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Abstract—The emergence of Industry 4.0 entails extensive
reliance on industrial cyber-physical systems (ICPS). ICPS
promises to revolutionize industries by fusing physical systems
with computational functionality. However, this potential increase
in ICPS makes them prone to cyber threats, necessitating effective
intrusion detection systems (IDS) systems. Privacy provision,
system complexity, and system scalability are major challenges
in IDS research. We present FedSecureIDS, a novel lightweight
federated deep intrusion detection system that combines CNNs,
LSTMs, MLPs, and federated learning (FL) to overcome these
challenges. FedSecureIDS solves major security issues, namely
eavesdropping and man-in-the-middle attacks, by employing a
simple protocol for symmetric session key exchange and mutual
authentication. Our Experimental results demonstrate that the
proposed method is effective with an accuracy of 98.68%,
precision of 98.78%, recall of 98.64%, and an F1-score of 99.05%
with different edge devices. The model is similarly performed in
conventional centralized IDS models. We also carry out formal
security evaluations to confirm the resistance of the proposed
framework to known attacks and provisioning of high data
privacy and security.

Index Terms—Federated learning, industrial cyber-physical
systems, Internet of things, intrusion detection system, symmetric
key.

I. INTRODUCTION

INDUSTRIAL cyber-physical systems (ICPS) aim to es-
tablish remote connections between industrial physical

systems and control systems by incorporating cyber com-
ponents [1]. These systems consist of coupled sensors and
actuators. ICPS provides real-time monitoring, control, and
automation of industrial operations, boosting efficiency and
productivity and enabling diverse and versatile services and
capabilities. These include smart transportation, intelligent
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Fig. 1. ICPS architecture and attack types.

manufacturing, medical systems, and other kinds of indus-
trial automation [2], [3]. Despite advantages, the increased
interconnectivity of ICPS exposes them to significant se-
curity threats [4], such as unauthorized access, denial of
service (DoS) attacks, man-in-the-middle (MITM) attacks, and
data breaches.

IDS plays a crucial role in identifying and alleviating
potential security threats while safeguarding the integrity and
dependability of industrial operations [5]. IDS systems typi-
cally operate by centralized learning and information sharing.
Conventional information-sharing methods dealing with raw
data can impede the viability of centralized learning, particu-
larly when it comes to sensitive data. This constraint is more
pronounced when confronted with the difficulties linked to
sharing raw data with external entities. Sharing raw data can
present challenges due to various data management regula-
tions and privacy considerations [6]. Individuals may also be
hesitant to disclose their information, further complicating the
situation [7].

ICPS fundamentally operates at three layers: Perception,
transmission, and application [8]. Each layer is defined by the
type of devices within it and the related functions that should
be implemented [9]. Based on the functions achieved at each
layer, this paper considers a three-level CPS architecture with
different attack types as shown in Fig. 1.

Federated learning (FL) provides a potential solution to ad-
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Fig. 2. Federated fearning training process.

dressing data privacy and confidentiality concerns by serving
as a decentralized platform for machine learning (ML). FL
allows for the creation of an effective IDS for IoT devices
through training while maintaining privacy. Clients conduct
local training and send their models to a central server,
which combines them to form a global IDS model. The FL
training procedure consists of various stages, such as client
selection, local model training, and global model aggregation,
as illustrated in Fig. 2.

Although FL-based IDS has been widely adopted for its
privacy-enhancing features, it is vulnerable to data leakage
attacks launched by malicious clients [11]. Recent research
shows that a malevolent device can introduce backdoors or
replace the global FL model [12]–[14]. The issue of potential
private user data extraction from gradients in FL has garnered
more attention in the data security and AI ethics field, com-
monly known as the data leakage problem [15]–[17]. It is
becoming more and more crucial to tackle possible security
risks as the adoption of FL-based IDS is growing in popularity.
One notable threat is the MITM attack, which presents a
considerable risk to the integrity of FL-based IDS. In this
attack, the attacker strategically places themselves between the
communication channels of the device and the central server,
as illustrated in Fig. 3. The attacker can exploit vulnerabilities
to intercept, manipulate, or infiltrate malicious data and thus
jeopardize the quality and data protection guarantees of FL-
based IDS. Therefore, addressing the potential security threats
is crucial for the success of FL-based IDS in ensuring data
privacy and security.

To address the challenges of safeguarding ICPS, we pro-
pose FedSecureIDS, a novel FL-based IDS. FedSecureIDS
enhances security by enabling multiple distributed entities to
collaboratively train a global intrusion detection model without
sharing sensitive data, thereby preserving data privacy.

Imagine a smart manufacturing factory where FedSe-
cureIDS operates within an ICPS environment. The factory
employs various interconnected devices, including sensors on
machinery, actuators controlling robotic arms, and a central
control system managing the entire production line. During

normal operation, sensors continuously monitor machinery
performance, collecting data on temperature, vibration, and op-
erational speed. Actuators adjust machinery parameters based
on control system commands to ensure optimal performance,
while the control system processes sensor data in real-time,
optimizing operations and preventing potential issues.

In the above scenario, a potential threat could arise when
an attacker attempts an MITM attack to intercept and alter
sensor readings, causing the control system to make incorrect
decisions that could damage machinery or halt production.
FedSecureIDS counteracts such threats through a multi-step
process. First, data is collected by sensors on the factory
floor and continuously sent to local edge devices for initial
processing. Local intrusion detection modules analyze the
data using long short-term memory (LSTM) and convolutional
neural networks (CNN) models to identify any anomalies
indicative of an MITM attack. The local models on each edge
device are periodically updated and sent to the FL Coordinator
on the cloud server. This coordinator aggregates the local
models to update the global intrusion detection model without
accessing raw data, thus preserving data privacy. The updated
global model is then distributed back to the edge devices,
enhancing their capability to detect sophisticated cyber threats.
Upon detecting anomalies, the system triggers alerts to the
control system, which initiates predefined countermeasures
such as isolating affected components and verifying data
integrity through secure communication protocols.

FedSecureIDS ensures resilience and privacy-preservation
by leveraging FL, allowing collaborative training without shar-
ing sensitive data. This approach not only enhances detection
accuracy but also ensures data confidentiality, protecting the
factory’s operations from evolving cyber threats.
A. Motivation

• Motivated by the need to address the existing limitations
of data leakage attacks on FL, our research endeavors to
enhance the security landscape by proposing innovative
countermeasures.

• Our research is driven by the complex threat scenario
in ICPS, where the presence of diverse cyber threats
demands an advanced IDS to effectively tackle challenges
such as denial-of-service, reconnaissance, tampering, ex-
ploitation, and weaponization attacks.

• In ICPS, mobile devices have to operate with limited
computational resources. Our research is prompted by the
imperative for an efficient security model. Thus, we strive
for a lightweight solution to the problem.

• The need to strengthen security systems is brought into
further consideration by the increasing number of MITM
and eavesdropping attacks being reported.

B. Contributions

Our contributions main contributions are as follows:
• We propose advanced countermeasures in the FedSe-

cureIDS model to enhance data protection during FL, ad-
dressing the vulnerabilities associated with data leakage.

• We introduce a novel, FL-based hybrid IDS designed
for ICPS (FedSecureIDS). This model seamlessly in-
corporates diverse components to proficiently identify
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cyber threats, including DoS attacks, reconnaissance at-
tacks, tampering incidents, exploitation attempts, and
weaponization attacks, demonstrating a noteworthy in-
crease in detection accuracy relative to centralized ML-
based methods.

• Our study introduces a lightweight and self-validated
symmetric session key exchange algorithm tailored for
resource-constrained devices. The algorithm effectively
produces session keys that ensure secure communication
while meeting these constraints.

