none of the
prior works considered about the placement of PS. Our work,
APSP, enhances communication efficiency of Geo-DML by
optimizing PS placement in PS architecture.

III. MOTIVATION AND PROBLEM FORMULATION

In this section, we first show a motivation example of our
work. Then we give a substrate geo-distributed network, fol-
lowed by the formulation of the optimization model describing

TABLE I
NOTATIONS USED IN THE PAPER.

Notation Description

G(V,E) The network topology, where V denotes the set of nodes
and E denotes the set of links

e(u, v) The physical link between node u and node v, where u, v ∈
V , e(u, v) ∈ E

Be The total available bandwidth of link e
F The set of data flows, with f ∈ F
bf The available bandwidth allocated to data flow f , where

f ∈ F
Pf The path set of data flow f , with p ∈ Pf , where f ∈ F
δefp A constant. It takes 1 if link e belongs to path p of data

flow f , 0 otherwise, where f ∈ F , p ∈ Pf

yv A binary variable. It takes 1 if node v is selected as the PS,
0 otherwise, where v ∈ V

xfp A binary variable. It takes 1 if path p is chosen for data
flow f to transmit parameters, 0 otherwise, where f ∈ F ,
p ∈ Pf

Cv(u) The communication time between node u and PS v
m The variable denoting 1/T
zfp The variable denoting m · xfp

N The number of worker DCs
Ep The threshold of epoch number
Di Dataset of the ith worker data center
Di

t Mini-batch of Di used in the tth epoch
s Sample drawn from the dataset
w d dimensional parameter vector of ML model, w ∈ Rd

wt The parameter in the tth epoch
wi

t The parameter of worker DC i in the tth epoch
l(w,z) The loss function of the model with parameter w in data

point s
ηt The learning rate in the tth epoch
g The general gradient calculated as g = ∇wl(w, s)
gi
t The accumulated gradient of worker data center i in the tth

epoch
ḡt The aggregated gradient in the tth global epoch

the PS placement problem. For clear presentation, all the
notations used in this paper are summarized in TABLE I.

A. Motivation

Compared to the communication cost of global gradient ex-
changing, the communication time of local gradient exchang-
ing in worker data centers via high-speed LAN environment is
not our optimization target. Hence, our work mainly focuses
on the reduction of communication cost while transmitting the
gradients globally by determining which data center to be the
global PS. For simplicity, each data center is abstracted as a
node in the WAN topology.

Fig. 2 shows a motivation example of our approach. Con-
sider an eight-node WAN in Fig. 2(a), where the numbers
in blue beside each link denote the available bandwidth of
this link. Assume that all the worker nodes start gradient
transmission at the same time and the data size remains the
same in each epoch. As shown in Fig. 2(b), node 8 is randomly
selected as the PS and the paths are prearranged for every node
pair in plan A. The straggler node is node 1, whose available
bandwidth to the PS (node 8) is 1. Fig. 2(c) illustrates that in
plan B, node 4 is selected as PS by our proposed algorithm,
which also determines the paths for each data flow at the same
time. The straggler node is still node 1, while its available
bandwidth to the PS (node 4) is 2 in this case. Obviously, the
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(c) Plan B: Node 4 as the PS

Fig. 2. The motivation example of geo-DML in WAN topology.

communication time of the gradient transmission in plan B
will be shorter than that in plan A during one epoch.

B. Network Model

The substrate network information is already known in our
study. We use G(V,E) to model the substrate network, where
V denotes the set of nodes in the substrate network, and E
denotes the set of links. e(u, v) is the link between node u
and node v, where u, v ∈ V . For each link e ∈ E, we use Be

to denote the available bandwidth of link e.
In our study, we use F to denote the set of the worker-

to-server data flows and bf to denote the available bandwidth
allocated to data flow f that belongs to F . Because the data
size that each worker node transmits to the PS is fixed and
same, we assume that the transmitting data size of each data
flow f ∈ F is D. We use Pf to denote the set of feasible paths
from the source node to the destination node of the flow f ,
with p ∈ Pf . δefp is a constant to denote whether link e
belongs to path p of data flow f . δefp = 1 if link e on the
path p, 0 otherwise.

