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Abstract—In this paper, mobile terminal (MT) tracking based
on time of arrival (TOA), angle of departure (AOD), and angle of
arrival (AOA) measurements with one base station is investigated.
The main challenge is the unknown propagation environment,
such as line-of-sight (LOS), non-line-of-sight (NLOS) modeled as
one-bounce scattering or mixed LOS/NLOS propagations, which
may result in heterogeneous measurements. For LOS scenario,
a linear Kalman filter (LKF) algorithm is adopted through
analyzing and deriving the estimated error of MT. For NLOS
scenario, as the position of scatterer is unknown, a nonlinear
range equation is formulated to measure the actual AOD/AOA
measurements and the position of scatterer, and three different al-
gorithms: The extended Kalman filter (EKF), unscented Kalman
filter (UKF) and an approximated LKF are developed. For mixed
LOS/NLOS scenario, the modified interacting multiple model
LKF (M-IMM-LKF) and the identified LKF algorithms (I-LKF)
are utilized to address the issue of the frequent transition between
LOS and NLOS propagations. In comparison with EKF and UKF
algorithms, the simulation results and running time comparisons
show the superiority and effectiveness of the LKF algorithm
in LOS and NLOS scenarios. Both M-IMM-LKF and I-LKF
algorithms are capable to significantly reduce the localization
errors, and better than three existing algorithms.

Index Terms—Extended Kalman filter (EKF), interacting mul-
tiple model (IMM), linear Kalman filter (LKF), non-line-of-
sight (NLOS), tracking, unscented Kalman filter (UKF).

I. INTRODUCTION

PRECISE mobile terminal (MT) tracking is one of the
key technologies that has numerous practical applications,

such as emergency rescues, intelligent transportation systems,
location-based services, as well as several commercial or
military applications. The most widely utilized MT tracking
approaches are based on the received signal strength (RSS),
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time of arrival (TOA), time difference of arrival (TDOA), and
angle of arrival (AOA) measurements [1]–[5].

The main challenge for precise MT tracking is the non-line-
of-sight (NLOS) propagation, where the line-of-sight (LOS)
propagation between transmitter and receivers are blocked
by different obstacles. A significant research work has been
focused on this problem, which can be mainly divided into
two groups, single measurement and hybrid measurements.
For single measurement, MT tracking is achieved with a single
type of measurement, i.e., TOA, TDOA, AOA or RSS. A linear
Kalman-based interacting multiple model (IMM) algorithm is
proposed in [6] to smooth the NLOS range measurement,
which can accurately estimate the range distance between base
station (BS) and MT. However, the NLOS range errors are
assumed to be Gaussian random variables with known mean
and variance. The work in [7] employs the estimated range
errors for NLOS detection, where two biased extended Kalman
filter (EKF) algorithms with NLOS mitigation are proposed.
Due to the unknown condition of LOS or NLOS propagation,
particle filter (PF) method is exploited to estimate the unknown
condition, and then EKF is applied in [8]. The work in [9]
utilizes the modified EKF to jointly estimate the state of
MT and propagation condition, and a Bayesian data fusion
algorithm is exploited to further reduce the tracking errors.
For NLOS errors with the assumption of definite but unknown
distributions, a Rao-blackwellized PF and parameter learning
method is proposed in [10]. In [11], a robust EKF algorithm
with robust regression for NLOS scenario is proposed, then
by collaborating with another EKF algorithm, an IMM-based
algorithm is formulated for mixed LOS/NLOS scenario. The
work in [12] presents a method to distinguish NLOS mea-
surements from LOS measurementss with standard deviation
of range measurements and K-means clustering, where LOS
measurement is reconstructed by polynomial fitting, and a
novel EKF algorithm is developed. Utilizing the measured pa-
rameters of multipath, a multipath-assisted tracking algorithm
for long-term evolution (LTE) systems is proposed in [13].
The cooperative localization method for tracking problems is
investigated in [14], where a semi-definite programming (SDP)
based cooperative tracking algorithm is proposed to mitigate
the NLOS error. A novel NLOS identification algorithm based
on distributed filtering and data association is studied in [15]
to mitigate the effect of NLOS propagation. In [16], the multi-
sensory single cluster filter is exploited to recursively estimate
the state of MT and map feature, and a PF is presented.
By utilizing biased feature of min-max algorithm, a hybrid
constrained Kalman filter based on linear Kalman filter (LKF)

1229-2470/24/$10.00 © 2024 KICS



618 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 6, DECEMBER 2024

and unscented Kalman filter (UKF) is investigated in [17].
Integrating Gaussian mixture model (GMM), IMM, and EKF,
a Gaussian IMM-EKF algorithm is proposed to address the
problem of the frequent transitions of range measurement
between LOS and NLOS in [18]. Hypothesis testing is used
for NLOS identification, an enhanced closest neighbor data
association approach combined with PF is proposed in [19].