• Our research develops a robust cryptographic algorithm
that uses self-authentication and a pre-shared session key
with advanced encryption standard (AES) to ensure se-
cure communication and data confidentiality, effectively
countering eavesdropping.

• With the help of BAN logic and the AVISPA tool, we
provide both formal and informal security proofs for our
proposed model.

The rest of the paper is structured as follows. Section II
delivers a comprehensive review of existing research on IDS
designed for ICPS, with a particular focus on IDS tech-
niques leveraging FL. Section III outlines the system model
assumptions and the threat model employed in this work.
Section IV then delves into the methodology underpinning
the proposed framework. The experimental setup is outlined
in Section V, detailing the implementation of our proposed
model, the datasets used for evaluation, and the metrics
employed to assess the system’s performance. A thorough
security analysis of this framework is subsequently provided
in Section VI. Section VII presents the experimental results
and a discussion of their implications. Finally, Section VIII
concludes the paper by summarizing the key findings and
outlining potential avenues for future research.

II. RELATED WORKS

A. Anomaly-based IDS

In their work [18], the authors proposed a framework for
identifying anomalies in cyber-physical systems (CPS). This
framework involves a group of agents representing virtual
digital shells of assets in the production line. These agents
collect data from the assets, and a central agent, functioning
as middleware, employs a learning algorithm to detect anoma-
lous behaviour in the others. The framework is specifically
designed for tasks related to anomaly identification, where
intelligent agents oversee real-time data collection, analysis,
and processing, while ML models, termed predictive models,
are integrated into the multi-agent system to forecast the
typical state of the cyber-physical system. The study presented
in [19] introduces a methodology for detecting anomalies in
cyber-physical systems through the application of long short-
term memory recurrent neural networks (LSTM-RNN). By
employing LSTM-RNN to forecast data series, the approach
addresses the temporal nature of anomalies and cyber-attacks,
allowing for the correlation of time-series data over intervals.
The model characterizes normal behaviour, serves as a pre-
dictor, and integrates the cumulative sum approach to identify

anomalous behaviour with a low false positive rate. This
method is beneficial in real-world CPS applications, where
instances of unusual behaviour are infrequent. Notably, the
research leverages a modest dataset collected from a single
component of the system for training and validation, a practical
consideration dictated by limited resources and infrastructure.

In the research detailed in [20], the authors put forth a
fresh perspective on identifying replay attacks within cyber-
physical systems. This involves a comprehensive assessment
of system stability coupled with the implementation of lossless
watermarking techniques. Each agent in this framework is
equipped with both a local estimator and an anomaly detector.
The paper also introduces a method for detecting adversaries
by incorporating a watermarked control approach, distributing
the watermarking signal among the various agents in the
network. However, it’s noteworthy that the incorporation of
watermarked signals has been observed to potentially diminish
the overall performance of the network.

In [21], [22] researchers proposed an ML-based approach
for detecting and mitigating communication threats in cooper-
ative autonomous car applications. The methodology revolves
around constructing models with the ability to comprehend
typical behaviour patterns linked to benign V2X communica-
tion. It aims to discern abnormal behaviour, enabling the iden-
tification of potentially hazardous communication instances.
The method is utilized in various cooperative autonomous
vehicular situations, such as platooning, cooperative adaptive
cruise control, intelligent intersection detection, and dynamic
cooperative route management. However, the architecture only
takes into account attacks that are carried out through a single
communication channel.

To detect potential dangers of fake data injection in smart
grid networks, the authors of [23] put up a real-time detection
method. An analytical model was created using the adaptive
CUMSUM algorithm to build a detection system that adheres
to essential criteria for ensuring performance assurance. This
method is capable of detecting fake data attacks even in
cases where the probability density function post-change is not
known. In [24], the authors described an alternative approach
where a real-time detection method was implemented to com-
bat denial-of-service (DoS) attacks. The fuzzy IDS effectively
distinguishes between regular and malicious network traffic
under uncertainty. The system demonstrates an impressive
detection rate of 99.9% over a dataset of over 5 million
test sessions, with a low false alarm rate of approximately
1600. The method is based on a limited number of features to
identify DoS flooding attacks. In [25], a comprehensive anal-
ysis of distributed denial of service attacks (DDoS), intrusion
tolerance, and various mitigation techniques is provided. The
paper then explores the impact of DDoS attacks on cloud-
based services, highlighting how attackers can leverage the
distributed nature of the cloud to amplify the effects of their
attacks. Additionally, the authors examine the characteristics
of different types of DDoS attacks, such as the use of botnets
to generate large volumes of traffic. The core of the paper
focuses on evaluating various mitigation techniques, including
rate limiting, traffic filtering, and intrusion tolerance strategies.
The authors provide a detailed assessment of the strengths and
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weaknesses of each approach due to a need for multifaceted
defense against the evolving threat of DDoS attacks.
B. FL for Anomaly-based IDS

To distribute the workload and improve scalability, FL uses
a server-client design that allows computing at both ends.
Within this paradigm, [26] presents FL models for IDS that use
multi-layer perceptron (MLP) and autoencoders. The efficacy
of these frameworks was assessed by conducting tests with FL,
distributed, and centralized systems and then by using rigorous
statistical analytics.

A unique mitigation architecture called FLEAM, which
leverages FL, was presented in [28] to combat massive
DDoS attacks within the context of the industrial Internet
of things (IIoT). Through the integration of FLEAM, fog
computing, and cloud computing, the workload is distributed,
which increases the effectiveness of the mitigation process.
Each fog node in the network receives a pre-trained model,
does local retraining, and then uploads the modified model
parameters to the cloud as part of the operational workflow.
In the research conducted by [29], a semi-supervised learning
technique grounded in disagreement is introduced for collab-
orative IDS, employing FL to address limitations related to
data size. Iterative model updates are made following each
labeling phase in the suggested method, which entails training
three classifiers and using a majority vote mechanism to give
labels to unlabeled data. In terms of prediction accuracy and
false alarm minimization, comparative evaluations show that
their approach performs better than supervised ML techniques.
A unique technique for deep learning (DL) training was
suggested by the researchers in [30]. This approach utilized
a privacy-preserving federated architecture, which capitalized
on the heterogeneity of real-time intrusion data. Researchers
in this study used a method called MT-DNN-FL to identify
outliers using the same model and data. By using this method,
it became easier to pinpoint and classify VPN traffic. This
method not only lowered the amount of energy required for
communication and the expenses associated with training, but
it also demonstrated superior performance in comparison to
other single-task learning methods.
C. Cryptographic based IDS

The most efficacious measures for countering a diverse
range of threats, including MITM attacks, unauthorized ac-
cess to agents, provenance attacks, and tampering with agent
logs, are represented by the encryption and authentication of
sensitive data. In [31], a message-oriented middleware was
proposed to improve communication performance in multi-
agent systems. The authors introduced a new component called
the certification authority service, which generates certificates
for agents to authenticate their identities and securely trans-
mit messages in the architecture for cyber-physical systems.
However, the technique falls short of addressing the con-
cern regarding an agent’s discretion in placing trust in a
particular message sender, thereby leaving room for potential
vulnerabilities. In [32]–[38], the researchers used asymmetric
key-based cryptosystems to provide security services such as
privacy-preservation and data confidentiality. Most of these
researches used asymmetric key-based Pallier cryptosystems

for data confidentiality. Authentication services were also pro-
vided by asymmetric key-based cryptosystems. This results in
increased computation and communication costs, making these
cryptosystems heavyweight for smart devices. In asymmetric
cryptosystems, the size of the secret keys is large, increasing
key generation time.