C. Problem Formulation

We formulate the PS placement problem as an optimization
model. Our objective is to minimize the overall communication
time per epoch during training by appropriate PS selection.
It is apparently that when the topology keeps the same,
if the communication time of worker-to-server data flows
has been minimized, the communication time of server-to-
worker data flows would also be minimized. Thus, we can
simplify the minimization objective as twice the worker-to-
server communication time per epoch.

Firstly, we use a binary variable yv to denote the location
of PS. If node v is the PS, yv = 1; otherwise, yv = 0. Since
only one node can be chosen as a PS at one time, we derive
the following constraint: ∑

v∈V

yv = 1. (1)

Another binary variable xfp is used to denote whether the
path p is chosen for the data flow f to transmit parameters.

xfp = 1, if path p is chosen for data flow f ; xfp = 0,
otherwise. In this scenario, each worker node can only choose
one path for parameter transmission. Hence, we give the
following constraint:∑

p∈Pf

xfp = 1,∀f ∈ F. (2)

Different data flows may pass through the same link e. Due
to the limitation of bandwidth of link e, we can derive the
following link bandwidth constraint:∑

f∈F

∑
p∈Pf

δefpxfpbf ≤ Be,∀e ∈ E. (3)

When node v is selected as the PS, let the data flow
between worker node u and PS be fu. In fact, the upload
bandwidth and download bandwidth of a path are not exactly
the same with small difference. However, the relationship
of size of bandwidth remains the same over different paths,
whether upload or download. Therefore, we assume that a path
has the same upload bandwidth and download bandwidth for
simplicity, which will not affect the final result. Based on this
assumption, we can compute the communication time of the
transmission as:

Cv(u) = 2
∑

p∈Pfu

xfup · |p|
D

bfu
, (4)

where |p| is the number of hops in path p. Note that we
omit the influence of propagation delay in this work, since the
transmission delay is two orders of magnitude greater than the
propagation delay.

With the assumption that the transmissions from worker
nodes occur simultaneously, we can represent the communi-
cation time in an epoch as:

max
u ̸=v

(Cv(u)) (5)

Synthesize the above constraints, we formulate the PS
placement problem as an optimization model:

minimize
∑
v∈V

yv ·max
u̸=v

(Cv(u)) (6)

subject to: (1), (2), (3),

xfp ∈ {0, 1},∀f ∈ F,∀p ∈ Pf , (6a)
yv ∈ {0, 1},∀v ∈ V, (6b)
bf ≥ 0,∀f ∈ F. (6c)

Equation (6) is used to denote the optimization model of
the PS placement problem.

The key to solve the above problem is to figure out the
minimum value of max

u̸=v
(Cv(u)) with a fixed v, which is the

global communication time of one epoch with v being the PS.
Hence, we can easily determine the PS node by comparing
the corresponding communication time. Consequently, we can
focus on the following subproblem to work out the minimum
communication time with a fixed v:
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Problem 1:
minimize T (7)

subject to: (2), (3), (6a), (6c),

T = max
u̸=v

Cv(u). (7a)

We use Problem 1 to denote the optimization model of the
above subproblem in (7). Solving Problem 1 helps us to
determine which path that each flow will choose by xfp and
determine the bandwidth allocated to each flow by bf , as well
as figure out the communication time.

Theorem 1. Problem 1 is NP-hard.

Proof. Since the aggregating flows can be viewed as a coflow,
we can consider Problem 1 as a special case of a single
coflow routing and scheduling problem whose flows have the
same destination. It is impractical to find the optimal solution
of single coflow problem due to the nonlinear form and the
existence of binary variables. The single coflow problem is
an integer multi-commodity flow problem that is proven to
be NP-hard [29]. Therefore, the original Problem 1 is also
NP-hard.

