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Signal Augmentation Method based on Mixing and
Adversarial Training for Better Robustness and
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Abstract—More and more deep learning methods have been
applied to wireless communication systems. However, the col-
lection of authentic signal data poses challenges. Moreover,
due to the vulnerability of neural networks, adversarial at-
tacks seriously threaten the security of communication systems
based on deep learning models. Traditional signal augmentation
methods expand the dataset through transformations such as
rotation and flip, but these methods improve the adversarial
robustness of the model little. However, common methods to
improve adversarial robustness such as adversarial training not
only have a high computational overhead but also potentially
lead to a decrease in accuracy on clean samples. In this work,
we propose a signal augmentation method called adversarial
and mixed-based signal augmentation (AMSA). The method can
improve the adversarial robustness of the model while expanding
the dataset and does not compromise the generalization ability.
It combines adversarial training with data mixing and then
interpolates selected pairs of samples to form new samples in an
expanded dataset consisting of original and adversarial samples
thus generating more diverse data. We conduct experiments on
the RML2016.10a and RML2018.01a datasets using automatic
modulation recognition (AMR) models based on convolutional
neural networks (CNN), long short-term memory (LSTM), con-
volutional long short-term deep neural networks (CLDNN), and
transformer. And compare the performance in scenarios with
different numbers of samples. The results show that AMSA
allows the model to achieve comparable or even better adversarial
robustness than using adversarial training, and reduces the
degradation of the model’s generalization performance on clean
data.

Index Terms—Adversarial training, automatic modulation
recognition, data augmentation, mixing signals, robustness.

I. INTRODUCTION

THE modern communication environment exhibits a trend
of wide spectrum, abundant quantity, and high accuracy

in the recognition of radio signals. The modulation modes
of signals become more complex and diverse to meet the
demands of increasingly complex communication scenarios,
which makes feature extraction and recognition based on
prior knowledge face many difficulties. Traditional signal
processing methods make it difficult to process a large num-
ber of signals quickly and efficiently. Therefore, more and
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Fig. 1. Example of signal adversarial attack.

more research [1]–[3] began to use deep learning algorithms
to identify the modulation types, making signal recognition
tend to be automated. It avoids the requirement of artificial
feature extraction based on experience and prior knowledge
and improves the recognition ability of complex radio signals.

Firstly, automatic modulation recognition (AMR) based on
deep learning has the problem of insufficient training samples.
The performance of deep learning models is inseparable from
the support of large volumes of data. The current standard data
sets for radio signals are the RML2016 [4] and RML2018
series, which are obtained by simulating signals and chan-
nels through GNU Radio, and HisarMod2019.1 [5], which
are obtained using MATLAB [6].However, to develop deep
learning-based AMR models that can effectively operate under
real channel conditions, it is imperative to have access to data
sets comprising real-life scenarios. It is difficult and costly to
collect and label a large amount of real-world radio signals,
resulting in a scarcity of authentic signal datasets.

One way to solve the problem of insufficient samples is to
design models that give better performance even with fewer
training samples. However, this design is often not universal
and requires a separate design for each model. A simple but
effective way is to utilize data augmentation to reduce the
dependence on training data. The training set is artificially
expanded by data augmentation and the dataset can be used
by multiple models. Traditional signal augmentation methods
generate new data by transformations such as rotation, crop-
ping, mixing, adding Gaussian noise, etc. to the signal, which
can improve the generalization of the model.

In addition to the challenge of insufficient data, AMR
models based on deep learning also have the vulnerability
of neural networks. In the realm of image recognition, it
was initially proposed that neural network predictions can be
manipulated by applying imperceptible perturbation [7]. In
the domain of signal recognition, related studies [8], [9] have
demonstrated the feasibility of generating adversarial samples
for deep learning-based AMR models by introducing disrup-
tive noise to the waveform, resulting in errors. Adversarial
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jamming, as depicted in Fig. 1, which requires less power
and offers greater covertness compared to traditional noise
jamming, has emerged as one of the methods employed for
signal interference.

When performing AMR, the model is required to have
robustness against adversarial attacks. Traditional signal aug-
mentation methods provide less improvement in the model’s
defensiveness against adversarial attacks. For defense against
adversarial attacks, the most commonly used effective method
is adversarial training [10]–[12], which learns the features
of adversarial attacks by adding adversarial samples to the
training set. However, since the adversarial samples are con-
centrated near the decision boundary, resulting in differences
in the distribution of the samples, researches [10], [11] have
shown that adversarial training may lead to reduced recogni-
tion rates for clean samples.