Our proposed model, FedSecureIDS, differs from existing
FL for anomaly-based IDS and cryptographic-based IDS in the
following ways. Traditional FL models often rely solely on a
complex single architecture, such as an MLP, an autoencoder,
or some other semi-supervised learning method that faces
challenges like data leakage and high computational over-
head. In contrast, FedSecureIDS integrates CNNs, LSTMs,
and MLPs to enhance detection accuracy while utilizing a
lightweight symmetric cryptographic approach to ensure data
privacy. Also, unlike conventional cryptographic-based IDS
that rely on symmetric key systems with high computational
costs due to complex key exchange algorithms, FedSecureIDS
utilizes a lightweight symmetric key exchange mechanism to
deliver security services, encompassing authentication and data
confidentiality. Symmetric key cryptosystems utilize smaller
secret keys in comparison to asymmetric keys while ensuring
an equivalent level of security. As per the National Institute of
Standards and Technology (NIST), the strength of a 128-bit
symmetric key is deemed comparable to that of a 3072-bit
asymmetric key [39]. This approach thus reduces overhead and
delivers robust security for resource-constrained devices within
ICPS. The robustness of the symmetric key-based cryptosys-
tem for mobile server-client communication has been formally
and informally proved against several known attacks [40].

Table I presents a comparative analysis of the different IDS
methodologies cited above, detailing their core techniques and
strengths. This systematic comparison highlights the trade-offs
and effectiveness inherent in various IDS approaches.

III. SYSTEM MODEL, ASSUMPTIONS, AND THREAT
MODEL

The system model, assumptions, and threat model used in
our proposed collaborative learning framework for ICPS are
presented. The system model includes edge devices, cloud
servers/aggregators, and a registration authority (R.A.) We
assume that the edge devices have partial trustworthiness and
that the R.A. and cloud servers are completely trustworthy.
The threat model accounts for potential risks in ICPS and
FL, including attacks such as MITM attacks, DDoS attacks,
eavesdropping, membership inference attacks, and unintended
data leakage attacks.

A. ICPS based System Model

We describe both the ICPS and our proposed FL frame-
work within ICPS. The ICPS model involves remote users,
IoT-based sensor nodes, gateways, and access points col-
laborating to ensure secure data exchange, thereby op-
timizing industrial operations. Our FL framework, illus-
trated in Fig. 4, strategically integrates edge devices, cloud
servers/aggregators, and the R.A. This tailored system model
addresses inherent challenges and risks in FL within ICPS,
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TABLE I
COMPARISON OF VARIOUS IDS APPROACHES.

Study Approach Key techniques Strengths Limitations
[18] Anomaly-based IDS Multi-agent system Real-time data collection

and analysis, adaptability
Limited to specific types of
anomalies, potential
scalability issues

[19] Anomaly detection LSTM RNN Low false positive rate,
effective in sequential data
forecasting

Requires large datasets for
optimal performance,
training complexity

[20] Replay attack detection Stability analysis,
watermarking

Robust against replay and
other forms of attack

Potential performance
degradation from
watermarking,
implementation overhead

[21] Signature-based IDS Pattern matching High detection rates for
known threats

Ineffective against zero-day
attacks, dependence on
signature updates

[22] Hybrid IDS ML and rule-based
methods

Combines the strengths of
both techniques for
improved detection

Higher computational cost,
configuration complexity

[23] FL for IDS Homomorphic encryption Strong privacy guarantees,
decentralized model
training

High computational and
communication overhead,
potential bottlenecks

[26] FL for IDS MLP, autoencoders Superior accuracy
compared to centralized
systems, data privacy

Scalability not addressed,
communication efficiency
could be improved

[27] Mitigation of DDoS attacks FLEAM architecture Significant reduction in
mitigation delay, enhanced
accuracy

Complexity in integration
with existing systems,
requires robust
infrastructure

[28] Blockchain-based IDS Distributed ledger
technology

Provides transparency and
traceability for IDS actions

Overhead in terms of
latency and resource usage,
complex implementation

[29] Semi-supervised learning Disagreement-based FL Better performance than
traditional supervised
methods in low-label
scenarios

Relies on adequate initial
labeled data, might not
generalize across domains

[30] Federated reinforcement
learning

Reinforcement learning
frameworks in a FL setting

Adaptive learning in
dynamic environments

Complexity in policy
convergence, high
communication costs

[31] Cryptographic-based IDS Asymmetric key
cryptosystems

Strong privacy and data
confidentiality

High computational costs
and key management
complexity

Proposed model
(FedSecureIDS)

Lightweight federated deep
IDS

CNN, LSTM, MLP Enhanced detection
accuracy,
privacy-preserving
mechanisms, lightweight
cryptography

Scalability in large
networks not explicitly
addressed, further testing
needed in diverse
environments

specifically focusing on privacy and security threats, providing
a holistic approach to a solution.

1) Edge devices: The proposed FL framework consists of
several edge devices, each representing a node that par-
ticipates in the FL process. These devices collect local
data from their respective sensors and use it to build a
local machine-learning model.

2) Cloud server: The FL framework incorporates a cloud
server with dual functions. In the beginning, it will ini-
tialize the parameters of the global model and then send
them to the edge devices. Next, it takes the parameters
that were provided by the edge devices and combines
them until the model converges. After that, it sends the
updated model back to the edge devices. These operations
play a pivotal role in constructing an IDS model through
FL.

3) Registration authority: Besides its role as a central aggre-
gator, the cloud server serves as a registration author-
ity that maintains a database of registered agents and
their associated information. The R.A. facilitates secure

communication between registered agents by distributing
symmetric session keys. It is responsible for verifying the
authenticity of registered agents and establishing a secure
communication channel between them.

B. Assumptions

Our model operates under the following assumptions:
Firstly, the cloud server is regarded as a trustworthy entity. The
R.A. is assumed to be fail-safe in ensuring that communication
between edge devices and the cloud server is safe and reliable.
The edge devices are regarded as somewhat trustworthy,
suggesting that they will follow the established protocol but
may also have an interest in the data resources of other edge
devices.

C. Adversary Model

The Dolev-Yao adversary model [46] was chosen for this
research. In computer and network security, the Dolev-Yao
adversary model is a popular formal model that describes the
actions of an attacker who controls the entire communication
network. In the Dolev-Yao model, the adversary is assumed
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Fig. 3. System model.

to be an attacker who can intercept, modify, delete, and
insert messages in the communication channels between the
participants of the protocol. In addition to this, it is presumed
that the adversary possesses a limitless amount of processing
power and is familiar with the whole protocol specification.
The Dolev-Yao model operates under the presumption that
messages are sent via a secure channel that is guarded by
encryption methods. In an MITM attack, the adversary may
gain access to encryption keys by intercepting the commu-
nication between parties or through other means, allowing
them to decrypt and potentially manipulate the exchanged
data. The adversary can also eavesdrop on the communication
channels and observe the behaviour of the participants. The
Dolev-Yao model is widely used in the analysis of security for
cryptographic protocols, providing researchers with a means
to identify and address potential vulnerabilities before they
can be exploited by real attackers. Furthermore, we have
assumed that the adversary would be unable to retrieve the
data contained in the server’s database due to the secure nature
of the R.A.’s database.

IV. METHODOLOGY

A. Data Collection and Pre-processing

In our study, we utilized the X-IIoTID dataset to ensure the
generalizability of our proposed methods. The dataset includes
various industrial-related data, enabling us to validate our
FL-based IDS across different industrial settings with diverse
processes, devices, and network configurations.

