
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

666 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 6, DECEMBER 2024

Efficient Task Offloading and Resource Allocation
in an Intelligent UAV-MEC System

Benedetta Picano and Romano Fantacci

Abstract—Nowadays, the functional integration of digital
twin (DT) technology and artificial intelligence (AI) methodolo-
gies has enabled reliable predictions of many random processes,
supporting efficient control and optimization procedures. In line
with this trend, this paper explores the joint use of these tech-
nologies in an AI-empowered DT framework for an unmanned
aerial vehicle-aided multi-access edge computing (UAV-MEC)
system. Specifically, this approach defines an intelligent UAV-
MEC system capable of significantly improving service quality
and deployment flexibility. The focus is on a UAV-MEC network
consisting of multiple elementary service areas, where DTs effi-
ciently orchestrate and reduce congestion levels by utilizing UAVs
with onboard processing capabilities. A potential architecture for
the DTs is outlined, conceptualizing each DT as a collection of
basic cyber entities. Additionally, a suitable framework utilizing
a matching game approach is proposed to effectively manage
task offloading, channel allocation, and the dynamic assignment
of UAV support to congested service zones within the same area.
Finally, comprehensive simulation results validate the efficacy
of the proposed intelligent UAV-MEC system, as indicated by
metrics such as task completion delay and accuracy in congestion
prediction.

Index Terms—Digital twin, intelligence system, machine learn-
ing, mobile edge computing, unmanned aerial vehicle.

I. INTRODUCTION

UPCOMING sixth-generation (6G) networks are expected
to trigger an ever-increasing demand for computation-

intensive and latency-critical applications, i.e., virtual and
augmented reality, online gaming, etc., posing new challenges
in terms of both runtime monitoring and execution [1]. Within
this context, integrated ground-air networks (IGANs) have
emerged as a promising networking solution, capable of
satisfying different service requests, anywhere and anytime,
allowing wide-area reliable coverage. IGANs are usually char-
acterized by suitable cooperative schemes between unmanned
aerial vehicles (UAVs) and other ground mobile devices or
network infrastructure nodes, i.e., edge computing nodes (ECs)
or cloud. This allows to boost network performance, leading
improvements on both network behavior and users’ quality
of experience [2], [3]. Integrating UAVs, equipped with com-
puting capabilities, into a ground multiaccess edge comput-
ing (MEC) network offers numerous benefits. These include

Manuscript received April 6, 2024; revised September 2, 2024; approved
for publication by Qiao, Daji Division 2 Editor, September 10, 2024.

This work was partially supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGeneration EU,
partnership on “Telecommunications of the Future” (PE0000001 - program
“RESTART”).

B. Picano and R. Fantacci are with University of Florence, 50139 Firenze,
Italy, email: {benedetta.picano, romano.fantacci}@unifi.it.

R. Fantacci is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2024.000050

enhanced deployment flexibility across various scenarios to
meet real-time demands, as well as offering efficient computa-
tion offloading solutions in areas where network infrastructure
is either overloaded or experiencing failures.

Typical UAV-MEC environments comprise a collection of
ground EC nodes and a set of UAVs, equipped with com-
putational and storage capabilities, strategically positioned to
facilitate computations. Following the MEC paradigm, com-
putational capabilities are decentralized to the network edges,
such as wireless network small base stations (SBSs), thereby
reducing latency and network congestion commonly associated
with previous cloud-based solutions. Based on quality of
service (QoS) constraints set by applications, tasks initiated
by end devices (EDs) can be offloaded onto the UAV-MEC
system according to specific rules. In such a context, an
effective radio resource management is then essential to ensure
efficient service provision and minimize channel interference,
fostering beneficial collaboration between UAVs and ground
MEC infrastructure.

This paper deals with an intelligent UAV-MEC system that
pursues the functional integration of the digital twin (DT)
technology with artificial intelligence (AI) capabilities in order
to allow for significantly improving both the flexibility of its
deployment and the performance achieved. In this context,
the DT technology represents the next frontier in simulation,
seamlessly integrating cyber and physical realities to create
virtual models of physical objects in the digital environment
[4]. This approach significantly enhances data-driven optimiza-
tion of system and service planning, enabling unprecedented
levels of performance and reliability through real-time mon-
itoring, prediction, estimation, analysis of dynamic changes,
and interaction between physical objects and their digital
counterparts.

Furthermore, AI serves as a potent tool for facilitating
data-driven decision-making, leveraging its capacity for self-
learning to continuously enhance its intelligence through data
analytics. This capability enables the analysis of information
gathered from real systems, uncovering, interpreting, and
extracting valuable insights from data. The aim of this paper
is to highlight how the proposed UAV-MEC intelligent system
enhances the effectiveness of task offloading, thereby reducing
network congestion and ultimately improving performance 1.

The focus is on a 6G based networks partitioned into
elementary UAV-MEC service areas consisting of a number

1DTs may be also utilized to guarantee privacy and security issues as
described in [5], by detecting intrusions and anomalies in UAV-MEC systems.
However, an in-depth discussion of this topic is beyond the scope of this paper
and is therefore left for further study.
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of SBSs, each of which associated2 with an EC according to
the edge computing paradigm. With the goal of lowering the
occasional congestion of a given SBS service area, an UAV,
equipped with computational capabilities, can be allocated
according to a suitable procedure. In particular, in our case,
we have that the involvement of the DT directly drives
suitable decision-making procedures based on the matching
theory (MT) [6]–[8] that, in addition to a proper access chan-
nels assignment to lower users mutual interference, enables a
suitable UAV assignment procedure to congested ECs .

The salient contributions of the paper,which has the ambi-
tion to be a computer simulation study in accordance with
the state-of-the-art classification presented in [9], can be
summarized as follows

• Proposal and analysis of a novel intelligent UAV-MEC
system. The proposed framework aims at improving the
congestion control and the offloading decision making
policy over time, exploiting the functional integration
between DT and a data-driven AI approach. In particular,
a DT architectural scheme based on suitable functional
entities is discussed in compliance with emerging stan-
dard ISO 23247 [10];

• Proposal of a sub-optimal optimization strategy, based
on a suitable matching game, to perform planning about
EDs task offloading and UAV allocation to the SBSs
within a same elementary service area. The objective is to
minimize the task outage probability, i.e., the probability
that an ED experiences a task completion time greater
than the deadline associated therewith;

• Integration of a machine learning based module to catch
the traffic behavior within each SBS service areas, learn-
ing how service requests vary over time. In order to
do that, we exploited an echo state network (ESN) [7]
running on each DT;

• Performance analysis of the proposed task offloading
procedure, in comparison to the alternative Kolkata Paise
Restaurant game [11], and the random selection ap-
proaches. In addition to this, performance results are
provided to highlight the effectiveness of the proposed
intelligent UAV-MEC system in terms of congestion
prediction accuracy and task outage probability.