D. Relaxed Formulation

A NP-hard problem is intractable to be solved theoretically,
hence we consider to design an efficient approximation al-
gorithm based on randomized rounding to solve Problem 1.
Notice that some constraints of Problem 1 is not a standard
linear form. Thus, we first introduce a new variable m to
denote 1/T . Then we can rewrite Problem 1 as follows:

Problem 2:
maximize m (8)

subject to: (2), (3), (6a), (6c),

m ≤ 1

Cv(u)
,∀u ∈ V, u ̸= v. (8a)

Problem 2 is used to denote (8).
To transform Problem 2 into a standard linear programming

(LP) problem, the binary variable xfp needs to be relaxed to
real numbers in the range 0 to 1. Here we have the Problem 3:

Problem 3:
maximize m (9)

subject to: (2), (3), (6c), (8a),

xfp ∈ [0, 1],∀f ∈ F,∀p ∈ Pf . (9a)

Now there is still one last nonlinear constraint. In order to
merge two variables (i.e., bf and xfp) into one, we introduce
a new variable zfp = m · xfp. From existing conditions, it is
easy to draw the conclusion that m · xfp ≤ bf · xfp/|p| ·D,
thus |p| ·D · zfp ≤ bf · xfp. We substitute zfp into Problem 3
and obtain the standard LP model (Problem 4):

Problem 4:
maximize m (10)

subject to:∑
f∈F

∑
p∈Pf

δefpzfp · |p| ·D ≤ Be,∀e ∈ E, (10a)

zfp ≥ 0,∀f ∈ F,∀p ∈ Pf , (10b)∑
p∈Pf

zfp = m,∀f ∈ F . (10c)

Now zfp and m are variables of Problem 4 which can be
efficiently solved by standard LP solvers, such as GUROBI
and CPLEX. However, the binary variable xfp obtained ac-
cording to zfp and m is relaxed and may be fractional, which
is not a feasible solution of Problem 2. Therefore, we propose
a randomized rounding based algorithm to find a feasible
solution, shown in next section.

IV. ALGORITHM DESIGN

In this section, we propose a randomized rounding based
approximation algorithm named APSP to solve the complexity
of the key subproblem of the PS placement problem. In our
design, we first formulate a model (6) based on the Geo-DML
job flows and the network topology. Next, we extract the key
subproblem as an optimization model Problem 1 from (6) and
relax it into a LP model Problem 4. After solving Problem 4
by an LP solver (e.g., GUROBI and CPLEX), we utilize
randomized rounding technique to enforce the solution of
Problem 4 to be a feasible one of Problem 1. The basic idea
of our algorithm is to select the path of each flow according to
the rounding solution of Problem 4 firstly, and then to guide
available bandwidth assigned to flows based on the selected
paths.

Firstly, we describe the algorithm of the total training proce-
dure as Algorithm 1 omitting the calculation and aggregation
within the worker data center. Before the training, we choose
an arbitrary worker node being aware of the global topology
and utilize APSP on it to determine the global PS v and path
set P of the training, which are broadcast to all data centers.
For each worker data center i, the general training program is
executed on it (line 1 to line 7). Worker data center initialize
the model by the weight wi pulled from PS (line 1). Worker
data center i calculates the local gradient with the mini-batch
Di

t of the data shard Di and push the local gradient to the
PS (line 3 and line 4). Then parameters of the local model in
worker data center i are updated by the aggregated gradient
pulled from PS for the next epoch (line 5 and line 6). As for
the PS, it initializes the model parameters w randomly and
broadcasts the initial parameters to all the worker data centers
(line 1 and line 2). The PS gathers the gradients from worker
data centers (line 4 to line 6). The PS calculates the aggregated
gradient ḡt and push it to worker data centers (line 7 and
line 8).

The APSP is summarized as Algorithm 2, whose time
complexity is O(NM+N2) and space complexity is O(NE),
where M denotes the time complexity of the method for
solving LP problem and E denotes the number of links in
the network. We go through every node v in set V and solve
the subproblem to get the communication time of the case that



LI et al.: PLACEMENT OF PARAMETER SERVER IN WIDE AREA NETWORK... 375

Algorithm 1 Geo-DML PS system with APSP

Preparatory work on a arbitrary worker node
1: Find PS v and path set P by APSP;
2: Broadcast v, P to All data centers;

Worker Data Center i : i ̸= v, i = 1, · · ·, N
Input: Ep, Di, p.