For model training and testing, we partitioned the dataset
into 80% for training and 20% for testing. The training data
was evenly distributed among the smart devices using it to
train their local models. To address variations in data strengths

Fig. 4. Secure federated learning work flow diagram.

across clients, a scaling factor was incorporated into the
federated framework to ensure fair consideration of all client
data while accounting for uneven data distribution.

We employed a multi-stage data preprocessing pipeline to
ensure the quality and consistency of the dataset used to train
and evaluate FedSecureIDS. This involved addressing missing
values, handling categorical features, normalizing numerical
features, and addressing class imbalance. To prepare data for
ML algorithms, all features must be converted into numerical
values. One approach to accomplish this involves label en-
coding for features in string format. Once the label encoding
is done, the next step is to use the min-max normalization
technique to normalize all feature values [47]. This technique
scales the minimum feature value to 0 and the maximum
value to 1. Normalization ensures that all feature values fall
within a similar range, aiding in faster model convergence.
After normalization, the feature values lie within a range of
0 and 1. In the proposed model, the pre-processing unit serves
as the first stage, where the data is transformed for the input
layer. This approach enhances the robustness and applicability
of our IDS framework, ensuring its effectiveness in real-world
industrial scenarios. These preprocessing steps are in line with
established practices in [48]–[50].

B. Proposed FedSecIDS Framework

The proposed framework, FedSecureIDS, is designed to
enhance cybersecurity within ICPS by leveraging FL to de-
velop a privacy-preserving IDS. This FL-based IDS enables
multiple distributed entities to collaboratively train a global
anomaly detection model without sharing sensitive data, ensur-
ing robust data privacy. The framework comprises several key
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components, including data collection agents, local intrusion
detection modules, an FL coordinator, and a security manager.
The proposed framework comprises two integral components.
Firstly, we develop an FL-based IDS capable of addressing
various types of attacks, including DDoS attacks. In the
second phase, we focus on designing a robust communication
protocol to ensure secure and resilient data exchange within
the system. This dual-phase approach aims to enhance the
overall cybersecurity posture by proactively detecting and
mitigating potential threats, coupled with the implementation
of a secure communication infrastructure. The complete FL
framework technique, which permits collaborative learning
among multiple agents, is described in Algorithm 1. The
system enables the building of a strong and comprehensive FL-
based IDS model that is trained on numerous data resources.
This approach enhances the performance of DL models and
enables the building of a highly effective IDS. The proposed
privacy-preserving FL framework comprises several phases, as
shown in Fig. 4, and details are described below.

1) In the first phase of the proposed system, the registered
agents connect to the cloud server which also works as a
registration authority. The agent first exchanges a session
symmetric key with the server described in Section IV-E.
Then, in order to confirm the validity of the registered
agent, an authentication procedure is carried out on both
ends using a pre-shared session key. If the authentication
completes and the connection is established, an agent will
send or receive secure model parameters to the server.
If the authentication fails, the connection immediately
terminates.

2) The cloud server sends the first set of model parameters,
which include batch size, learning rate, and loss function,
to the edge devices. At the same time, the server receives
data size information from every edge device to determine
their respective contribution ratios. The weight given
to the gradient updates from each edge device during
model training is determined through the utilization of
the contribution ratio.

3) The IDS model parameters acquired from the cloud server
are utilized to train the IDS model using the local dataset
Di from each edge device En. The IDS model utilized
for training is a hybrid CNN, LSTM, and MLP model, as
detailed in Section IV-D. Algorithm 1 explains the stages
for local model training, gradient calculation, and upload-
ing to the cloud server. The technique also outlines the
cloud server’s mechanism for collecting model gradients
and updating global model parameters.

4) The edge devices in the suggested architecture use sym-
metric key encryption to secure the model’s gradients Wr

after training it on their local data Di. It is represented
by Wr that the model’s gradients are in the Rth round,
following training at edge device En. The whole global
model is then constructed by aggregating the generated
encrypted gradients E(Wr) in the cloud.

5) Each local device updates its model and sends it back to
the central server once training is complete. The server
then compiles all of the modifications and uses them to

create a new global model.

Algorithm 1 Federated learning algorithm

1: Input: Number of clients devices En, number of training
rounds r, learning rate η

2: Initialize global model w0

3: for each round r = 1, · · ·, R do
4: Sample a subset Sr of devices from En

5: for each client i ∈ Sr do
6: Rx global model wr−1

7: Initialize local model wi,r = wr−1

8: for each local epoch j = 1, · · ·, E do
9: Sample a mini-batch of data Bi,j

10: Update local model: wi,r=wi,r−η∇fi(wi,r, Bi,j)
11: end for
12: Tx local model wi,r to the server
13: end for
14: local model Aggregation: wt =

1
|Sr|

∑
i∈Sr

wi,r

15: end for
16: Output: Final global model wR

C. Federated Learning Algorithm

Algorithm 1 assumes a synchronous, non-IID setting where
each client has access to a local dataset Di, and fi(wi,t, Bi,j)
is the loss function for client i at round t with local model wi,t

and mini-batch Bi,j . At each round, the algorithm employs
random selection to choose a subset of clients, and each client
conducts local training for a predetermined number of epochs
E. Following this, the updated model is transmitted back to
the server for aggregation. The final global model is generated
by the aggregation process, which involves averaging the local
models of the selected clients after executing T rounds in the
algorithm.

D. Proposed Deep Learning-based Intrusion Detection Model

This section presents the introduction of the proposed
FedSecureIDS model, which combines elements from CNN,
LSTM, and MLP neural networks to form a hybrid architec-
ture. Before finalizing this particular ML model, we conducted
comprehensive testing and evaluation of multiple DL method-
ologies, including CNN, LSTM, and MLP. The proposed
model comprises four distinct units, i.e., a pre-processing
unit, CNN unit, LSTM unit, and MLP unit. The integration
of CNN and LSTM networks enables precise extraction of
time-series patterns in network traffic data, which is vital for
ensuring robust IDS. The success of the model can largely
be attributed to CNN’s effective capability in extracting high-
level feature representations. The exceptional performance of
this ML model has led to its selection as the IDS model within
the proposed FL architecture, which aims to identify cyber
threats in ICPS. Each constituent element of the proposed FL
model will be thoroughly explored and analyzed in subsequent
sections of the research paper.

1) CNN unit: The CNN unit’s architecture in the proposed
IDS model is the focus of this section. CNNs are employed
for feature extraction due to their proven effectiveness in
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Fig. 5. CNN, LSTM, and MLP architecture diagram.

identifying spatial hierarchies in data. They can automatically
and adaptively learn spatial hierarchies of features from input
data, making them highly suitable for analyzing network traffic
data to detect anomalies indicative of cyber threats. According
to [51], the CNN unit consists of five components: An input
layer, a convolutional layer, a pooling layer, a fully con-
nected (FC) layer, and an output layer. The CNN architecture
in this study was customized to meet the specific needs of
the use case. This involved the utilization of convolutional
layers, pooling layers, and FC layers, as visually depicted in
Fig. 5. The convolutional layer plays a pivotal role in the
primary task of extracting features from the input data. It
consists of multiple convolution kernels, each with a weight
and deviation coefficient. During the convolution process,
the weight coefficient and deviation quantity for each kernel
are denoted as wk and ak, respectively, and the input of
convolutional layer k is represented as Yk−1 in (1).