To address the above problems, this paper proposes a
data augmentation method that enables the model to have
sufficient adversarial robustness and reduced degradation of
generalization performance on clean samples. Mixed data
augmentation not only enhances the diversity of data but also
adjusts the distribution of samples by generating data samples
that incorporate different information. Therefore, we consider
the method of combining adversarial training and data mixing,
using adversarial training to enhance adversarial robustness,
and using data mixing to improve the generalization while
adjusting the data distribution to improve the shortcomings
of adversarial training. The method mainly has two difficult
problems, one is that the signal has characteristics different
from image and text. It’s necessary to design a way suitable for
signal data mixing. The second is how to combine adversarial
training with data mixing to alleviate the generalization perfor-
mance degradation brought about by the adversarial training in
some scenarios, and to achieve the simultaneous improvement
of robustness and generalization.

This paper proposes the adversarial and mixed-based signal
augmentation (AMSA) method. Firstly, adversarial attacks are
employed to generate corresponding adversarial examples,
maintaining the information of original labels through the
creation of mixed labels, while introducing information pre-
dicted by the model. Subsequently, the original signals are
interpolated with their adversarial examples and signals of
the same class, rather than randomly mixed across different
types. Finally, we obtain a data set composed of the original
samples, adversarial samples, and interpolated mixed samples.
Our contributions are as follows:

• We propose a simple and effective data augmentation
method, AMSA, which improves adversarial training and
data mixing to adapt to one-dimensional signals, aiming
to improve the model’s adversarial robustness while alle-
viating the decrease in generalization performance caused
by adversarial training.

• Aiming at the threat of white-box attacks faced by deep
learning models, the AMSA proposed in this paper is
evaluated under different signal-to-noise ratios (SNR) on
multiple AMR models based on convolutional neural net-
works (CNN), long short-term memory (LSTM), convo-
lutional long short-term deep neural networks (CLDNN),

and Transformer, respectively.
• For the scenario of insufficient training data, the situation

is simulated using 10% of the training dataset, and the
performance of AMSA and traditional data enhancement
methods are comprehensively compared.

II. RELATED WORKS

A. AMR Model based on Deep Learning

Traditional methods for modulation recognition include
likelihood-based and feature-based approaches. However,
these methods face challenges in adapting to the increasingly
complex electromagnetic environment. Consequently, there
is a growing trend towards the utilization of deep learning
models for AMR tasks. Deep learning-based AMR methods
are primarily implemented through CNN [1] and recurrent
neural networks (RNN). CNNs learn signal spatial relation-
ships through the local perception of convolutional kernels,
and O’Shea [2] et al. combined CNNs with the fully connected
network to achieve radio data feature extraction and data
classification. RNNs, such as LSTM, control information flow
through memory units to extract temporal features of signals.
Rajendran [3] et al. transformed the IQ signals into phase
and amplitude for modulated classification, and the tempo-
ral characteristics of radio data can be adequately captured
using the LSTM structure. Additionally, CLDNN [13] have
been shown to produce promising results by combining the
advantages of CNN and RNN. However, CNN and RNN can
only capture local signal features without realizing global
information perception and interaction. In contrast, the Trans-
former includes a multi-head self-attention mechanism, which
can extract global information features. Consequently, several
studies [14] have proposed models based on Transformers.
We select representative AMR models based on CNN [2],
LSTM [3], CLDNN [13], and Transformer [15] as target.

B. Data Augmentation Method

Data augmentation is a method of artificially generating new
data from existing data and thus increasing the amount of data,
including adding different perturbations to the data or using
neural networks to learn the original data distribution and thus
generate new data.

The basic data augmentation methods mainly involve trans-
forming the data. For images, the most common way is to
change the shape and pixels of the image [16], such as rotating,
cropping, masking, etc. For radio signals, these types of meth-
ods are also very effective. The work in [17] investigated the
effects of rotation, flipping, and Gaussian noise augmentation
methods on LSTM-based AMR models. It was found that such
methods of generating new data from simple transformations
provide a degree of defense against various types of damage.
These methods are uncomplicated and user-friendly, but they
typically do not significantly modify the original dataset and
have a limited impact on the generalization of the augmented
model, especially in terms of robustness against attacks.