1: Pull wi from PS through path p;
2: for t ∈ Ep do
3: Calculate gradient gi

t =
1

|Di
t|

∑
s∈Di

t

∇wi
t
l(wi

t, s);

4: Push gi
t to PS through path p;

5: Pull ḡt from PS through path p;
6: Update Parameters wi

t+1 ← wi
t − ηt · ḡi

t;
7: end for

Parameter server v

Input: Ep, N .
1: w ← initial parameter values (weights);
2: Broadcast w to worker data centers;
3: for t ∈ Ep do
4: for i ∈ N do
5: Pull gi

t from worker data center i;
6: end for
7: Aggregate gradients ḡt =

∑
i

gi
t/N ;

8: Push ḡt to worker data center i;
9: end for

select v as the PS. Node v with the shortest communication
time is determined as the PS v∗ of next epoch. We will
describe the subproblem in detail (line 2 to line 23). First, we
initialize all xfp to 0 (line 3). Next, we get all zfp and m by
solving Problem 4 and utilize them to calculate the fractional
x̂fp (line 4 and line 5). Then we select the only path p for
the flow f by set the corresponding xfp to 1 according to
randomized rounding (line 6 to line 14). Afterwards we can
solve Problem 2 with fixed binary xfp and obtain available
bandwidth allocated to each flow bf and the new m′ (line 15).
Then, we calculate the communication time of a single epoch
T for PS communication structure with fixed PS v (line 16).
Finally, we select the PS node based on the communication
time and output the chosen node, along with the path set and
bandwidth allocation (line 17 to line 24).

It is necessary to introduce the randomized rounding tech-
nique first, which is the key technique of path selection
process. Randomized rounding is a technique designed to
solve 0-1 integer linear programming (ILP) problems. It can
transform an optimal solution of the corresponding relaxed
problem into a probably good solution of the original 0-1
ILP problem and provide bounds on the disparity between
the rational and 0-1 optima for a given problem instance.

The general outline of randomized rounding can be de-
scribed as follows. Assume ΓI is a 0-1 ILP, with binary
variables xi ∈ {0, 1} and ΓR is the rational relaxation of
ΓI , with xi ∈ [0, 1]. The basic algorithm is composed of the
following two phases: (1) Solve ΓR and let the variables be
assigned values x̂i ∈ [0, 1]; (2) set the variables xi randomly

Algorithm 2 Approximate parameter server placement (APSP)
Input: G,E, V,Be, F, Pf , δefp.
Output: v∗, x∗

fp, b
∗
f , T

∗

1: Initialize T ∗ ← inf;
2: for v ∈ V do
3: Initialize xfp = 0,∀f ∈ F,∀p ∈ Pf ;
4: zfp,m =solve Problem(4);
5: x̂fp =

zfp

m ;
6: for f ∈ F do
7: for p ∈ Pf do
8: xfp = Bernoulli(possibility = x̂fp);
9: if xfp = 1 then

10: xfp′ = 0, p′ ∈ Pf , p
′ ̸= p;

11: break;
12: end if
13: end for
14: end for
15: bf ,m

′ =solve Problem(2) according to xfp;
16: T ← 1

m′ ;
17: if T < T ∗ then
18: T ∗ ← T ;
19: v∗ ← v;
20: x∗

fp ← xfp,∀f ∈ F,∀p ∈ Pf ;
21: b∗f ← bf ,∀f ∈ F ;
22: end if
23: end for
24: return v∗, x∗

fp, b
∗
f , T

∗;

to 0 or 1 according to the rule Pr[xi = 1] = x̂i.
We analyze the probability bound of violating link band-

width constraints after rounding as follows:

Theorem 2. Our algorithm achieves the approximation fac-
tor of (2 lnn+ 2

√
ln2n+ 2α lnn)/α + 1 after randomized

rounding for link bandwidth constraints.

The proof of Theorem 2 is shown in Appendix A.
The above discussed APSP in the theoretical case, while

APSP can be extended for more general scenarios. For exam-
ple, consider that the available bandwidth can change from
time to time in practice, APSP can be used multiple times to
change the PS node dynamically. Since APSP is an algorithm
to solve LP problem, the solving time will not be longer than
the time saved by proper PS selection.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed algorithm through
theoretical analysis. We present our simulation settings first,
then we show the simulation results of the proposed algorithm.