For hybrid measurements, the MT tracking can be achieved
through multiple systems or multiple types of measurements,
such as global navigation satellite system (GNSS)/cellular
network, TOA/AOA, TDOA/AOA, TOA/RSS, etc. Three dif-
ferent EKF filter algorithms only with LOS propagation are
evaluated by hybrid positioning which is based on signals
from satellites and BSs [20]. In [21], NLOS identification and
Kalman filter-based mitigation methods are utilized to reduce
the NLOS error. An AOA selection process is used to deal
with the effects of inaccurate NLOS AOA measurement, then
a hybrid TDOA/AOA tracking algorithm based on EKF is
presented to mitigate the effect of NLOS error. Combining
EKF with IMM algorithm for accurately smoothing range
estimate between BSs and MT, an extended Kalman-based
IMM tracking algorithm with hybrid TOA/RSS measurement
is proposed to mitigate the NLOS effects in [22]. By intro-
ducing a slack variable into motion state and considering the
relationship between this variable and the position estimate, a
hybrid unified Kalman tracking algorithm is developed with
hybrid TOA/TDOA measurements in [23]. A hybrid scheme
in an urban scenario with GNSS and cellular network is
presented in [24], where the EKF algorithm is used to integrate
the TDOA measurements from the cellular network and the
pseudorange measurements from GNSS.

Despite the approaches from the above mentioned works
have the capability to effectively reduce the impact of NLOS
errors, the hearability problem [6] may be a critical issue due
to the assumption that there are three or more BSs involved
in the tracking process. When a MT is near the serving
BS, it must reduce its power to avoid causing interference
to other users. However, too weak transmitted power may
not be received by three or more nearby BSs to estimate
the position of MT. In addition, involving multiple BSs
simultaneously in the tracking process will result in addi-
tional information exchange overhead and latency [25], [26].
Fortunately, with emerging millimeter-wave technique for the
fifth generation (5G) and beyond, it is possible to track the
position of MT with one BS by exploiting TOA, AOA, and
angle of departure (AOD) measurements [27]–[29], when
both BS and MT are equipped with multiple antennas or
array of antenna. The hybrid TOA/AOD/AOA localization
method utilizing a single BS can be broadly classified into
two categories: static positioning and dynamic tracking. The
main challenge is the unknown propagation environment, i.e.,
LOS, one-bounce (OB) or multi-bounce (MB) scattering. For
static positioning, under the premise of OB scattering, a
nonlinear constrained optimization localization approach is
present to reduce the feasible search area of solution by
leveraging AOD and AOA measurements [30]. By exploiting
the geometric relation between AOD and AOA, a theoretic
threshold is derived to decide whether the propagation path

is LOS or NLOS. Subsequently, a data fusion localization
algorithm, incorporating residual weighting, is employed to
process both LOS and OB scattering measurements [31]. The
estimated errors of OB scattering paths are derived, a linear
cooperative localization algorithm is proposed by one-order
Taylor expansion in [32]. When the MB scattering is present,
without the synchronization between MT and BS, the work
in [33] proposes a double identification algorithm to identify
and discard the MB path. Meanwhile, an ensemble learning-
based model is proposed to classify the LOS, OB, or MB
paths using 5G channel parameters [34]. Moreover, an iterative
weighted least square is proposed to mitigate the effects of
MB paths with different weights [35]. It is noteworthy that
the aforementioned works operate under the assumption of a
multipath environment, where only LOS and OB paths are
deemed conducive to enhancing positioning accuracy.

For dynamic tracking, an EKF tracking algorithm with the
position of scatters is proposed in [36], premised on stationary
scatterers and OB environment. With the assumption of LOS
and OB NLOS paths, a radio-environmental mapping assisted
PF is proposed to accurately estimate the position of MT as
well as nearby scatterers [27]. However, the positions of MT
and scatterer are integrated into the state space, resulting in
a high dimensional unknown parameter space. A nonlinear
least squares method is employed to estimate the position
of MT and the orientation relative to the BS, subsequently
leveraging a LKF to perform MT tracking [37]. The time bias
is introduced, an ordinary differential equation (ODE) solver
integrated with a long short-term memory (LSTM) network
is proposed to achieve continuous and precise tracking [38].
Nevertheless, these approaches primarily focus on OB paths.
In a multipath environment, when a LOS path is available, its
measured parameters offer superior suitability and reliability
for tracking compared to OB paths, even though OB paths can
contribute to improved tracking performance. In the absence
of a LOS path, OB paths are utilized for tracking. Due to the
uncertainty surrounding scatterers, only one path is typically
considered. To the best of our knowledge, none of the existing
works has considered developing a hybrid TOA/AOD/AOA
tracking approach with single BS and one path.