Mixed sample data augmentation (MSDA) is also a popular
basic augmentation method. Mixup [18] is the first proposed
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mixed sample data augmentation method which linearly in-
terpolates and mixes two different samples to generate new
training samples and corresponding labels. Based on Mixup,
CutMix [19] swaps the patches of an image thus mixing the
image, and the real labels are also mixed in proportion to the
patches. To obtain a more appropriate shape for the patches,
Fmix [20] obtains a randomized binary mask by applying a
threshold to the low-frequency images sampled from Fourier
space. These various simple yet effective methods have been
proposed to enhance the training set by mixing images with
other images or their variants with different sample mixing and
label calculation approaches. By generating data samples that
incorporate different information, the distribution of a given
training set is extended, which can enhance the generalization
performance of the model. Additionally, the decision boundary
of the model can be made smoother through interpolation.
And it may improve the model’s robustness against adversarial
attacks to some extent. The work of [21] proposes a data
augmentation method for generating samples by mixing mul-
tiple signals, effectively improving the classification accuracy
in some cases. Still, the technique is only applicable to less
noisy samples, and it can be a hindrance at low signal-to-noise
ratios.

Advanced data augmentation mainly refers to ways of
generating new data using relatively complex networks, such
as using generative adversarial networks (GAN) to learn
the latent distributions of the original data, thus produc-
ing synthetic data similar to the original data. Inspired by
the reconstructive and generative capabilities of GAN, many
studies have utilized GAN for data augmentation for signal
modulation classification [22]–[25]. Tang et al. [22] proposed
data augmentation using GAN after converting signals into
constellation diagrams, but the method requires preprocessing
of the signals. In [24], a method of generating augmentation
using GAN directly on time domain signals was proposed, ob-
taining a better enhancement in classification results. However,
approaches based on GAN often display a bias towards the
already skewed dataset, resulting in a less diverse generated
data distribution compared to the training distribution [26].
Moreover, these models require a considerable amount of
training data to achieve satisfactory results, which may restrict
their efficacy when confronted with inadequate data.

C. Adversarial Training

The results of recent studies indicate that adversarial train-
ing is one of the most effective methods for defending against
adversarial attacks. Furthermore, the application of this tech-
nique has been shown to result in the development of a robust
model with relatively interpretable gradients [10]. Adversarial
training adds generated adversarial samples to the original
dataset and uses the adversarial samples to train the model
thereby improving the recognition accuracy of the model.
Commonly used methods for generating adversarial samples
include the fast gradient sign method (FGSM) [27], project
gradient descent (PGD) [10], etc. Szegedy et al. [7] introduce
adversarial samples into the model and modify their labels
to make it more robust in the face of adversarial samples.

Goodfellow et al. [27] initially proposed adversarial training,
in which adversarial samples generated by the FGSM algo-
rithm are used along with clean samples to train the network,
thereby enhancing its robustness. In [28], the highest accuracy
can be obtained by employing the PGD algorithm to generate
adversarial samples for training, but the computational cost of
this method is high.

Adversarial training can be viewed as a special type of
advanced data augmentation by adding generated adversarial
samples to the original dataset. However, adversarial training
has its limitations. Firstly, the overhead of adversarial training
increases dramatically with the number of samples and the
complexity of the attack method. It is impractical to include
all unknown attack samples in adversarial training. Secondly,
adversarial training can lead to a decrease in the model’s
recognition accuracy on the original data, especially for larger
models, which means that the model needs to balance gener-
alization with adversarial robustness.

D. Mixed and Adversarial Data Augmentation

To improve the generalization and robustness of the model
at the same time and solve the limitations of adversarial
training, various approaches have been proposed that combine
adversarial training with data mixing. In the domain of images,
Lamb et al. [12] introduced the interpolated adversarial train-
ing (IAT), which trains on interpolations of both adversarial
and original samples to enhance the robustness of adversarial
samples while maintaining a slight decrease in classification
accuracy for original samples. Alfred et al. [29] proposed
mixup-targeted labeling adversarial training (M-TLAT), a data
augmentation strategy that combines mixup and targeted la-
beling adversarial training (TLAT) to improve the robustness
against nineteen common damages and five adversarial attacks
on images without compromising the accuracy of the original
data. Liu et al. [30] presented AugRmixAT, a data process-
ing and training approach that incorporates AugMix [31]
and adversarial training followed by random data mixing to
enhance robustness against common interference destruction,
white box attacks, and black box attacks. In the realm of text,
Si et al. [32] proposed an adversarial defense method called
adversarial and mixup data augmentation (AMDA), which
expands the sample space through interpolation to bring post-
adversarial trained samples closer to the distribution of original
data. This alleviates performance degradation issues observed
on original samples after adversarial training while providing
a solution for enhancing model robustness.