The rest of the paper is organized as follows. In Section II an
in-depth review of the related literature is provided. Section III
presents the system model description, and Section IV presents
the proposed intelligent UAV-MEC system offloading frame-
work. Finally, Section V deals with the performance analysis,
wheres conclusions are drawn in Section VI.

II. RELATED WORKS

In the past decade, many existing works have been pro-
posed to solve various research problems of the UAV sys-
tems [12]–[14]. Authors in [15] proposed a heuristic method
to maximize the cellular coverage by optimizing drones de-
ployment and minimizing the communication cost among
UAVs. A drone-as-a-service market model has been developed

2The terms SBS, EC will be used interchangeably, hereafter.

in [16], in which a service algorithm has been designed, in
order to properly meet the quality requirements in terms of cost
and delay, expressed by users. In [17], the main focus is the
limited UAV resources. In fact, authors analyze the feasibility
of overcoming these constraints by combining and controlling
multiple UAVs. In this reference, the paper explores pro-
grammable crowd-powered drones to create a federated cloud.
Moreover, a scripting language is applied to coordinate flight
trajectories of multiple drones, as well as multi-drone service
management. Differently, in [18], a mixed integer program-
ming problem has been formulated as a traveling salesman
problem. The route distortion problem has been defined, and
a lower bound of the number of drones needed to solve it
has been proposed. The paper [19] proposes an UAV-assisted
MEC network with air–ground cooperation, in which both
UAV and ground access points exhibit a direct link towards
devices and cooperate to execute tasks computation, aiming
at minimizing the worst delay and optimizing the resource
allocation by jointly controlling UAV-device matching, UAV
horizontal and vertical position, bandwidth selection, and task
splitting. A two-layered decision-making framework for the
cooperation between one or more stations and one or more
drones is presented in [20], maximizing profit, and minimizing
the travel distance. DT design and application in intelligent
systems, as far as we know, still remains an emerging and
unsolved research problem. Among the available literature
on this subject, paper [21] discusses the main objectives and
challenges presented by the DT technology, especially in the
vehicular edge computing network, highlighting the key role
of the DT in the vehicular mobility monitoring. Similarly,
paper [22] investigates the potential, in terms of performance
improvements, in applying the DT in industrial manufacturing
processes, enabling rapid and agile system testing. Differently,
paper [4] proposes the contextualization of the DT technology
to a vehicular edge computing landscape, where offloading
and scheduling decisions are performed throughout a deep
reinforcement learning strategy. Specifically, a multiagent deep
reinforcement learning approach has been developed to reduce
learning complexity and to provide resource utilization deci-
sions minimizing the offloading cost, and taking into account
the strict delay constraints due to the nature of the vehicular
scenario. The DT has been also exploited in combination with
a blockchain approach in [23], where an edge node selection
policy is provided involving a Markov decision process, on
the basis of which a deep-Q-learning algorithm is developed.
Then, authors in [24] present a framework to minimize latency
providing devices transmit power optimization, user-edge node
association, and task offloading decisions. Finally, paper [25]
addresses the problem of the clustering to reduce energy
consumption into an unmanned aircraft system. A DT-based
offloading scheme is also presented in [26], where a hybrid
UAV-MEC system is considered to optimize user association,
UAV trajectory, transmission power distribution and computa-
tion capacity allocation. A double deep Q-network is applied
to solve problems of the UAV trajectory selection and the
user association. Then, an iterative algorithm is designed
to solve both the transmission power distribution and the
computation capacity allocation problem. The applicability
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of the DT technology within 6G communication systems,
is investigated in paper [27], presenting a wide discussion
about DT architectures, use cases, its ability in improving
system performance and in providing parameter optimization.
Furthermore, an in-depth critical analysis of the state-of-the-
art literature is included, as well as a discussion about existing
open issues needing solution to make DT a concrete reality.
Similarly, authors in [28] detailed main aspects concerning
the DT software architecture principles, where an accurate
analysis of works focusing on DT data extraction, synthesis
process, and so on is presented. Authors identified 14 quality
attributes that are relevant for DTs, as well as the most
used object oriented 10 patterns applied stand-alone or in
combination with other patterns. A 6G oriented resource
management framework to support stateful applications, i.e,
applications needing context data, is designed in [29]. In this
picture, authors exploit the DT technology to collect context
data required by stateful applications. The main objective of
the paper is to jointly minimize the computation usage, the
storage, the communication resources and the cost of recon-
figuration by assuming a multi-tier computing infrastructure
as network architecture. Hybrid aerial-ground solutions are
also considered in [30], where UAV visual target tracking
is realized performing offloading of such a deep learning
tasks to an EC node, to overcome the limited computational
resource and energy capacity of the UAV. Multi-task learning
is adopted in paper [31], where the problem of the unstable
coverage and link performance of the aerial-terrestrial commu-
nication links is mitigated by proposing a reflecting intelligent
surface (RIS)-assisted transmission policy. Authors design
and develop an adaptive RIS-assisted transmission protocol,
where the channel estimation, the transmission policy, and
the data transmission are independently implemented in a
frame. Furthermore, the multi-task learning is introduced to
properly produce the optimal transmission strategy in near-
real-time. Differently, in [32], a multi-task resource scheduling
framework exploiting the deep reinforcement learning has
been designed with the objective to minimize the energy
consumption of all users and UAVs in the system. Authors
in [33] integrate horizontal federated learning with double
deep Q-network to solve the problem of the computation
offloading and relay communication in air-ground integrated
networks, considering emergency scenarios. In reference to
the offloading problem, the objective is the minimization of
the weighted sum of both delay and energy consumption.
For the data transmission, the main goal is to maximize the
minimum rate of relay links. In [34] artificial intelligence
capabilities are used to manage computation offloading from
a UAV to terrestrial MECs. This paper addresses various
alternatives and provides useful methodologies to improve
performance. However, the problem addressed is different
from the one of interest here, where computation offloading
is necessary from MEC nodes to a UAV to mitigate the
effect of congestion in the service area. Towards this direction,
this paper proposes the contextualization of DTs to an UAV-
MEC 6G environment. Furthermore, [34] is not focused on
forecasting but instead proposes an AI-based framework to
obtain an optimal decision-making policy based on current

TABLE I
LIST OF MAIN NOTATIONS.