Yk = f(wk ⊕ Yk−1 + ak). (1)

In the proposed CNN architecture, the convolutional layer
is responsible for feature extraction from the input data. It
is comprised of multiple convolution kernels, each with a
corresponding weight and deviation coefficient. The operation
of the convolution kernel k is represented by Yk, and it
applies the activation function f(Y ), where RELU is chosen
in this study as shown in (2). This activation function has
advantages over others, such as sigmoid and tanh in terms of
easy derivation, faster model training, and preventing gradient
disappearance. The output result of the convolutional layer is
obtained through regular sweeping of the input data by the
convolution kernels to extract essential information.

ReLU(Yk) =

{
Yk, (Yk > 0)

0, (Yk ≤ 0)
(2)

The pooling layer in a CNN is used to reduce the complexity
of the network by downsampling and removing unnecessary
information. In this research, max pooling was employed as
the selected type of pooling due to its capability of preserving
essential information by selecting the highest value within

a specific area to represent that area. Max pooling can be
expressed as in (3):

G(m) = Max(gm1 , gm2 , · · ·, gmk )T , (3)

In the max pooling operation, G(m) represents the output
result of the pooling region k, and gmk denotes the element
of the pooling region k. In the CNN model used for this
research, the FC layers act as classifiers to evaluate the features
extracted by convolutional and pooling layers. These features
are then mapped to a hidden layer space and then again to a
sample-marker space. To prevent the model from becoming too
specialized during training and performing poorly on unseen
data, a dropout operation is added to the FC layer. Dropout
randomly removes some of the neurons to create a more
generalized model.

2) LSTM component description: The LSTM network
stands out in ML for its efficacy in handling sequential data,
overcoming the challenges of gradient vanishing or exploding
found in traditional RNNs. Thanks to its memory function,
LSTM units adeptly retain both long-term and short-term in-
formation. Integral to this architecture are three gate structures:
Forget, input, and output gates, which manage the retention or
discard of information. The forget gate, particularly significant,
determines the extent of information to discard based on the
previous hidden state and current input, generating a value
between 0 and 1, indicating the amount of information to retain
or discard from the current cell state.

gt = σ(Wg′ [ht−1, xt] + bg′). (4)

In (4). gt represents the gate value at time step t, σ denotes
the sigmoid function, Wg′ and bg′ are the weight and bias
parameters, respectively. ht−1 is the previous hidden state, and
xt is the current input.

The input gate gt is pivotal in LSTM networks for deter-
mining how to update the cell state based on new input data. It
undergoes two main steps: Firstly, it assesses the significance
of information to retain or discard using the sigmoid function,
as depicted in (5). Secondly, it generates alternative informa-
tion to adjust the cell state via the hyperbolic tangent function,
as illustrated in (6). The cell state is then updated from its
previous state Ct−1 to Ct by considering the current input gate
it and the candidate values C̃t. This update involves discarding
irrelevant information from the previous state and integrating
relevant information from the current candidate state, as shown
in (7).

it = σ(Wi′ [ht−1, Xt] + bi′) (5)

Ct = tanh(Wc′ [gt−1, xt] + bc′) (6)

Ct = ft ∗ Ct−1 + it ∗ C̃t (7)

In these equations, Wi′ and bi′ represent the weight and bias
parameters for the input gate, respectively. Similarly, Wc′ and
bc′ denote the weight and bias parameters for the candidate
cell state. The current time step’s forgotten gate is labeled as
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ft, while the input gate is denoted by it, and the candidate cell
state is represented as C̃t. The forget gate primarily discards
specific information from the previous cell state, whereas the
input gate integrates new candidate values and updates relevant
information. Additionally, the output gate in an LSTM neural
network serves as both an input for the subsequent cell state
and a key determinant in establishing the final output based
on the current cell state. A fundamental role of the output gate
is to utilize the sigmoid function to identify which portion of
the cell state should be outputted. Moreover, the final output
is determined by the content identified by the output gate and
involves the utilization of the hyperbolic tangent function. The
equation for the output gate, denoted as (8), is presented as
follows:

gt = σ(Wo′ [ht−1, xt] + bo′), (8)

ht = gt ∗ tanh(Ct). (9)

Additionally, the updated hidden state ht, indicated by (9),
is computed by element-wise multiplication of the output gate
value gt and the hyperbolic tangent of the cell state Ct.

LSTMs are chosen over other RNNs due to their capability
to capture long-term dependencies and temporal patterns in
sequential data without suffering from the vanishing gradient
problem. This makes LSTMs particularly effective for rec-
ognizing patterns over time, which is crucial for identifying
complex attack behaviours in network traffic.

3) Multilayer perceptron layer unit: The final component
of the proposed model MLP is due to their robust classification
capabilities. They can learn complex mappings from input
features to output classes, making them suitable for distin-
guishing between normal and malicious network activities.
MLP unit includes a dropout layer added between the dense
layer and the output layer to counteract overfitting. The LSTM
output, denoted as O in (10), serves as input to the MLP
unit, undergoing processing as follows, integrating the dropout
layer:

M = Dense(O), (10)

D = Dropout(M), (11)

Y = Output(sigmoid(D)). (12)

In (11), the output of the dropout layer is represented as
D, while Y denotes the output of the MLP with dropout, as
shown in (12). Considering the predicted class output can be
either ”attack” or ”normal,” the sigmoid function is applied to
pass the output of the MLP with dropout to the output layer.
The loss function for the proposed ML model is binary cross-
entropy, expressed in (13):

η = − 1

B

1∑
i=0

ti log t̂i + (1− ti) log
(
1− t̂i

)
. (13)

In the proposed IDS model, edge devices labeled as En train
local models on their respective local data Dn. During each

Algorithm 2 Secure symmetric key exchange

Require: S: Variable storing an initially 128-bit size value.
Server’s stored device identity (HIDD) and secret value
(HSV ).

1: The device sends its identity (HIDD) to the server.
2: if HIDD matches the stored identity then
3: The server generates two secret values R1 and R2

and sends them securely to the device as X∗ and Y ∗

respectively.
4: The device generates a random number RD.
5: if Server’s random number RS = 0 then
6: Go to step 4.
7: end if
8: Compute D = (RD ×R1) +R1.
9: Compute RD = (D ×R2) +R1 +R2.

10: Send RD to the server.
11: Calculate rD = RD − (R1 +R1).
12: Calculate RD = (rD/(R1 ×R2))− 1.
13: end if
14: The server generates a random number RS .
15: if RS = 0 then
16: Go to step 13.
17: end if
18: Compute D = (RS ×R1) +R1.
19: Compute RS = (D ×R2) +R1 +R2.
20: Send RS to the device.
21: Both server and device repeat steps 11 to 12.
22: Compute the shared key as KDS = (RD ⊕RS) mod S.

23: if KDS = 0 then
24: Go to step 4.
25: end if
26: if Identities do not match then
27: Terminate the connection.
28: end if

communication round, an edge device receives a ciphertext C,
which is decrypted to obtain new gradients ŵr. These gradients
are then used to update the local model weights W r. This
iterative process continues until convergence is achieved. The
model parameters are adjusted using the binary cross-entropy
loss function, as both predicted and target values evolve, where
B denotes the batch size, ti represents the target value, and t̂i
represents the predicted value.

E. Secure Communication Protocol

This section describes the secure communication protocol
designed to establish and maintain secure communication
between the cloud server and a variety of devices, employing
symmetric session keys described in Algorithm 2. The protocol
follows several stages: Device registration, login, secret key
generation, and mutual authentication, as detailed below.
1) Device registration phase: Each authorized device must

undergo registration with the R.A. Throughout this reg-
istration process, the R.A. assigns a distinct identity,
denoted as IDD, to each device and generates a con-
fidential secret value. For security purposes, the device’s
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hash-based identity, denoted as HIDD, is computed as
outlined in (14), while the secret value, termed HSV , is
determined according to the procedure specified in (15).