III. THE PROPOSED METHOD

This paper proposes a method for augmenting radio signal
data in order to address the requirement of signal data aug-
mentation for the AMR model based on deep learning and
to mitigate the potential threat of adversarial attacks. Firstly,
defensiveness against adversarial attacks is achieved by adding
adversarial samples generated using PGD to the dataset.
And mixed labels are generated corresponding according to
the perturbation. To mitigate the decrease in generalization
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Fig. 2. Overall framework of AMSA model.

performance caused by the distribution difference between
adversarial and original samples, interpolation mixing of ad-
versarial and original sample pairs is employed to adjust the
sample distribution. Additionally, to further enhance model
performance, mixing augmentation is conducted within the
same class signals, and the augmented data is jointly trained
with the original data. The overall framework of the method
is illustrated in Fig. 2.

A. AMR

Symbol sequences s0(t) are generally not suitable for direct
transmission in the channel, so it is necessary to modulate
them into signals suitable for channel transmission. Assuming
that the modulation function is M(·), the signal x(t) received
by the receiving end is represented as:

x(t) = h(t)M(s0(t)) + w, (1)

where h(t) represents the influence of the channel on sig-
nal transmission, and w represents additive white Gaussian
noise (AWGN). The receiver needs to recognize the type of
M(·) for demodulation processing, to recover s0(t). AMR
refers to the automated process of identifying M(·).

The signal x(t) is typically composed of in-phase (I) and
quadrature (Q) components, and can thus be represented in
complex form as:

x(t) = xI(t) + jxQ(t). (2)

After sampling and preprocessing at the receiver end, the
discrete signal x(n) ∈ R2×l along with its corresponding
label y are obtained as inputs to the AMR model, where
l represents the number of sample points. Different AMR
models extract features from the input time-domain signal to
predict the modulation type of x(t). AMSA is an online data
augmentation operation performed on the input signals after
feeding into the AMR model.

B. Adversarial Augmentation based on Mixed-Label

To defend against unknown adversarial attacks, the model
needs to learn the features of the adversarial sample. Given
the original training data set X = {x1, x2, · · ·, xm} corre-
sponding to label Y = {y1, y2, · · ·, ym}, each of the signal

samples x ∈ R2×l can be iterated to produce corresponding
adversarial sample xadv , and m is the number of samples.
In the AMSA, PGD, the strongest first-order attack method,
is used to generate adversarial samples. By learning the
adversarial samples found by PGD, the neural network will
have the defensiveness to resist other first-order adversarial
attacks.

Adversarial samples are generated iteratively, which can be
formulated as:

x0
adv = x+ η,

xi+1
adv = Clipx,ε{xi

adv + αsign[∇XJ(θ, xi
adv, y)]},

i = 1, 2, · · ·, np iter,

(3)

where xi
adv represents the adversarial sample obtained after the

ith iteration. η represents an initial random perturbation, and
Clipx,ε{.} restricts the value to a certain neighborhood, with ε
denoting the maximum perturbation. α controls the magnitude
of the perturbation, and sign(·) represents the sign function. J
signifies the loss function, θ denotes the network parameters,
and np iter represents the number of iterations. Then the
adversarial data set Xadv = {xadv1 , xadv2 , · · ·, xadvm} is
obtained.

For the labels of adversarial samples, since the adversarial
samples are created by adding an imperceptible perturbation to
the original samples, which doesn’t change their modulation
type, the true label yadv true should be the same as the original
samples.

yadv true = y (4)

However, the objective of adversarial samples is to deceive
the model into classifying them as a different category from the
true label. They are distributed relatively far from the center of
their true category and close to the decision boundary, so they
should be assigned lower predictive accuracies, thus necessi-
tating smoother labels. There exists a target label yadv pred

predicted by the model. We propose representing the label
of adversarial samples as a mixture of the true label and the
predicted label, denoted as:

yadv = (1− ε)yadv true + εyadv pred (5)

By giving better-supervised signals to the adversarial sam-
ples through mixed labels, the model establishes a relation-
ship between perturbations and adversarial labels, forcing
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the model to make more accurate predictions on adversarial
samples during training. This enhances the model’s robustness
against adversarial samples.

C. Mixed-based Signal Augmentation

To bolster the efficacy of adversarial training and increase
the diversity of samples, thereby facilitating a more compre-
hensive understanding of the data distribution, signal mixing is
employed on the dataset augmented with adversarial samples.
This mixing process encompasses two primary components:
firstly, mixing original signals to enhance model generaliza-
tion, and secondly, conducting interpolation mixing between
original signals and adversarial samples to amplify the effec-
tiveness of adversarial training.