Notation Description
S Number of SBSs in a service area
U Set of Edge Devices (i.e., users) in a service area
W Channel badwidth
Rgh(i) Instantaneous available rate

for the communication channel h assigned to ED i
Rd Instantaneous available rate for the communication channel

for the downlink channel used by the SBS
Ruav Instantaneous available rate for the communication channel

connecting a SBS (i.e., EC node) to the UAV and vice-versa
P Transmission power
gB Boltzmann constant
T0 Temperature in Kelvin
K(νc) Global absorption coefficient of the medium
νc Carrier frequency
di Distance between the ED i and the linked EC
c Light speed
Ih Aggregate power of the interfering signals

at the linked SBS on channel h
fx EC-CPU computational capacity
ϕu UAV-CPU computational capacity
CA Central aggregator of each elementary service area

network conditions that makes clear the difference with the
proposed solution. Finally, we have to say that a network
infrastructure similar to that of interest here was considered
in [7], [8], [26]. However, this paper has important differences
from the previous ones. In particular, in respect to [7], [8],
the paper deals with a more current situation that considers
the impact of mutual interference among users accessing the
same channel in interfering SBS service areas. This leads
to a different optimization problem to be solved for which
the evaluation of implementation complexity has been also
provided here. Furthermore, in relation to [8], this paper,
although not aiming to provide a formal definition of a DT
architecture, emphasizes the functional relationships of the
proposed solution with the ISO 23247 standard.

III. PROBLEM STATEMENT

As stated before, the focus here is on a network partitioned
into elementary service areas, each with an equal number
of SBSs/ECs and with possibility of the potential use of
the dedicated UAV with onboard processing capabilities to
lower the congestion at the ground ECs. To this end, a DT
approach is employed, and its possible hierarchical architec-
ture is outlined according to the ISO 23247 recommendations.
Specifically, we consider the integrated UAV-MEC intelligent
system comprising four layers (or domains) as sketched in
Fig. 1 . Further refinement of these domains has led to the
identification of several entities based on their functions, as
outlined below.

A. Physical layer : Observable Manufacturing Elements

In ISO 23247, physical entities, such as the EDs, SBSs and
the UAV related to the given service area in our case, are
referred to as observable manufacturing elements (OMEs). The
digital twin tracks its OMEs by gathering pertinent operational
and environmental data, as detailed in the subsequent discus-
sion. Moreover, the OME encompasses a set of elementary
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service areas that align with 6G technology, hence, operating
across THz channels. Each elementary service area includes of
a group of SBSs, denoted as S, which could potentially inter-
fere with each other and SBSs of adjacent elementary service
areas. This approach allows the service model to scale and
adapt to different scenarios being able to define service areas
based on specific needs. Moreover, it is also able to manage
situations involving high user mobility thanks to the interaction
with the core network, which allows users to remain connected
with the SBS through which the offloading of their tasks to
the appropriate UAV has been carried out. Each SBS provides
a set of channels to grant EDs access to the associated ECs
for task offloading purposes. The SBSs in a given area are
deployed according to an isotropic homogeneous Matern hard
core point process (MHCPP) with intensity ι and with the
constraint of a minimum distance ρ, as the distance between
SBSs cannot be arbitrarily small.

Furthermore, we have assumed that each EC belonging
to the same elementary service area (i.e., ground ECs) is
equipped with a central processing unit (CPU) with a specific
speed, denoted as fj with j ∈ S. In addition, we have
considered in each service area the presence of a set U of
EDs (i.e., users) needing to offload intensive task computations
in relation to their local capabilities. With reference to this, we
would like to note that our performance analysis is dependent
solely on the computational load forwarded from EDs ∈ U
and the workload this entails for the ECs. In some way, this
makes our analysis independent of the number of EDs that
can perform local computations. This eventually only impacts
the number of active EDs in a cell. With reference to this, we
would like to stress that providing results based on the variable
number of EDs in U, allows us to indirectly include in our
analysis also the actual scenario of advanced EDs capable of
performing computational intensive tasks, having this impact
on the number of EDs that need offloading. Furthermore, with
the aim at performing a worst case analysis we have not
considered the possibility of a partial task offloading for EDs
that have this capability. Finally, we assumed that each EDs
interested in offloading their tasks are linked to the appropriate
ECs through the associated SBSs by means of individual
channels. To simplify our analysis, we have assumed that
the number of channels available for accessing the SBS is
not less than the number of EDs interested in offloading
their tasks. This assumption is justified by the hypothesis of
using a 6G technology network, which will have large access
capacities, making the probability of blocking new incoming
requests negligible3. However, the proposed methodology can
be extended to the case where the number of access channels
is fewer than the offloading requests. This can be done by
generalizing the proposed matching strategy to share the avail-
able channels among the task offloading requests according

3The paper essentially refers to operational conditions that require complet-
ing a task’s processing within the time a user stays in the respective service
area of the connected SBS. However, in scenarios with high-mobility users
who have offloaded tasks to a UAV and then handed off to other SBSs, the
computation result is still sent to the original SBS and then, through the
core network, to the SBS connected to the interested user. In this case, the
additional communication delay for the end-to-end delay, considering that it
typically involves fiber optic links, is negligible.

to a suitable policy, such as prioritizing tasks with tighter
deadlines. Once the transfer of the first block of requests to the
appropriate ECs is completed, the allocation of the remaining
requests is performed using the same methodology by reusing
the same block of channels. This process continues until all
offloading is completed. The download of the computation
results, which is executed according to the FIFO policy at
each EC, can be managed without penalty by assigning the
associated SBS the best available channel at that moment, as
suggested by the associated DT. In this case, it is easy to
foreseen a degradation in performance with respect to the ideal
case considered in our analysis in terms of outage probability.
However, its impact can be limited or even made negligible,
thanks to the reduced communication times allowed in 6G
networks.