HIDD = hash(IDD) (14)

HSV = hash(IDD||MacAddress) (15)

The server stores the device’s confidential credentials in
its database. If a device tries to register with an identity
already on record, the attempt is rejected.

2) Login phase: During the login phase, the device sends
HIDD to the server for validation. After receiving the
login details from the remote device, the server looks for
the corresponding HIDD in its database. If HIDD is
found in the database, the server retrieves the associated
HSV for that device. Next, the server generates two large
random numbers, R1 and R2. Using (16) and (17), the
server computes X∗ and Y ∗, respectively, and sends them
to the remote device.

X∗ = (R1 ⊕HSV ) (16)

Y ∗ = (R2 ⊕HSV ) (17)

The device obtains the values of X∗ and Y ∗ from the
server and calculates R1 and R2 using (18) and (19)

R1 = (X∗ ⊕HSV ) (18)

R2 = (Y ∗ ⊕HSV ) (19)

3) Key exchange phase: The system produces a 128-bit ran-
dom number RD. It then multiplies RD by R1, adds R1

to the product, and calculates the final result, as shown
in (20).

ResD = (RD ∗R1) +R1 (20)

The device calculates a final result and sends it to the
server as FRD. It is important to note that FRD, the
output value, does not directly reveal the key. Therefore,
if a hacker intercepts FR D, they will not be able to
obtain the key.

FRD = (ResD ∗R2) +R1 +R2 (21)

Upon receiving the final result FRD from the device,
the server infers the hidden number RD by utilizing both
numbers R1 and R2 as shown in (21). Then, the server
calculates the difference between R1 and R2, yielding
ResS as outlined in (22).

ResS = FRD − (R1 +R2) (22)

The server extracts RD, as presented in (23)

RD = (ResD/(R1 ∗R2))− 1 (23)

When both parties possess shared secret numbers, de-
noted as RD and RS , each side performs a bitwise
XOR operation between RD and RS , followed by a
modulus calculation with respect to the variable M . The
resultant value, referred to as the final session key KS ,
is clandestinely derived on both ends. This process is

illustrated in (24), where M represents the larger value
of 128 bits. Initially, it limits the size of the key to 128
bits. We can increase the size of the key easily.

Ks = (RD ⊕RS) Mod M (24)

4) Authentication phase: After successfully exchanging sym-
metric session keys, the cloud server, and registered agent
will authenticate their identities to prevent MITM attacks.
Both parties utilize HMAC with a symmetric session
key for authentication. The HMAC calculation involves
using their IP addresses, combining them with random
numbers and symmetric session keys, as illustrated in (25)
and (26), and exchanging the results. SHA-2-256 hashing
algorithm is employed to produce HMAC, generating
a 64-bit hexadecimal fixed-length code. HMAC values
are computed on both ends for verification against the
received value. Authentication is deemed successful if
the calculated and received HMAC values match on both
ends. In case of a mismatch, the connection is promptly
terminated. In equation (25) and (26), IA represents the
IP address.

HMACD/A = SHA− 256(IAD/A||ND/A,KS) (25)

HMACS/A = SHA− 256(IAS/A||NS/A,KS) (26)

5) Encryption/decryption phase: After mutual authentication
on both sides, the cloud server and agent proceed to
exchange encrypted data. The AES algorithm is used for
encryption and decryption to achieve this. AES works on
a block-by-block basis, with each block being 128 bits
in size. The encryption and decryption procedures follow
the equations presented in (27) and (28) correspondingly.

MEnc = AES(PlainText,KS) (27)

MDec = AES(MEnc,KS) (28)

Each agent securely transmits encrypted data to the cloud
server. Upon receiving the encrypted data, the cloud
server decrypts it using the symmetric session key. Subse-
quently, it aggregates all the data and securely sends it to
all agents in an encrypted format. This approach ensures
that the data remains protected against any potential
adversary.

V. EXPERIMENTAL SETUP

In this section, we detail the experimental setup used
to evaluate the effectiveness and performance of our pro-
posed FedSecureIDS scheme within the context of a privacy-
preserving FL-based IDS. The evaluation focuses on several
key aspects, including the implementation details, the datasets
employed, and the metrics used for performance assessment.
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A. Dataset Description

The X-IIoTID dataset, comprising 68 attributes related to
network traffic and system activities, was utilized to eval-
uate the proposed framework. It covers data on nine types
of attacks, including reconnaissance, weaponization, lateral
movement, C&C, tampering, RDoS, exfiltration, and crypto-
ransomware. The diversity and breadth of this dataset sup-
port the generalizability of the proposed framework across
different industrial contexts, as it encapsulates a wide range
of scenarios and potential threats commonly encountered in
industrial environments. However, this research focused solely
on distinguishing between normal requests and attacks by
classifying them under the “attack” category. Future work
will explore methods for categorizing multiple attack types.
The X-IIoTID dataset comprises 820,834 cases categorized
as normal or attack. Among these, 421,417 were labeled as
normal and 399,417 as attacks.

B. Implementation Detail

The FL-based IDS model presented in this study was
developed using TensorFlow, an open-source Python library
for DL, and the Keras API. The implementation and evaluation
of the framework were conducted on a system with a 4-core
CPU, 16 GB RAM, and 512 SSD using Python 3.0.

C. Evaluation Metrics

Four common evaluation metrics, classification accuracy,
precision, recall, F1-score, and RoC, were employed to eval-
uate the efficacy of the suggested framework. These metrics
depend on values like true positive, true negative, false posi-
tive, and false negative.

Accuracy =

(
CP + CN

CP + CN + IP + IN

)
(29)

Recall =
(

CP

CP + IN

)
(30)

Precision =

(
CP

CP + IP

)
(31)

F1-score = 2×
(

Recall × Precision
Recall + Precision

)
(32)

In (29) to (32):
- CP represents the count of true positive predictions.
- CN represents the count of true negative predictions.
- IP represents the count of false positive predictions.
- IN represents the count of false negative predictions.
- Accuracy measures the overall correctness of the predictions.
- Recall measures the proportion of actual positive cases that
were correctly identified.
- Precision measures the proportion of positive predictions that
were correctly identified.
- F1-score is the harmonic mean of precision and recall,
providing a balance between the two metrics.

VI. SECURITY ANALYSIS

We demonstrate the robustness of our proposed lightweight
FL-based IDS model through informal and formal security
analysis.

A. Informal Security Analysis

The informal security analysis covers protection against
known attacks like replay attacks, impersonation attacks,
MITM attacks, side-channel attacks, DoS attacks, and perfect
forward secrecy discussed in [40], [45]. Different mechanisms
and standards have been used to protect against known attacks.

B. Security Analysis through AVISPA

For formal security analysis, we utilize the AVISPA tool
based on the Dolev-Yao adversary model. The AVISPA tool
code can be found on GitHub [52]. Validation tests using
OFMC and CL-AtSe were conducted to evaluate the resilience
of our security model against severe assaults. The test results,
shown in Fig. 6, validate the security and efficacy of our
model.

Fig. 6. Security analysis through OFMC and AtSe.

C. Security Analysis through BAN Logic

In this section, we showcase the resilience of our proposed
scheme against known attacks by leveraging Burrows-Abadi-
Needham (BAN) logic. BAN logic, a symbolic logic system
devised for scrutinizing security protocols, is utilized to vali-
date the adherence of a protocol to various security properties.
A comprehensive BAN logic analysis for the user registration
phase of our proposed protocol, complete with equations and
explanations, is provided below:

– Initial assumption:

– Device D places trust in server S.
– Device D selects a distinctive identity HIDD along with

a secret value HSV .
– Utilizing a hash function, both HIDD and HSV are

generated to facilitate secure communication.
– Server S securely stores the confidential credentials of

devices, encompassing device type and serial number.