In the field of CV, the classical data augmentation
method Mixup generates diverse virtual samples by lin-
early interpolating between randomly selected sample pairs
{(xi, yi), (xj , yj)}, thereby blending information from dif-
ferent classes. Images often exhibit similarity and compa-
rability during the mixing process, this is not the case for
signals of different modulation types. The characteristics of
such signals, which may reside in amplitude, frequency, or
phase, generally lack comparability. Signal modulation types
can be broadly categorized as analog modulation and digital
modulation, encompassing various types such as amplitude
modulation, frequency modulation, and phase modulation.
Directly superimposing samples of different categories may
lead to mixed signals that no longer conform to the original
modulation type characteristics. This does not comply with
the basic assumptions of the data augmentation. Hence, the
AMSA method employs the mixing of similar signals. The
process of mixing pairs {(xi, yi), (xj , yj)} of the same label
is as follows:

x∗
i = λxi + (1− λ)xj ,

y∗i = yi = yj ,
(6)

where λ follows a Beta distribution λ ∼ Beta(α, α), and α
is a hyperparameter.

For a given signal sample (xi, yi) paired with its cor-
responding adversarial sample (xadvi , yadvi), the process
of interpolating between them to obtain a new sample
(x∗

newi
, y∗newi

) is represented as:

x∗
newi

= λxi + (1− λ)xadvi ,

y∗newi
= λyi + (1− λ)yadvi .

(7)

The method defends against adversarial attacks by adding
adversarial samples to the model. It leverages data mixing
to create a multitude of neighboring samples based on the
training data, thereby adjusting the distribution of data after
adversarial augmentation. The order of data mixing after
adversarial training can reduce the overhead of adversarial
training compared with the reverse order or direct adversarial
training on a large number of samples.

D. Theoretical Analysis

Adversarial training, one of the most effective adversarial
defense methods known, improves the robustness of the model

itself by training it on samples. This active defense approach
can achieve robustness without detecting the presence of
adversarial samples. However, it will make the model have
different degrees of performance degradation on clean sam-
ples.

According to the deep learning manifold assumption, high-
dimensional data is formed by low-dimensional manifold
structures embedded in high-dimensional space, and the mani-
folds can portray the nature of the data. Deep learning models
learn a decision boundary plane by training on samples,
which can classify low-dimensional data manifolds but may
misclassify points near the manifold. Adversarial samples
are points that happen to be distributed near the manifold,
which is one of the dominant explanations for the genesis of
adversarial samples. From the perspective of data manifolds,
since the adversarial training produces a large number of
adversarial samples concentrated in the decision boundary,
and the distribution of the adversarial samples is significantly
different from that of the clean samples, it leads to a degrada-
tion of the model’s performance on the clean samples. From
the perspective of feature learning, after adding adversarial
samples, the model may overfit the adversarial samples and
ignore the features of the clean samples, which leads to a
degradation of the generalization performance.

AMSA can optimize the performance of adversarial training
using data mixing from both perspectives mentioned above. By
interpolating between the adversarial samples and the original
samples, on the one hand, it is possible to add more diverse
training data to learn smoother decision boundaries; on the
other hand, mixing generates new data with the characteristics
of the adversarial samples and the characteristics of the clean
samples, which balances the performance of the model on
different samples.

In addition to this, Mixup generates a large number of
samples that are beneficial to the model’s generalizability and
adversarial robustness. Due to the presence of a complex
electromagnetic environment in signal transmission, signal
mixing can better simulate signal variations in real-world
application scenarios. Diverse data helps to reduce model
overfitting and to fill in the blank areas in the training set,
allowing the model to learn and predict better in these areas.
Moreover, studies have shown that adversarial training requires
a higher amount of data, and increasing the training data can
obtain a significant robustness improvement. This is the reason
we believe AMSA can be effective.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we evaluate the generalization and robustness
of AMSA in scenarios with different numbers of samples. The
main purpose is to prove the following conclusions:

• Compared with traditional augmentation methods, AMSA
greatly improves the adversarial robustness of the model.

• AMSA effectively alleviates the degradation of general-
ization performance caused by adversarial training.

• AMSA achieves its goal in scenarios with both sufficient
and insufficient samples.
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Fig. 3. Recognition accuracy of the target model under FGSM and PGD
attacks.