With the aim of simplifying the discussion, all the commu-
nication channels in the network are assumed having the same
bandwidth W . In accordance with [35]–[37], we assumed that
the instantaneous available rate, Rgh(i) for the communication
channel h assigned to the given ED i to comunicate to the
appropriate SBS (uplink) and vice-versa (downlink), is given
by [7], [35], [36], [38]

Rgh(i)=W log2

(
1+

PA0d
−2
i e−K(νc)di

gBT0 + PA0d
−2
i (1− e−K(νc)di) + Ih

)
,

(1)
where P is the transmission power, assumed the same for
all the situations considered here. Moreover, in (1) we have
that gB is the Boltzmann constant, T0 the temperature in
Kelvin, K(νc) the global absorption coefficient of the medium,
A0 = ( c

4πνc
)2 [38], with νc the carrier frequency, di the

distance between the ED i and the linked SBS/EC and, c is
the speed of the light. Finally, the term Ih in (1), representing
the aggregate power of the interfering signals at the linked
SBS due to the use of the same channel h by EDs linked to
the other SIh

interfering SBSs at a distance dγ , irrespective
of the elementary service area, is given by

Ih =

SIh∑
γ=1,γ ̸=i

PA0d
−2
γ uγ,h, (2)

with the term uγ,h having value 1 if the channel h is allocated
to an ED at the interfering SBS γ, and 0, otherwise. Note that
values of terms uγ,h result from a certain rule, i. e., the channel
allocation strategy proposed in Section IV.

In addition to this, we have to account for the task computa-
tion time at a ground EC. In particular, we have for a generic
task i, the computation time on the (ground) EC j results in

ti,j =
si
fj

+ ωj , (3)

where si is the number of CPU cycle employed by task i to
be computed, fj is expressed as the number of CPU cycles
per unit of time, and ωj represents the queuing time on EC j,
i.e., the time spent by task i waiting for receiving computation.
Such a time is due to the presence of tasks previously offloaded
on the same computation site by the other users.

Alternatively, when a task, i.e., task i, is offloaded to the
UAV by the linked SBS, we have assumed that the instan-
taneous available rate, Ruav for the communication channels
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connecting a SBS (i.e., EC node) to the UAV and vice-versa
are the same, and, specifically, given by :

Ruav = W log2

(
1 +

PA0d
−2
uave

−K(νc)duav

gBT0 + PA0d
−2
uav(1− e−K(νc)duav )

)
,

(4)
where P , as in (1), is the power used in transmission, while
duav is the distance, almost surely constant, between the UAV
and any SBS. Please note that in (4), we have neglected the
mutual interference effects. This assumption is based on the
pursuit of an appropriate channel allocation policy (i.e., avoid-
ing to allocate a same channel to link SBSs to the proper UAV
in adjacent elementary service areas)4 and taking into account
the attenuation effect due to the duav value. Furthermore, we
have assumed the UAV equipped by an embedded CPU with
computational capacity ϕu, less powerful than those residing
on ground ECs [39] due to the weight and severe battery
constraints. Hence, the corresponding computation time of a
task i, offloaded on the UAV, i.e., ti,u, is given by

ti,u =
si
ϕu

+ ωu,i, (5)

where ωu,i represents the queuing time that task i has to wait
on the UAV before achieving computation due to the service
completion of the tasks previously offloaded to the UAV.

In particular, in the intelligent UAV-MEC system under
consideration, an ED i needing task processing sends its task to
the linked SBS. The task can receive service at the EC node, or
if it is congested and the UAV has been allocated, onboard the
UAV itself if this results in a more suitable choice according
to the considered offloading procedure (see Section IV).

From above, it follows that the task completion time, i.e.,
the end-to-end delay defined as the total time spent by the
user in submitting a task computation request and receiving
back the corresponding outcome, under the assumption of the
assignment of a given channel h to be linked to the local SBS,
results as in (6), where βi,j = 1 when task i is offloaded on
EC j, and βi,j = 0 when the computation is performed on-
board the UAV. In particular, we assume that a task i is in
outage if Ti exceeds its deadline δi, i.e., Ti ≥ δi.

B. Digital Twin Reference Architecture

According to the ISO 23247 standard the DT architecture is
based on an entity reference model that mainly encompasses,
in addition to the OME layer discussed before, three additional
layers: i) Device communication entity (DCE); ii) Digital
twin entity (DE), and iii) user entity (UE). The functional
view of the DT architecture assumed for the intelligent. UAV-
MEC system under consideration is portrayed in Fig. 1. In
our scenario, each SBS is linked to an individual DT, whose
execution is managed by computation facilities within the
corresponding EC, as described in [40]. The objective is to
maintain its state consistent with the actual conditions of the
service area of interest5. This includes factors such as the

4Note that two or more SBSs cannot be connected to the UAV within the
same elementary service area simultaneously.

5In compliance with literature data are assumed collected real-time and
automatically by the physical layer.

number of connected EDs, related number of computation
requests, level of interference across all SBS channels, ECs
workload, and other relevant parameters.

The DT, replicating and simulating the surrounding SBS
service area based on periodically gathered data from the
physical layer, is assumed to have a functional architecture
compliant with the emerging ISO 23247 standard. This ensures
that the proposed scheme maintains logical and functional
compatibility with devices implementing ISO 23247, irrespec-
tive of third-party hardware manufacturers. The main entities,
along with their related sub-entities and functionalities (Fig. 1),
are as follows:

• Device communication entity. This entity comprises
two sub-entities: the Data Collection sub-entity and the
Device Control sub-entity. The former is responsible for
collecting data from the OME concerning the availability
of access channels and their interference level while the
latter sends commands to implement an adequate access
channels allocation and tasks to be computed based on
the appropriate procedures described below.,

• User entity. makes use the service provided by the Digital
Twin entity and host the channel and tasks allocation pro-
cedures outlined in Section IV. In addition to this, it has
in charge to interact with the Control Aggregator (CA) of
the elementary service area to support the selection of the
SBS that, in relation to the predicted level of congestion,
has the greatest need for UAV support.