SOOMRO et al.: LIGHTWEIGHT PRIVACY-PRESERVING FEDERATED ... 643

– Server S authenticates the identity of devices by cross-
referencing the stored data in its secure and protected
database.

– Idealized protocol model:

– Protocol description:

– Formal agreement analysis:

1) BAN logic formal analysis for device registration phase::

– Device D selects a unique identity IDD and a secret value
HSVD.

– Device D computes hash-based identity HIDD =
hash(IDD) and hash-based secret value HSV =
hash(IDD∥PSWD).

Verification of HIDD by server S:
• For verification, device D transmits HIDD to server S.
• Server S cross-references the received HIDD with its

stored database to validate the identity.
• If the identity is confirmed, server S continues; otherwise,

it terminates the connection.
2) Equations and BAN logic examination::
• Initial assumptions (idealization):

– D places trust in {S, KS} security: D | S, KS

– D selects a distinct identity and robust password: D |
{IDD, PSWD}

– D trusts the security of the hash function: D |
hash(IDD)

– S securely maintains user credentials: S | {Secrets}
– S verifies identities using stored data: S | {Verified}

• Idealized protocol model (idealization):
– Device D dispatches HIDD to server S for verifica-

tion: D → S: {HIDD}
– Server S scrutinizes HIDD in its database, confirming

identity: S → D: {Verified}
• Protocol description (formalization):

– Device D assumes server S received HIDD: D | S:
{HIDD}

– Device D assumes server S verified the identity: D |
S: {Verified}

• Formal agreement analysis (inference rules):
– Device D believes server S verified identity with

HIDD: D | S: {HIDD, Verified}
– Server S securely preserves user credentials: S |
{Secrets}

– Server S authenticates identities using stored data: S |
{Verified}

– Device D securely registers with server S: D | S:
{Registered}

3) BAN logic assessment: The device registration phase is
designed to ensure the secure registration of device D with
server S, utilizing a unique identity and a robust password.
server S meticulously validates identities by cross-referencing
with stored data, thereby permitting only authorized individ-
uals to complete the registration process successfully. The

Fig. 7. ICPS DoS attack scenario.

protocol guarantees the precise utilization of the designated
identity and password. This BAN logic formal analysis defini-
tively confirms the adherence of the user registration phase to
security properties, consequently diminishing the likelihood of
unauthorized access. Comparable analyses can be conducted
for additional protocol phases as deemed necessary.

D. Attack Scenarios and Mitigation Strategies

To further illustrate the practical implications of our security
analysis, this section presents detailed scenarios for different
attack types and discusses strategies for mitigating vulnerabil-
ities. These scenarios demonstrate how FedSecureIDS detects
and responds to various threats, reinforcing the findings from
our formal and informal analyses. Due to the constraints of
paper length, we will focus on two critical attack scenarios:
DoS attacks and MITM attacks.

1) DoS attacks: In a DoS attack, an attacker aims to disrupt
the communication channels within an ICPS. As illustrated in
Fig. 7, the attack agent targets the wireless channels between
the control and monitoring center and the actuators, plants,
and sensors. The attacker floods these wireless channels with
excessive traffic, preventing legitimate control signals and
sensor data from being transmitted. Specifically, the attacker
overwhelms the wireless channel from the control and mon-
itoring center to the actuators, making it impossible for the
center to send control commands. Simultaneously, the wireless
channel from the sensors to the control and monitoring center
is flooded, causing a loss of critical sensor data needed for
real-time monitoring and decision-making. This disruption
can result in halted operations, malfunction of the physical
plant, and the control system operating blindly without sensor
updates, potentially causing unsafe conditions or operational
inefficiencies.

To counteract DoS attacks, FedSecureIDS employs a multi-
layered approach combining real-time monitoring, anomaly
detection, and dynamic response mechanisms. Firstly, FedSe-
cureIDS continuously monitors traffic on the wireless channels
using distributed edge devices, collecting and analyzing traffic
patterns to establish a baseline of normal operations. CNNs are
then utilized to detect anomalies in traffic patterns, examining
features such as packet rate, packet size, and traffic volume
to identify abnormal spikes indicative of a DoS attack. Upon
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Fig. 8. ICPS MITM attack scenario.

detecting an anomaly, rate limiting is applied to control the
flow of traffic, ensuring that no single source can overwhelm
the wireless channels, and traffic-shaping techniques prioritize
critical data such as control commands and sensor updates.

2) MITM Attacks: In an MITM attack, an attacker inter-
cepts and manipulates the communication between compo-
nents of an ICPS. As depicted in Fig. 8, the attacker, acting
as a false data generator, positions themselves between the
sensors, actuators, and the control and monitoring center.
The attacker intercepts the data transmitted from the sensors,
alters it, and sends false information to the control and
monitoring center. Similarly, they intercept control commands
from the control and monitoring center, modify them, and
send erroneous commands to the actuators. This manipulation
can cause the system to make incorrect decisions, leading to
potential damage to the physical plant, inefficiencies, or unsafe
operating conditions.

To mitigate MITM attacks, FedSecureIDS utilizes a com-
bination of real-time monitoring, cryptographic protocols, and
anomaly detection techniques. Firstly, FedSecureIDS imple-
ments end-to-end encryption for all communications between
the control and monitoring center, sensors, and actuators
using strong cryptographic protocols such as transport layer
security (TLS). This ensures that even if an attacker intercepts
the data, they cannot read or modify it without the encryption
keys.

FedSecureIDS also continuously monitors network traffic
for signs of anomalies that indicate an MITM attack. Local
Intrusion Detection Modules on edge devices employ LSTM
networks to analyze temporal patterns in the data, detecting
subtle changes indicative of data manipulation. CNNs are
used to examine features such as packet integrity, timing, and
sequence to identify discrepancies that suggest the presence
of an attacker.

By implementing these strategies, FedSecureIDS effectively
mitigates the risk of MITM attacks, ensuring the integrity
and authenticity of data within the ICPS environment. This
approach enhances the resilience of the system against sophis-
ticated cyber threats, maintaining safe and efficient operations.

TABLE II
PERFORMANCE COMPARISON OF CENTRALIZED AND PROPOSED MODEL.

Type of cyber attack
Centralized model Proposed model

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Denial of service attack 0.981 0.991 0.922 0.948 0.979 0.992 0.951 0.993

Weaponization attack 0.979 0.991 0.934 0.963 0.98 0.991 0.964 0.992

Exploitation attack 0.989 0.993 0.947 0.982 0.986 0.995 0.973 0.997

Tampering attack 0.982 0.998 0.972 0.983 0.984 0.99 0.979 0.992

Reconnaissance attack 0.992 0.994 0.986 0.987 0.991 0.994 0.993 0.994
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Fig. 9. Performance comparison of accuracy vs. number of rounds when edge
devices = 3.