A. Simulation Setting

Network topology: We use two real-world inter data center
networks to evaluate the performance of our proposed al-
gorithm, including B4 [30] topology and Internet2 network
topology. B4 is the Googles private WAN, which contains
12 data centers all around the world connected by 19 inter
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(a) B4 Topology

(b) Internet2 Topology

Fig. 3. Real world topologies used in our work.

TABLE II
PARAMETERS OF DNN MODELS.

Precision Model Parameters Total size

32 bits/4bytes

ResNet50 23 M 92 MB
ResNet152 60 M 240 MB

AlexNet 64 M 256 MB
VGG-Net 138 M 552 MB

data center links as Fig. 3(a) shows. The Internet2 network
topology is illustrated in Fig. 3(b), which has 9 data centers
and 13 inter data center links across the United States. For
simplicity, we set the available bandwidth of each undirected
link in the range of 500 Mbps to 5 Gbps according to the
physical distance of the link.

Job workloads: To simulate the Geo-DML job workloads,
we assume the data size that the worker data center transmits
to the PS in one epoch is in range of 92 MB to 256 MB. The
data size is the number of parameters of some state-of-the-art
convolutional neural networks (CNN) training models actually
in use, including ResNet50, ResNet152 [31], AlexNet [32]
and VGG-Net [33]. Table II shows the size and number of
parameters in full precision (i.e., 32 bits/4bytes) of the above
CNN models.

Solutions to compare: Our proposed algorithm solves the
PS selecting and routing problem at once. Consider that as
far as we know, there is no existing method covering two
aspects. Therefore, we compare our algorithm in different
aspects with the following solutions (compare with the former
two to demonstrate the performance of PS selecting, latter two
to show the performance of routing):

• Randomly selected: Select the PS node randomly and
will not change throughout the training.

• Most connected: Select the PS node that has the most

links connected to it and will not change throughout the
training.

• Shortest path routing: Choose the shortest path for each
flow with the fixed PS node.

• Load balancing routing: Choose paths for flows that
can balance the load with fixed PS node.

Performance metrics: In the context of Geo-DML, we only
focus on the communication time in one epoch, which denotes
the global model synchronization communication time of a
jobs single epoch.

B. Simulation Results

We investigate the performance of APSP by comparing it
to cases that randomly select the PS and select the most
connected node as the PS over B4 and Internet2 network
topologies. The experimental results and analysis are presented
below.

Fig. 4 shows the one-epoch communication time of three
cases (i.e., randomly selecting the PS, selecting the most
connected node as the PS and selecting the PS by APSP)
using four state-of-art CNN including ResNet50, ResNet152,
AlexNet and VGG-Net. Fig. 4(a) is the results on B4 topology
while Fig. 4(b) is the results on Internet2 network topology.
It is evident that the performance of ASPS is always better
than the other two solutions because of the proper location
of the PS. In addition, the communication time shows an
upward trend with the CNN model expansion, since the size
of transmitted data grows as the model scale grows.

Table III shows the numerical results of our experiments. It
can be calculated from it that APSP reduces the communica-
tion time by 52.40%–61.78% over the solution that randomly
selects the PS and by 11.10%–25.00% over the solution that
selects the most connected PS on B4 topology. As for Internet2
network topology, ASPS reduces the communication time by
21.69%–21.78% and by 19.90%–21.04% over the solution that
randomly selects the PS and selects the most connected PS
respectively. Though the most connected node may be the
proper PS location with higher probability than a random
node, the node selected by APSP is determined to be the
optimal node in the current topology. Thus, APSP obtains less
reduction of communication time over the solution that selects
the most connected PS, compared with random selection.
Although the speedup varies from topologies, APSP accelerate
the communication during Geo-DML training effectively in
general.

We do another experiment with ResNet152 on both B4
and Internet2 network topologies, which gradually increase
the lower bound up to the upper bound of the available
bandwidth range (i.e., from 500 Mbps to 5 Gbps). Generally,
we can observe that with a higher minimum bandwidth, we can
achieve a lower communication time. However, this may not
always be the case in this experiment, since we changed the
bandwidths of all links in a reasonable range while increasing
the minimum available bandwidth to avoid the fact that the
APSP-selected PS node may not change with the only slight
change of the worst link. Hence, the increasing of communica-
tion time is possible, because the available bandwidths of other
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(b) Communication time per epoch over Internet2

Fig. 4. Communication time per epoch comparing with node selecting methods.