• Digital twin entity. The DTE consists of six sub-entity
blocks. The first is the Operation sub-entity, which
is responsible for maintaining the DT operational and
aligned with the current state of the OME. Additionally,
it provides all the information to be passed to the UE
in order to properly perform all the procedures in charge
to this entity listed before. The Application and Service
sub-entity refers to the functional entities performing
prediction, simulation, and analysis of the associated SBS
service area behavior. In particular, this sub-entity is
empowered by a local eco state network (ESN), enabling
it to monitor the congestion level of the physical service
area corresponding to a given EC, i.e., EC j, in terms of
the predicted number of computation requests, denoted
as Ωj . It’s important to note that the DT has the capability
to collect data over time through its data collection
sub-entity. Once the data gathering process is complete,
this sub-entity is also responsible for preprocessing and
cleaning the data before passing it to the AI module via
the device control sub-entity for training the ESN, as
described in Section IV-B.
Specifically, each DT possesses its own time-series
dataset, denoted as Dj , in the data collection entity, con-
taining historical data about the individual EC congestion
level Ωj .
Resource access and interchange enables the integration
and the dynamical connection between DTs and the
physical counterpart.
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Ti =

(
2si

Rgh(i)
+ ti,j

)
βi,j +

(
2si

Rgh(i)
+ ti,u + 2 · si

Ruav

)
(1− βi,j) (6)

Fig. 1. Four layers of domains according to ISO 23247 standard.

IV. INTELLIGENCE UAV-MEC OFFLOADING FRAMEWORK

From a software standpoint, the DT can be considered as
a collection of cyber-entities, each mirroring the digital rep-
resentation of its real-world counterpart. Essentially, physical
elements like EDs channels, processors, and so forth, form
the complete set of features defining the operational domain
linked with each EC j. By employing this method, the DT
related to the EC j can gather data about the EC j service
area to develop an approximate model as:

Ψt
j(fj ,Ωj ,Mj , χS , ωj), (7)

where fj represents the computational capability of the EC j,
expressed in terms of CPU frequency, and Mj is a vector
with a number of elements equal to the number of the
available channels that provides a virtual model mirroring
channel interference level in the EC (SBS) j service area,
to trigger an efficient channel allocation procedure as detailed
in Section IV. The χS term refers to a channel map that, for
each SBS in S, keeps updated the list of available channels and
their interference level by gathering periodical measurements
performed by the interfering SBSs themselves.

A. Problem Formulation

Considering an interval time Γt, the aim of this paper is
to provide an optimized planning over Γt thorough proper
tasks offloading strategy (selecting computation site between
the ECs and the UAV in a specific elementary service area)
and the channel allocation policy to link EDs to the SBSs
in the same area. In particular, the main objective of the
considered intelligent system is the minimization of the task
outage probability, i.e., the number of EDs requests in outage
in any elementary service area, defined as

G(Γt) = {i ∈ U|Ti ≥ δi}. (8)

Hence, our problem can be formulated as

min
B,X,H,r

|GΓt |, (9)

s.t.

|S|∑
j=1

βi,j + xi,j = 1,∀i ∈ U (10)

|C|∑
j=1

ui,h = 1,∀i ∈ U (11)

|S|∑
j=1

rj ≤ 1, (12)

denoting with B ∈ {0, 1}|U|×|S|, where the operator | · |
expresses the cardinality of the set, i.e., the number of el-
ements belonging to the set within the operator. Λ is the
edge offloading matrix, whose generic element is 1 if user i
offloads task on EC j, zero, otherwise. Then, matrix X ∈
{0, 1}|U|×|S| represents the UAV selection matrix, where the
element xi,j = 1 if task i is offloaded on the UAV through EC
j, zero otherwise with |C| be the number of available channels.
The matrices H ∈ {0, 1}|U|×|C| is the channel allocation
matrix, respectively, and, as before, ui,h = 1 if user i is
transmitting over channel h, zero otherwise. The vector of
the UAV position is given by r ∈ {0, 1}|S|, and its generic
element rj is 1 if the UAV is assigned to the jth SBS in
the proper elementary service area6. Constraint (10) expresses
that each task can be offloaded on only the tagged EC or the
UAV. Similarly, constraint (11) points out that each user can
be allocated on only one channel. Constraint (12) claims that
the UAV can support in computation only one EC j within its
operational area, during each Γt time period. It is important
to highlight here that the proposed solution does not aim to
achieve a global optimum, which, even if achievable, would
be challenging to define. Specifically, the proposed algorithm
embodies a distributed and sub-optimal strategy due to the
established matching game involving externalities, as better
detailed in what follows.

To make the proposed decision-making strategy truly ef-
fective we have to identify, thanks to the local DT, the most
congested SBS within a given elementary service area, and,
to perform an efficient offloading strategy from the associated
EC and the temporary allocated UAV. The goodness of the
approach outlined here will be validated later by providing
performance comparisons with some possible alternatives.

In particular, (9) entails defining the UAV position vector
r, the offloading and the selection matrices B, X, and, finally,
the channel allocation matrix H.

With the aim at providing an effective decision-making
strategy, as detailed in Section IV-B, the traffic congestion
in a given elementary service area is monitored by the local
control aggregator (CA) on the basis of interactions with the

6Optimal UAV flight paths to switch to from a given service area to a new
one are assumed to be preloaded in order to lower the energy consumption
(e.g., according to the procedure outlined in [3]).
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Fig. 2. Functional interaction among entities.

DTs related to the SBSs/ECs service area. In particular, this
encompass to make use of the prediction provided to the DTs
by the local ESNs in order to provide to the CA reliable
predictions about congestion level of each EC over time. As a
consequence, the CA can take the most proper decisions about
the EC to be supported by the UAV to reduce its congestion.
Furthermore, the local DT enables the definition and updating
of the matrices B, X, and, H according to (9)–(12) as outlined
in Section IV-C.

B. AI Empowered DTs Congestion Monitoring
In the intelligent UAV-MEC system under consideration,

each SBS is augmented with AI capabilities through a local
ESN. As previously mentioned, we assume that the training
phase of ESNs relies on available data collected by monitoring
congestion behavior over a suitable observation interval where
UAV support is absent. The functional interplay among the
relevant entities is depicted in Fig. 2.