A. Dataset, Scenarios, Target Models, and Attack Methods

1) Dataset: We evaluate signal augmentation methods with
the public dataset RML2016.10a [4] and RML2018.01a [1].

The RML2016.10a dataset comprises 11 modulation styles,
including 8PSK, BPSK, CPFSK, GFSK, PAM4, AM-DSB,
AM-SSB, 16QAM, 64QAM, QPSK, and WBFM, with SNR
ranging from −20 to 18 dB. The dataset comprises 220,000
signal samples, with 1,000 samples at each SNR for each
modulation type. Each sample has IQ channels, consisting of
128 points.

The RML2018.01a comprises 24 distinct modulation types,
including OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK,
32PSK, 16APSK, 32APSK, 64APSK, 128APSK, 16QAM,
32QAM, 64QAM, 128QAM, 256QAM, AM-SSB- WC, AM-
SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMASK, and
OQPSK. The SNR ranges from −20 : 2 : 30 dB, with a
total of 2,555,904 samples and 1024 sampling points each.

2) Scenarios: We set up three scenarios with different
numbers of samples to verify our method.

• Scenario I: We divide the dataset into training set, valida-
tion set, and test set following a 6:2:2 ratio. The training
set comprises 132000 samples, while the validation and
test sets each contain 44000 samples.

• Scenario II: To simulate the scenario of limited training
data, we extract 10% of samples from each class in the
complete dataset. This yields 100 samples for each modu-
lation type at every SNR level. The dataset is then divided
into training, validation, and test sets following a ratio
of 1:1:2. Specifically, there are 22000 training samples,
22000 validation samples, and 44000 test samples.

• Scenario III: We extract 100 samples from each class
of modulation styles at each SNR in the RML2018.01a
dataset as the training set, and the ratio of training,
validation, and test sets is 1:1:1, with 62,400 samples
respectively.

3) Target models and attack methods: We employ the
AMR models based on CNN [2], LSTM [3], CLDNN [13],

TABLE I
RECOGNITION RATE OF DIFFERENT MODELS USING DIFFERENT DATA

AUGMENTATION METHODS UNDER FGSM ATTACK (%).

Model
SNR
(dB)

Baseline +Flip +Rotation +AMSA

CNN

-10 6.73 10.73 9.27 10.55
0 48.09 62.05 65.73 72.64
10 65.77 75.55 76.45 81.50
18 63.86 74.36 74.91 81.77

LSTM

-10 3.77 10.41 8.88 12.00
0 36.14 67.86 71.95 81.14
10 51.64 76.59 78.91 84.32
18 54.23 75.77 77.14 85.23

CLDNN

-10 6.32 7.64 7.73 13.05
0 42.32 55.68 60.86 71.64
10 52.23 63.91 67.32 79.36
18 53.50 66.00 70.55 79.50

Transformer

-10 4.50 8.68 8.55 12.64
0 27.50 50.27 51.50 68.18
10 39.82 60.73 70.32 80.64
18 38.41 61.50 71.36 80.23

and transformer [15]. Adversarial attacks employ FGSM and
PGD, where FGSM is a simple yet effective first-order attack
method, and PGD has been proven to be the strongest first-
order attack method. In Scenario I, the recognition accuracy
of the target model under FGSM and PGD attacks is shown
in Fig. 3. It can be seen that the different AMR models have
a large loss of accuracy under adversarial attacks. So it is
necessary to take certain defensive means.

All experiments use the TensorFlow backend on a single
NVIDIA Corporation GPU.

B. Comparison of Defense Ability of Data Augmentation
Methods

To verify the effectiveness of the proposed method in
improving the model’s adversarial robustness, models are
subjected to FGSM attack and PGD attack (white-box attack)
with an attack coefficient α = 0.01. We compare AMSA with
traditional data augmentation methods, including rotation and
flip, which are proven to be effective methods [17]. We test
the recognition accuracy of the model after the attack, and
the recognition results on the full RML2016.10a dataset are
shown in Table I, with the best defense results bolded.

Due to increased sample diversity, both flip and rotation
augmentation methods exhibit certain defensive capabilities
against FGSM attacks. Although the adversarial training com-
ponent in the AMSA method employs the PGD approach, the
adversarial samples generated by PGD possess transferability,
thereby demonstrating good defensive performance against
the FGSM attack. As shown in Table I, AMSA significantly
enhances the model’s robustness under low and high SNR
conditions, with respective improvements of 24.55%, 45.00%,
29.32%, and 40.68% compared to the original model at 0 dB.
Moreover, compared to the better one of flip and rotation,
AMSA shows improvements of 6.91%, 9.19%, 10.78%, and
16.68%.