TABLE III
NUMERICAL RESULT OF COMMUNICATION TIME COMPARING WITH NODE SELECTING METHODS.

Topology Training CNN
Communication time (s)

Randomly selected PS Most connected PS APSP selected PS

B4

ResNet50 14.88 7.36 5.88
ResNet152 37.68 19.20 14.40

AlexNet 39.74 20.48 18.20
VGG-Net 87.18 44.16 39.26

Internet2

ResNet50 12.54 12.26 9.82
ResNet152 32.72 32.00 25.60

AlexNet 34.90 34.14 27.30
VGG-Net 75.24 73.60 58.88

links may be decreased though the minimum one is increased.
As depicted in Fig. 5, APSP performs better than other two
solutions throughout the experiment. Moreover, as the lower
bound of available bandwidth increases, the acceleration effect
gradually becomes less significant. In particular, when the
lower bound is raised to upper bound, APSP and selecting
the most connected PS have the same performance with a
high probability, since all the inter data center links maintain
the same available bandwidth in this case. However, when
the link bandwidths differ greatly, in another word, the lower
bound remains large gap to upper bound, the solution that
selects the most connected PS might performs even worse than
random selection, depending on the topology. Therefore, APSP
is much suitable and scalable for Geo-DML over heterogenous
WAN.

To demonstrate the routing performance of APSP, we com-
pare it with two commonly used routing methods, which are
shortest path routing and load balancing routing. The setup
is same as the experiment in the previous paragraph, while
the PS node is fixed, already selected by APSP. In another
words, shortest path routing and load balancing routing are
used to determine the path between worker nodes and the fixed
PS node. In Fig. 6, APSP still has the lower communication
time compared to the other routing methods, though the PS
locations are same. When using shortest path routing, each

flow follows its own shortest path. Thus, the lower weighted
links are used more often and become the bottleneck of the
network, which slow down the transmission. Load balancing
routing focuses on balancing the load over the network. Hence,
a flow may follow a path with more hops to spread the
pressure causing longer communication time. Running APSP
can determine the routing path by solving the LP problem,
whose optimization objective is overall communication time.
Therefore, our proposed algorithm can not only select the
proper PS location, but also have better routing performance
than the common routing methods.

VI. CONCLUSION

Our work is motivated by the widespread use of Geo-DML
and the PS architecture over heterogeneous WAN. In this
paper, we studied the PS placement problem in Geo-DML
system to reduce the high communication cost during training.
We first formulated the problem as an optimization model
and proved it to be NP-hard. Because of the complexity of
the problem, we proposed an approximation algorithm named
APSP utilizing the method of randomized rounding to solve
the problem efficiently. Thereafter, we analyzed the approx-
imation performance of the APSP algorithm and gave the
approximation factor for link capacity constraints. Extensive



378 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 3, JUNE 2023

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Minimum Available Bandwidth (Gbps)

10

15

20

25

30

35

40
C

o
m

m
u
n
ic

at
io

n
 T

im
e 

p
er

 E
p
o
ch

 (
B

4
) Randomly selected

Most connected

APSP

(a) Communication time vs. minimum available bandwidth (B4)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Minimum Available Bandwidth (Gbps)

10

15

20

25

30

35

40

C
o
m

m
u
n
ic

at
io

n
 T

im
e 

p
er

 E
p
o
ch

 (
In

te
rn

et
2
)

Randomly selected

Most connected

APSP

(b) Communication time vs. minimum available bandwidth (Internet2)

Fig. 5. Communication time per epoch vs. minimum available bandwidth comparing with node selecting methods.
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Fig. 6. Communication time per epoch vs. minimum available bandwidth comparing with routing methods.

simulation results showed that the proposed algorithm had
good approximation performance and significantly reduced the
communication cost compared with the other two solutions,
especially in the situation that link bandwidths vary greatly.
However, the communication time will still slow down the
training in PS architecture, since all the worker data centers
have to send the large amount of data to a single central
PS via WAN with scarce bandwidth resources. Therefore, job
scheduling problem in Geo-DML on decentralized architecture
will be considered in our future research.
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APPENDIX A
PROBABILITY BOUND ANALYSIS

We analyze the probability bound of violating link band-
width constraints after rounding as follows:

Theorem 3. Our algorithm achieves the approximation fac-
tor of (2 lnn+ 2

√
ln2n+ 2α lnn)/α + 1 after randomized

rounding for link bandwidth constraints.