As for the ESN, we can say that it embodies a specific
implementation of the broader Reservoir Computing paradigm.
It inherits advantages from recurrent neural networks (RNNs),
particularly their proficiency in handling inputs with temporal
dependencies [41]. The key components of the ESN, as
outlined in [41], are as follows:

• Neurons randomly connected;
• Sparse connection links;
• Large number of neurons;
• Low in energy and time demand.
The updating rule for the reservoir weight matrix follows

the equation outlined in [41]. Due to its utilization of reservoir
computing, a learning paradigm characterized by sparsely
connected random links, ESNs are well-suited to circumvent
the issue of vanishing gradients commonly encountered in
training recurrent neural networks (RNNs) like the long short-
term memory (LSTM) architecture. Moreover, the stochastic
nature of ESNs contributes to efficient training, effectively
managing the computational overhead associated with the
learning phase, which often poses a bottleneck for neural
network approaches.

In accordance with [41], the ESN consists of three compo-
nents: the input weight matrix I , the reservoir weight matrix
R, and the output weight matrix W . We denote with xq×1 the
input vector, assuming as reservoir weight matrix updating rule
the following equation [41]

us×1(q) = tanh(Ws×q
in xq×1(q) +Ws×1

r (q − 1)), (13)

where us×1 represents a vector of internal units in the reservoir
part, and Ws×q

in is the weights matrix associated to the
connections existing between the input layer and the reservoir
level. Then, the Ws×1

u (q− 1) is the recurrent weights matrix.
Denoting with v(q) the output vector and Wq×s

out the weight
matrix associated to the connection between the reservoir and
the output layer, the relationship between the reservoir and the
output level can be described as

v(q) = Wq×s
out us×1(q). (14)

Given the ESN capability to capture temporal relationships
among successive samples, it leverages historical data to
predict forthcoming traffic conditions for each elementary
service area, quantified by the number of task computation
requests originating in the respective area. Let Cn represent
the critical threshold for such a number below which an area
is deemed uncongested. The local CA by interactions with
the DTs of its elementary service area through the appropriate
UEs acquires the data provided by the local ESNs in order to
identify the SBS with the highest congestion level surpassing
Cn among the S in the same elementary service area. Note
that future network conditions are assumed coherent with the
historical behavior of the network. However, more dynamic
network conditions can be predicted with the support of a
foundation model such as Timesfn [42].

C. Offloading Procedure

The tasks offloading procedure outlined here is derived by
resorting to the MT that is a suitable mathematical framework
able to match together elements belonging to two opposite
sets, by resorting to the definition of preferences lists built by
players, expressing the level of achievement of each participant
in being matched to each element of the opposite set and
vice-versa. Consequently, the matching procedure gives rise
to an effective trade-off between the preferences exhibited by
players.

In this paper, a proper matching game is proposed to take the
decision on the access channel assignment and computation
site, i.e., EC or UAV, selection, whenever this alternative
arises. In particular, when the UAV is assigned to a given
SBS, we have to take decision about the most convenient task
offloading alternative between the local EC or the allocated
UAV. More in depth, a matching game is developed for each
decision to be taken. Note that the assignment is provided for
the time interval ∆t, and it is enabled by the interaction with
the local DT.

As for the assignment of EDs to access channels, the
following preference lists are built.

• Users preferences over channels: For each user i, in a
giving cell j, the channel is selected by accessing the
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Algorithm 1: Channel allocation
input : set of users U , set of channels C
output: assignment matrix H

1 while ∃i ∈ U unmatched do
2 compute users preference list;
3 compute channels preference lists;
4 foreach unmatched customer i do
5 propose assignment to the most favorite

channel;
6 foreach Channel h receiving proposals do
7 select the most favorite user i⋆;
8 H(i⋆, h⋆) = 1
9 return H

information from the local DT regarding the available
channels and their level of interference due to the simul-
taneous use in adjacent (i.e., intrefering) cells.

• Channel preferences over users: For each available chan-
nel, the preferences over users are defined sorting users
in ascending order, considering that for the given channel
h the most preferred user i⋆ is that for which we have

i⋆ = min
i

(∑
i

si
Rgh(i)

)
. (15)

The channel allocation algorithm, whose pseudocode is re-
ported in Algorithm 1, is given by

1) Both users and channels build their own preferences list
on the opposite set;

2) Each user proposes allocation to the most preferred
channel h⋆;

3) Among the received users proposals, h⋆ accepts the most
favorite i⋆;

4) Each channel h receiving at least one proposal, accepts
its most favorite user i⋆ for allocation;

5) Repeat steps 1)-5) until all users are allocated.
Regarding the computational complexity of the proposed
approach, we can focus on a worst-case scenario, wherein
each round sees all users proposing association to the same
channel. In this case, giving the computational complexity of
the algorithm in terms of number of steps to be performed,
we have that the algorithm concludes within a number of steps
equivalent to the total number of users |U|. Once the UAV is
assigned to a given SBS j, and the EDs in U have assigned
a channel to be linked to the SBS j, a new matching game
starts to take decision about the splitting requests between the
local EC and the UAV. Such a matching game acts as follows

• Users preferences over computation sites: For each user
i ∈ U , the preference list on the set of computation
sites is built considering the time spent to receive service
exploitation from each computation alternative. There-
fore, the most preferred computation site is j⋆, under
the assumption that channel h has been assigned to ED
i, such that

j⋆ = argmin
j,u

{
τj , τuav

}
, (16)

Algorithm 2: Computation nodes selection
input : set of users U , set of computation nodes S
output: assignment matrix B

1 while ∃i ∈ U unmatched do
2 compute users preference list;
3 compute computation nodes preference lists;
4 foreach unmatched customer i do
5 propose assignment to the most favorite

node;
6 foreach Computation node j receiving

proposals do
7 select the most favorite user i⋆;
8 B(i⋆, j⋆) = 1
9 ;

10 return B

where
τj = 2

si
Rgh(i)

+ ti,j , (17)

and

τuav = 2
si

Rgh(i)
+ ti,uav + 2

si
Ruav

+ t̃uav,i, (18)

where t̃uav,i is an additional delay contribution due to
the overall transmission time of the tasks previously
offloaded to the UAV.

• Computation sites preferences over users: In order to
construct the preference list of computation sites on
users, each computation evaluates the deadline associated
to each user. In so doing, each computation site sorts
the EDs requests in ascending order on the basis of
the associated deadline δi. As a consequence, the most
favorite user i⋆ results to be given by

i⋆ = argmin
i

δi. (19)

The users-computation node association algorithm, whose
pseudocode is detailed in Algorithm 2, consists of the follow-
ing steps.