The comparison of model recognition accuracy under PGD
attack is shown in Fig. 4. The performance of rotation and
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(a) CNN. (b) LSTM.

(c) CLDNN. (d) Transformer.

Fig. 4. Recognition accuracy of different models varies with SNR under PGD
attack.

flip is similar, while AMSA has obvious advantages when the
SNR surpasses −10 dB, culminating in its highest accuracy
at 4 dB.

C. Comparison of Generalization Ability of Data Augmenta-
tion Methods

In Scenario I, to demonstrate the effectiveness of AMSA in
mitigating the performance degradation caused by adversarial
training, Table II presents the recognition results of clean
samples using AMR models based on CNN, LSTM, CLDNN,
and Transformer. (AT represents adversarial training.)

From the perspective of overall recognition accuracy, al-
though the AMSA method applied to CNN and CLDNN
models did not reach the baseline for clean samples, it showed
significant improvement compared to adversarial training and
was relatively close to the benchmark. For LSTM-based mod-
els, the AMSA method yielded remarkable results, surpassing
recognition accuracy without augmentation. In Transformer
models, AMSA’s performance was slightly better than the
baseline.Regarding specific SNR, AMSA demonstrated pro-
nounced benefits when SNR was around 0 dB, outperforming
other methods across various models. Under lower SNRs,
the differences in recognition accuracy among methods were
minimal, with non-augmented methods performing relatively
better. Under high SNRs, AMSA enhanced the recognition
accuracy over adversarial training for CNN and CLDNN
models, while for LSTM and Transformer models, it surpassed
the baseline.

To further investigate the enhancement brought by AMSA,
we employed T-SNE to visualize the feature distributions of
the model before and after the application of AMSA, as
depicted in Fig. 5. It is evident that after the augmentation with
AMSA, the data distribution within the same class became
more clustered, and the classification boundaries between

TABLE II
RECOGNITION RATE OF DIFFERENT MODELS USING ADVERSARIAL

TRAINING AND AMSA ON CLEAN SAMPLES (%).

SNR (dB) -18 -10 0 10 18
Overall

accuracy
CNN 9.18 22.41 82.82 86.05 86.36 58.49
+AT 9.09 20.14 82.50 84.86 84.95 56.86
+AMSA 9.14 18.45 83.36 85.55 85.55 57.95
LSTM 9.14 24.14 79.91 85.22 85.50 57.65
+AT 9.09 23.55 83.14 84.91 84.41 57.44
+AMSA 9.36 23.00 90.45 92.45 92.64 62.72
CLDNN 9.41 18.18 78.82 85.27 84.55 56.94
+AT 9.14 16.18 79.86 83.55 83.73 55.56
+AMSA 9.09 22.55 79.91 83.64 84.36 56.39
Transformer 9.50 22.64 78.91 83.45 83.95 56.52
+AT 9.09 20.50 80.77 83.32 82.95 55.92
+AMSA 9.14 21.59 81.00 84.09 84.27 56.53

(a) model without augmentation. (b) model with AMSA.

Fig. 5. T-SNE result of distribution calculated by AMR model based on
LSTM. (a) Distribution calculated by the model without augmentation. (b)
Distribution calculated by the model with AMSA.

different classes became clearer. Additionally, AMSA helped
alleviate the confusion between 16QAM and 64QAM.

D. Performance Comparison on Small Datasets

To verify the enhancement effect and defense performance
of the algorithm when the sample quantity is insufficient, 10%
of samples from the RML2016.10a are randomly selected for
data augmentation. The results of the AMR model based on
CNN are shown in Fig. 6., with similar outcomes observed on
AMR models based on LSTM, CLDNN, and Transformer. We
also conducted experiments on the extracted RML2018.01a
dataset, and the results are shown in Fig. 7. AT, MS represents
adversarial training, mixing signals, respectively.

With fewer training samples, mixing signal improves recog-
nition accuracy at low SNRs but yields adverse effects at high
SNRs. Employing adversarial training has no advantage at low
SNRs, but at high SNRs, instead of degrading the accuracy
on clean samples, it improves adversarial robustness. AMSA,
as a combination of the two, shows superior performance
at all SNRs. It not only maintains high robustness from
adversarial training but also achieves a recognition rate on
clean samples that is superior to adversarial training and mirror
augmentation, approaching that of rotation augmentation. It
can be observed that AMSA demonstrates clear advantages in
scenarios with limited sample sizes.
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(a) Recognition rate on clean samples.