Proof. Our algorithm solves Problem 4 and get variables zfp
and m from which we can calculate the x̂fp. Notice that
x̂fp is fractional which means the data flow can be separated
and transmitted by different path. Then we use randomized
rounding method to determine the only one feasible path for
each flow. We use df (e) to denote the bandwidth occupied by
flow f ∈ F on link e. For each link e ∈ E and each flow
f ∈ F , we define df (e) as:

df (e) =

{
δefp · |p| ·D, with probability of x̂fp

0, otherwise.
(11)

For convenience, we use hfp(e) to replace δefp · |p| ·D. It
is obvious that df1(e), df2(e), · · · are mutually independent.
Thus, we can derive the expectation of occupied bandwidth
on link e as:

E

∑
f∈F

df (e)

 =
∑
f∈F

E [df (e)]

=
∑
f∈F

∑
p∈Pf

x̂fpδefp · |p| ·D

=
∑
f∈F

∑
p∈Pf

x̂fphfp(e)

≤ Be.

(12)

We define a new variable α:

α = min{ Be

hfp(e)
,∀e ∈ E,∀f ∈ F,∀p ∈ Pf} (13)

Combining (12) with the definition of α, we can derive:
α · dfp(e)

Be
∈ [0, 1]

E

∑
f∈F

α · dfp(e)
Be

 ≤ α.

(14)

Here we introduce two lemmas to help analysis.

Lemma 1. (Chernoff bound) There are n independent
real variables x1, x2, · · ·, xn, where xi ∈ [0, 1]. With

µ = E

(
n∑

i=1

xi

)
, there is:

Pr

[
n∑

i=1

xi ≥ (1 + ρ)µ

]
≤ e

−ρ2µ
2+ρ , (15)

where ρ is an arbitrary positive number.

Lemma 2. (Union bound) There are n events Ψ1,Ψ2, · · ·,Ψn,
and each event happens with probability Pr(Ψi). Then,

Pr[Ψ1 ∪Ψ2 ∪ · · · ∪Ψn] ≤
n∑

i=1

Pr[Ψi]. (16)

Applying Lemma 1, we can get:

Pr

∑
f∈F

α · dfp(e)
Be

≥ (1 + ρ)α

 ≤ e
−ρ2α
2+ρ

Pr

∑
f∈F

dfp(e)

Be
≥ 1 + ρ

 ≤ e
−ρ2α
2+ρ ,

(17)

where ρ is an arbitrary positive number.
Next, we assume that:

Pr

∑
f∈F

dfp(e)

Be
≥ 1 + ρ

 ≤ e
−ρ2α
2+ρ ≤ φ

n2
, (18)

where n is a variable related to the network structure, e.g.,
the number of nodes and φ is a function of n, when n→∞,
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φ → 0. Here we simply set φ = 1/n2. Then we can rewrite
(18) as:

Pr

∑
f∈F

dfp(e)

Be
≥ 1 + ρ

 ≤ e
−ρ2α
2+ρ ≤ 1

n4
(19)

From (19) we can solve ρ ≥ (2 lnn+ 2
√
ln2n+ 2α lnn)/α.

Applying Lemma 2, we can derive that:

Pr

 ∪
e∈E

∑
f∈F

dfp(e)

Be
≥1 + ρ


≤

∑
e∈E

Pr

∑
f∈F

dfp(e)

Be
≥1 + ρ


≤ |E| 1

n4

≤ 1

n2
,

(20)

where ρ ≥ (2 lnn+ 2
√
ln2n+ 2α lnn)/α and |E| denote the

link number.
Therefore, The link bandwidth constraints will not

be violated after randomized rounding by a factor of
ρ+ 1 = (2 lnn+ 2

√
ln2n+ 2α lnn)/α+ 1 for the solution

of Problem 4.
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