1) Both users in U and computation nodes in S build their
own preferences list on the opposite set;

2) Each user proposes allocation to the most preferred
computation node j⋆;

3) Among the received users proposals, each computation
node accepts the most favorite i⋆;

4) Each computation node receiving at least one proposal,
accepts its most favorite user i⋆ for allocation;

5) Repeat steps 1)–4) until all the users are allocated.
Also in this case, in the worst case scenario, the algorithm
terminates in a number of steps equal to |U|.

D. Practical Consideration

The whole implementation cost of the intelligent UAV-MAC
system under consideration is a very challenging point, since it
is the outcome of a rich combination of different factors. First
of all, the complexity of the DT implementation intimately de-
pends on the software design choices, e.g. monolithic software
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architectures versus micro-service architecture. These choices
not only impact on the cost, but also impose architectural con-
straints over the deployment of the DT software components
(for example due to functional dependencies involved in the
business logic of the software architecture implementing the
DT). In this reference, it is important to clarify that the deep
analysis of the architectural cost in realizing and deploying a
DT software architecture is out of the scope of this paper in
its current form. In addition, today’s technological constraints
poses scalability challenges to the proposed approach. In fact,
due to the storage cost, transmission and computation time, a
large-scale actual implementation of the framework designed
is not feasible at the moment. However, it results to be
affordable for small cells deployment, typical of upcoming
6G networks. More in details, the primary inputs for the DT
consist of the interference power level characterizing each
available channel, in order to evaluate the impact of new allo-
cations. This means that a continuous information-exchange
process is required to keep the DT network map updated
with the real-world interference conditions. In addition, it
subtends data exchange between This actually increases the
signaling between the network layers. However, as commonly
recognized in literature, it is reasonable to assume the presence
of a dedicated channel for DT signaling. Furthermore, in our
paper, the local DT also has to collect data concerning the
congestion predictions of each service area, in order to build
the dataset exploited by the local ESN to perform predictions.
Since both the local DT and the ESN reside on the same
EC node, we can assume that they are connected to each
other via a bus. Although it is not easy to quantify precisely,
it can be assumed that for small-medium scale scenario the
signaling overhead is affordable. In terms of computational
complexity, the main contribution is due to the presence of
the ESN. However, the ESN is a lightweight RNN, efficient in
terms of training time and energy consumption. In particular,
as credited by literature [43], the ESN represents a recurrent
neural network whose architecture exhibits several benefits as
the low computation time, energy cost, and quick training. This
is mainly due to the fact that connections are randomly set,
and only the output layer undergoes training using regularized
least squares, allowing for the exploration of numerous hyper-
parameter and reservoir matrix size combinations [43]. Also
in this case, in the authors’ opinion, the proposed solution can
still be applicable in several controlled practical settings.
In order to discuss the computational complexity of the
proposed approach, we have to consider that the most expen-
sive operation in both Algorithm 1 and Algorithm 2 is the
preference list construction process. In Algorithm 1, the cost
spent by each user for sorting the the set of channels is

O(|C| log |C|), (20)

which, iterated for all users in U becomes

O(|U||C| log |C|). (21)

Similarly, the computational cost incurred by channels in
building the preference lists is

O(|C||U| log |U|). (22)

Fig. 3. ESN forecasting error as a function of the time horizon expressed in
ms.

Therefore, the overall computational cost of Algorithm 1 is

O(|U||C| log |C|) +O(|C||U| log |U|). (23)

Since, typically, |C| ≪ |U|, the computational cost of Algo-
rithm 1 results to be

O(|C||U| log |U|). (24)

The same derivation can be applied to Algorithm 2, whose
complexity is given by

O(|S||U| log |U|). (25)

Consequently, the computational complexity of the proposed
framework grows as

O(|C||U| log |U|) +O(|S||U| log |U|). (26)

V. PERFORMANCE ANALYSIS

This section focuses on conducting a thorough performance
analysis to accurately examine the behavior of the proposed
intelligence UAV-MEC system. All results presented below
have been derived from averaging 103 independent simulation
runs, with system parameters modified as outlined later on.
Note that the dataset used to perform the ESN training was
obtained empirically by running the simulator developed,
where system parameters were sets in [3], [7], and [35] and
reported in Table II.

Moreover, we have considered |S| = 5 and |U| = 150,
unless otherwise specified in the text. ECs CPUs configu-
rations have been selected with an equal probability among
five possible Intel processor cores alternatives: the Core i7,
Core i5, Core i3, Pentium and Celeron, with a CPU clock
rate of 3.6 GHz, 2.7 GHz, 2.4 GHz, 1.9 GHz, 2.8 GHz. For
the ESNs, the hyperbolic tangent has been assumed, having
as loss function the mean squared error measure. To optimize
hyperparameters, we have resorted to the procedure presented
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Fig. 4. MSE behavior as a function of size of the reservoir pool for a time
horizon of 1 ms.

Fig. 5. Outage probability as a function of the number of users for the
system parameters values given in Table II and number of SBSs/ECs in each
elementary service area equal to 5.

in [44], assuming a population of 100 components, the elite
count and crossover function equal to 5 and 0.78, respectively,
q = 15, R ∈ [40, 300], and with a learning rate α within the
interval [0.75, 1.4]. This permits to optimize the choice of the
learning rate exploiting the genetic algorithm as in [44]. EDs
are spatially distributed in accordance with a homogeneous
Poisson point process distribution between 2 m and 100 m in
the SBS service area of radius7 of 100 m. In conducting our
analysis, we have made the abstraction of assuming that the
UAV always has sufficient energy to complete the computation
of the offloaded tasks. We can justify this assumption by
considering the following methodologies [45], [46]:

7This is in accordance with the recent developments by Japan’s telecommu-
nications company NTT, the Japanese mobile phone operator DOCOMO, and
electronics corporations NEC and Fujitsu. Even if, the work in this filed is
in progress with a current trade-off in terms of range, the recent experiment
results have shown a stable connection over 100 meters for sub-TeraHertz
bands .

Fig. 6. Worst completion time as a function of the number of users for the
system parameters values given in Table II and number of SBSs/ECs in each
elementary service area equal to 5.

Fig. 7. Outage probability as a function of the number of ECs for the system
parameters values given in Table II and number of EDs in each elementary
service area equal to 150.