VII. RESULT AND DISCUSSION

A. Performance Comparison with Baseline Studies

The FL-based IDS model’s effectiveness is compared
to other well-known research utilizing FL frameworks
like [41]–[44]. DL models from these studies are replicated
and assessed against the proposed model, as shown in
Figs. 9–14. Experimental results demonstrate the superiority
of the proposed IDS model in accuracy, precision, recall,
and F1-score over current leading models. The FL-based IDS
model’s performance typically enhances as the number of
communication rounds R escalates from 3 to 15, stabilizing
at a sufficiently large R. Figs. 9–11 shows the accuracy of
five federated learning algorithms [41]–[44] and the proposed
FedSecureIDS model across varying rounds R and a number
of edge device En (3, 7, and 15). In all the considered sce-
narios, the proposed method consistently achieves the highest
accuracy, approaching 0.995%, demonstrating superior perfor-
mance and scalability. Algorithm [44] generally ranks second,
maintaining an accuracy of around 0.98%, while [43] shows
moderate performance. Algorithms [41] and [42] exhibit the
lowest accuracy, remaining around 0.975% and below. These
findings are encapsulated in Fig. 15, which presents the same
results in a bar graph format, reinforcing the superior per-
formance of the proposed method. Similarly, for the F1-score,
the proposed FedSecureIDS again leads, indicating its superior
precision and recall, as shown in Figs. 12–14. This illustrates
that with 3, 7, or 15 edge devices, it exhibited slight variation
in F1-scores, which evidences its robustness. An algorithm
in [44] remains the second-best performer, while [43] demon-
strates moderate results. Algorithms [41] and [42] exhibit the
lowest F1-scores, reflecting poorer performance.

These findings are summarized in Table III, which presents
the same results in a tabular format, reinforcing the superior
performance of the proposed method. The results of the
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TABLE III
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART RESEARCH PAPERS.

k R
[41] [42] [43] [44] Proposed

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

3

3 0.9622 0.9681 0.9441 0.9561 0.9683 0.9691 0.9454 0.9563 0.9684 0.9686 0.9438 0.9541 0.9778 0.9741 0.9482 0.9812 0.9832 0.9822 0.9574 0.9839

5 0.9625 0.9687 0.9448 0.9558 0.9691 0.9689 0.9461 0.9569 0.9693 0.9708 0.9436 0.9549 0.9801 0.9738 0.9484 0.9811 0.9827 0.9813 0.9577 0.9842
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7
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Fig. 10. Performance comparison of accuracy vs. number of rounds when
edge devices = 7.
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Fig. 11. Performance comparison of accuracy vs. number of rounds when
edge devices = 15.

proposed FedSecureIDS confirm the approach’s its robustness
and adaptability in diverse federated learning setups.

B. Performance Comparison with Centralized Model

This section evaluates an FL-based IDS model for detecting
cyber threats in CPS while preserving data privacy. We com-
pare its performance with a centralized ideal model that has
access to all data. The comparison is shown in Fig. 16 presents
a comparative analysis of detection accuracy between the
centralized approach and proposed FedSecureIDS across five
categories of cyberattacks, i.e., DoS, weaponization, exploita-
tion, tampering, and reconnaissance. Both methods achieve
high accuracy rates, exceeding 0.85 in all categories. However,

3 4 5 6 7 8 9 10 11

Number of Rounds (R)

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

A
cc

u
ra

y

[41] [42] [43] [44] Proposed

Fig. 12. Performance comparison of F1-score vs. number of rounds when
edge devices = 3.
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Fig. 13. Performance comparison of F1-score vs. number of rounds when
edge devices = 7.

the proposed method consistently outperforms the centralized
approach across all attack vectors. This consistent superior
performance of the proposed methodology underscores its
effectiveness in accurately identifying and mitigating a range
of cyber threats, highlighting its potential for enhanced appli-
cation in cybersecurity contexts. These results are presented
in Table II, which includes a detailed comparison of accuracy,
F1-score, precision, and recall for both methodologies across
the five attack categories.

Fig. 17 compares the performance of a centralized learning
model and multiple FedSecureIDS configurations. The area
under the curve (AUC) values indicate the effectiveness of
each model in distinguishing between classes. The centralized
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Fig. 15. Performance comparison of the proposed model with state of art
studies.

model achieves the highest AUC of 0.9429, while various FL
setups, including 3 clients with En = 8 and En = 10, and 10
clients with En = 9 and En = 10, exhibit slightly lower but
comparable AUC values, demonstrating the feasibility of FL
in distributed environments. The centralized model achieves
the highest accuracy with an AUC of 0.9429 due to its
access to a complete, unified dataset. This comprehensive data
exposure allows for robust feature learning. Conversely, the
FedSecureIDS model achieves an accuracy of 0.93, is trained
on subsets of data across clients, and faces challenges such
as non-IID data and limited data per client, slightly reducing
their AUC values. Despite this, FL models maintain strong per-
formance while enhancing data privacy, making them suitable
for sensitive applications in ICPS. FedSecureIDS demonstrates
high performance in detecting known cyber threats, its efficacy
against emerging, sophisticated attacks may vary. Additionally,
environments with constrained computational resources might
face challenges in implementing the model efficiently.

1) Key management analysis: Table IV shows the compar-
ative analysis between the asymmetric key management proto-
cols and our proposed symmetric key exchange protocol. Com-
parison results show that symmetric key exchange protocols
have advantages over asymmetric key management protocols
in terms of key size, key generation time, computation speed,
communication overhead, and security threats.

2) Symmetric and asymmetric cryptography performance
analysis: We compared the performance of asymmetric and
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Fig. 16. Performance comparison of centralized and proposed model under
different attack types.
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Fig. 17. ROC curves for centralized and FedSecureIDS model.

symmetric key cryptographic systems. Results show that our
proposed symmetric key cryptographic system has advantages
over asymmetric cryptographic systems in terms of communi-
cation and computation overheads [53].

3) Operational efficiency and performance analysis: When
we compared the performance of our proposed secure sym-
metric key cryptographic system with other systems in terms
of computation and communication costs, our proposed secure
system showed better performance in terms of communication
and computation costs. We implemented our proposed system
on an industrial NFV-Based IPv6 network and measured the
operational efficiency [45].

VIII. CONCLUSION AND FUTURE WORK

ICPS in Industry 4.0 is highly vulnerable to cyber threats
due to device interconnectivity, making intrusion detection,
and data privacy a significant challenge. This paper proposed
a FedSecureIDS model where multiple smart devices col-
laboratively construct an IDS using CNN, LSTM, and MLP
architectures. Rigorous testing on a real-world CPS dataset
demonstrated the method’s superior performance, achieving
98.68% accuracy, 98.78% precision, 98.64% recall, and a
99.05% F1-score. A lightweight symmetric encryption tech-
nique was integrated to secure communications between smart
devices and servers, ensuring data privacy. The method’s
resilience to well-known cyber attacks was validated through
formal analysis using tools such as AVISPA and BAN logic,
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TABLE IV
COMPARISON OF ASYMMETRIC AND SYMMETRIC KEY MANAGEMENT

PROTOCOLS.

Features [32]–[38] Proposed
Key type Asymmetric Symmetric
Key property Static Dynamic
Key size (bits) 3072 128
Key generation time
complexity

Polynomial Constant

Communication
overhead

Very high Very low

Computation speed Very slow Very fast
Security issues Low Very Low
Encryption / decryp-
tion

Slow Fast

offering strong assurance of effectiveness. Furthermore, infor-
mal security analysis confirmed its ability to mitigate cyber
threats, establishing the framework as a reliable option for
securing ICPS environments.

Several challenges in FL based IDS persist, including vul-
nerability to data poisoning attacks, which necessitate robust
countermeasures. Enhancing model training efficiency and
managing communication overhead through client clustering
is crucial. Additionally, it is important to reduce latency
and computational overhead for real-world deployment and
to use different testing environments for model validation.
Optimizing latency and computational overhead for real-world
deployment alongside diverse testing environments is essential
for model validation. Data inference attacks also pose risks,
demanding stronger privacy-preserving techniques. Address-
ing these challenges will improve the security and efficiency
of FL-based IDS in ICPS.
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