(b) Recognition rate on adversarial samples.

Fig. 6. Recognition accuracy of the AMR model based on CNN varies with
SNR in Scenario II.

E. Influence of Sample Interpolation Mixing and Mixed Labels
on Adversarial Training Performance

The AMSA method has introduced certain improvements to
adversarial training by using mixed labels and interpolation of
adversarial samples.

To observe the impact on the performance of adversarial
training in Scenario II, we employed adversarial training,
adversarial training with one-time interpolation mixing of
adversarial samples with original signals, and adversarial train-
ing with two-time interpolation mixing (including the use of
genuine labels and mixed labels). We conducted recognition
experiments on clean samples and adversarial samples, and the
overall accuracy of the CNN-based AMR model is presented
in Table III.

Based on the table, it can be observed that mixing adversar-
ial samples with original samples can simultaneously enhance
the robustness and generalization of adversarial training. In
addition, the effectiveness of interpolating twice surpasses that
of interpolating once, as multiple interpolations can cover
a larger space and learn more distribution characteristics.
However, excessive interpolation can also lead to increased
computational costs, hence the approach adopted in this paper
is a two-time interpolation. The use of mixed labels tends to
elevate the recognition accuracy of the model on clean sam-
ples, albeit sometimes at the expense of adversarial robustness,

(a) Recognition rate on clean samples.

(b) Recognition rate on adversarial samples.

Fig. 7. Recognition accuracy of the AMR model based on CNN varies with
SNR in Scenario III.

although such losses are typically minimal.

F. Determination of the Proportion of Data from Adversarial
Augmentation

In the aforementioned experiments, all samples augmented
by mixing samples of the same types are added to the dataset,
with the proportion of virtual samples generated by adversarial
augmentation primarily determined by the adversarial samples.
In the adversarial training phase, experimental results indicate
that an excessive or insufficient proportion of adversarial
samples has detrimental effects. When adversarial samples are
scarce, it becomes challenging for the model to learn sufficient
features, leading to inadequate adversarial robustness. How-
ever, an excessive number of adversarial samples not only fails
to enhance robustness but also induces overfitting, resulting in
a simultaneous decline in robustness and generalization.

Taking the CNN-based AMR model as an example, Table IV
illustrates the overall recognition accuracy obtained with dif-
ferent proportions of adversarial augmentation. In Scenario I,
the number of adversarial samples added to the dataset per
round is randomly determined to be between 50% and 75% of
the original data quantity, while in Scenario II, this proportion
ranges from 75% to 100%, which is determined based on a
better balance of robustness and generalization.
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TABLE III
THE OVERALL RECOGNITION ACCURACY OF THE MODEL UNDER

DIFFERENT ADVERSARIAL TRAINING METHODS (%).

AT
One-time

interpolation mixing
Two-time

interpolation mixing
True label Mixed label True label Mixed label

Ori. 56.49 56.78 57.01 56.91 57.45
Adv. 52.90 52.92 53.00 53.16 53.10

TABLE IV
OVERALL RECOGNITION ACCURACY OF MODELS AFTER ADVERSARIAL

TRAINING WITH DIFFERENT ADVERSARIAL AUGMENTATION PROPORTION
(%).

Scenarios I Scenarios II
Ori. Adv. Ori. Adv.

0% 58.49 36.55 55.98 35.38
0%-25% 58.00 51.29 56.38 48.00

25%-50% 57.60 53.30 56.39 51.46
50%-75% 57.22 53.92 56.33 52.25
75%-100% 56.84 54.01 56.49 52.90

100% 56.86 53.83 56.08 52.52

V. CONCLUSION

Aiming at the possible adversarial attacks faced by deep
learning-based AMR models, this paper introduces a radio
signal augmentation method AMSA for improving the adver-
sarial robustness and generalization of the models. The method
combines adversarial training with signal mixing. It makes the
model adversarial robust by adding adversarial samples and
uses data mixing to adjust the data distribution and generate
diverse data. The results demonstrate that AMSA can address
the lack of improvement of models’ adversarial robustness
through traditional signal augmentation methods and alleviate
the degradation of the model’s performance on clean data due
to adversarial training. We believe it can make neural networks
used in real-world applications more reliable and secure. How-
ever, this paper only considers scenarios involving gradient-
based white-box attacks. Exploring how to maintain stable
defense performance against various attacks is an important
research direction for defending against adversarial attacks.
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