• An appropriate management policy that includes the
possibility of a second UAV. In this regard, a useful
AI based methodology that allows for anticipating the
UAV computation system going out of service, thereby
enabling a proactive offloading of ongoing applications
and ensuring continuity of service, has been proposed
in [47]. This can be considered as an additional module
for the DTE - Application and Service sub-entity;

• Appropriate supply power solutions, i.,e., by resorting
to the emerging technologies of lightweight solar panels
or tether cable UAV that guarantee a very long energy
autonomy, thus ensuring complete continuity of service.

Alternatively, if the assumed hypothesis is not applicable,
one could consider modifying the offloading procedure by tak-
ing into account the residual energy capacity of the UAV when
accepting tasks or by introducing an additional parameter in
the definition of the matching procedure that considers the
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Fig. 8. Outage probability as a function of the molecular absorption coefficient
for the system parameters values given in Table II, number of SBSs/ECs and
EDs in each elementary service area equal to 5 and 150, respectively.

Fig. 9. Outage probability as a function of the channel bandwidth for the
system parameters values given in Table II, number of SBSs/ECs and EDs in
each elementary service area equal to 5 and 150, respectively.

energy consumption that the computation of a task entails in
relation to the residual availability. This topic is undoubtedly
interesting and, deserving an in-depth analysis, which, due to
time and space constraints, it has been left as a future extension
of the present work.

The efficacy of the proposed approach is assessed here
by employing both the Kolkata Paise Restaurant Game algo-
rithm (referred to as Kolkata) [11] and the random selection
procedure where the SBSs within a same elementary service
area are randomly selected to be supported by the assigned
UAV. Furthermore, the Kolkata algorithm is regarded to func-
tion as a repeated game, where the proposing set (EDs in
this scenario) generates preference lists concerning channels
and computation sites using predetermined metrics for the
matching process. Conversely, in the Kolkata game, the non-
proposing set randomly chooses tasks offered by the proposers.

To begin, the accuracy of the ESN is depicted in Fig. 3,

Fig. 10. Outage probability as a function of dataset size for the system
parameters values given in Table II, number of SBSs/ECs and EDs in each
elementary service area equal to 5 and 150, respectively.

TABLE II
SIMULATION PARAMETERS VALUES.

Parameter Value
Carrier frequency 0.2 THz
Channel bandwidth 13 GHz
Transmission power 1 W
Service area radius 100 m
Global absorption coefficient of the medium 2 10−4m−1

Content packet size 100 Mbits
Water vapor percentage 1 %

showcasing various prediction horizons. Fig. 3 presents the
mean squared error (MSE), which is defined as

MSE =
1

|S|

|S|∑
l=1

(ϵ̂l − ϵl)
2, (27)

and ϵ̂l and ϵl are the predicted and the actual value at step l,
respectively. As is often expected, increasing the prediction
horizon results in higher error, mainly due to the inherent
challenge of forecasting long-term behavior. This drawback
arises because short-term forecasting involves fewer variables
to predict. Furthermore, Fig. 4 shows the MSE behavior as
a function of the size of the reservoir pool and considering
as time horizon 1 ms. Intuitively, the greater the size of the
reservoir containing learning units, the better the accuracy
reached.

The curves depicted in Fig. 5 emphasize the notable perfor-
mance of the proposed framework compared to the task outage
probability values obtained by employing both the Kolkata
algorithm and the Gale-Shapley alternative. The rationale be-
hind this observation lies in the fact that the Kolkata algorithm
aligns with the matching game proposed for constructing user
preference lists. In contrast, unlike the proposed scheme, in
the Kolkata strategy, computation sites randomly select tasks to
accept from those received. This deviation from the developed
matching algorithm significantly influences the performance
trend, underscoring the importance of prudent task selection.
Similarly, the Gale-Shapley algorithm faces a disadvantage as
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it does not update preferences. This behavior is confirmed by
the results provided in Fig. 6 where it appears evident that a
higher mean completion time implies a greater probability of
experiencing a completion time exceeding the corresponding
deadline.

Fig. 7 illustrates the trend of the outage probability in
the considered scenario as the number of ECs in a same
elementary service area increases. As it is easy to foreseen,
the task outage probability decreases as the number of ECs
grows. This trend arises because, with the number of task
computation requests held constant at 150, increasing the num-
ber of ECs boosts computational resources, providing more
support to tasks and consequently reducing outage probability.
Once again, the advantageous performance of the proposed
intelligent UAV- MEC system is confirmed compared to the
alternative Kolkata algorithm and the Gale-Shapley scheme.

Additionally, with the aim at investigating the influence
of the 6G communication channel on the performance of
the intelligent system under consideration, Fig. 8 depicts the
behavior of outage probability as a function of the molecular
absorption coefficient. It is evident that the curve worsens as
the molecular absorption coefficient increases. This deteriora-
tion occurs because channels experience greater disturbances
with higher values of the molecular absorption coefficient
so decreasing the possible Rgh(i) and Ruav values given
by (1) and (4), respectively. Furthermore, Fig. 9 illustrates the
outage probability as a function of the bandwidth. As expected,
the outage probability improves as the channel bandwidth
increases. This Figure also demonstrates how our approach
allows for spectrum saving by not showing significant im-
provements increasing the channel bandwidth beyond 20 GHz.
Finally, Fig. 10 illustrates the behavior of the UAV-MEC
system performance as a function of the computation cost that
in our case as been assumed given by the dataset size using
for the training of the considered ESNs. This figure shows
that as the dataset size (i.e., cost in our case) increases, the
performance of the proposed system improves. A dataset size
of 200 is considered optimal because increasing it further does
not lead to additional performance gains.

VI. CONCLUSION

The paper has dealt with the functional integration of the
DT technology and AI capabilities within an intelligent UAV-
MEC system, aiming to efficiently manage task offloading and
lower congestion at the EC nodes. A suitable matching game
is formulated to efficiently assign channels, allocate UAVs to
congested SBSs, and select computation sites within the same
elementary service area. The aim is to minimize the number
of task computation requests experiencing outage with respect
to a given deadline. Deep integration and cooperation between
the physical and digital network layers are designed, outlining
the DT architecture and responsibilities among involved enti-
ties, following the emerging standard ISO 23247. The provided
performance analysis confirms the notable advantages arising
by the functional integration of the DT technology with AI
capabilities into the considered intelligent UAV-MEC system.
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