In this paper, we distinguish our approach from prior works
in [27], [36] by excluding the position of scatterers in the state
space model for the OB NLOS environment. Furthermore, we
analyze the scenarios involving LOS or OB paths without
considering MB paths, which are more relevant to practical
applications than the works in [37], [38] that only OB path
is present. This choice is justified by two reasons. On the
one hand, MB paths with significant attenuation and weaker
signal strengths are infrequent in millimeter-wave frequencies,
as noted in [27], [39]. On the other hand, LOS or OB paths can
be effectively distinguished within a multipath environment,
as demonstrated in [33], [34]. Hence, we investigate three
distinct propagation environments, i.e., LOS, OB or hybrid
LOS/OB propagation environment. The primary challenges for
hybrid TOA/AOD/AOA tracking lie in the unknown position
of scatterers in NLOS scenarios and the frequent transitions
between LOS and NLOS propagation. To tackle these chal-
lenges, an approximated LKF is utilized to deal with the
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unknown position of scatterer, while the modified interacting
multiple model LKF (M-IMM-LKF) and the identified LKF
algorithms (I-LKF) are exploited to address the issue of the
frequent transition between LOS and NLOS propagation. Our
contributions can be summarized as follows:

1) Firstly, for LOS environment, hybrid TOA/AOD/AOA
measurements is divided into two combinations, each
combination can estimate the position of MT with the
geometry relation, and a new LKF algorithm is proposed
to track the position of MT by deriving the estimated
error of MT.

2) Secondly, for NLOS environment, the NLOS propa-
gation is modeled as OB scattering. Due to the un-
known position of scatterer, the nonlinear relationship
between position of scatterer and the actual AOD/AOA
measurements is constructed. Plugging this relationship
and the position of BS into NLOS TOA measurement
equation, a new nonlinear measurement equation is
defined. Similarly, the EKF and UKF algorithms can
be directly realized to track the position of MT with
this new measurement equation. However, due to the
high computational complexity of UKF and low tracking
accuracy of EKF, an approximated LKF algorithm is
proposed by utilizing the geometric feature among the
actual TOA/AOD/AOA measurements.

3) Thirdly, for mixed LOS/NLOS environment, the key
issue is the frequent transition between LOS and NLOS,
which leads to the large tracking error. To address
this issue, M-IMM-LKF and I-LKF algorithms based
on the developed LOS and NLOS LKF algorithms are
proposed.

4) Finally, extensive simulation results are conducted to
evaluate the performance of the developed algorithms.
The proposed LKF algorithms show the better tracking
accuracy and lower running time than EKF algorithm in
LOS or NLOS environment. Additionally, the M-IMM-
LKF and I-LKF algorithms can reduce the tracking
error in mixed LOS and NLOS environment, when the
transition between LOS and NLOS occurs.

The rest of this paper is organized as follows. In Sec-
tion II, state and measurement models are presented. Sec-
tion III demonstrates the EKF algorithm and derives the LKF
algorithm for LOS environment. Section IV develops the
EKF, UKF and LKF algorithms for NLOS environment. In
Section V, two new algorithms referred to as M-IMM-LKF and
I-LKF are presented. Section VI provides simulation results
to demonstrate the effectiveness of the proposed algorithms.
Finally, conclusions are drawn in Section VII.

II. SYSTEM MODEL

A. State Model

In this paper, we consider a moving MT with motion state
X(k) = [x(k), y(k), ˙x(k), ˙y(k)]T , where (x(k), y(k)) denote
the horizontal and vertical coordinates of MT at time instant
k, ( ˙x(k), ˙y(k)) are the corresponding horizontal and vertical

velocities. The MT served by home BS is moving on a 2D-
plane and its movement with random acceleration can be
modeled as [6]–[12], [20], [21]

X(k) = A ·X(k − 1) +G ·W (k − 1), (1)

where

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , G =


∆t2/2 0

0 ∆t2/2
∆t 0
0 ∆t

 ,

and ∆t is the sampling period. The vector-valued processing
noise W (k − 1) = [wx(k − 1), wy(k − 1)]T is assumed to be
a Gaussian random variable with zero mean and covariance
Q = σ2

w · I2×2, where I2×2 is a 2× 2 identity matrix.

B. Measurement Model

The signal propagation between the BS and the MT is LOS
or OB scattering, as shown in Fig. 1. The MT transmits the sig-
nal to the serving BS while trying to localize itself. From the
development of multiple-input multiple-output (MIMO) and
millimeter wave techniques, we can obtain three parameters,
i.e., the measured range, the AOD and the AOA of the propa-
gation path [26], [40]. Therefore, when the signal experiences
LOS propagation path, its mathematical expressions are given
by

r(k) =
√
(x(k)− x1)2 + (y(k)− y1)2 + n(k)

= r0(k) + n(k) = c · t(k),
α(k) = α0(k) +m(k), (2)

β(k) = β0(k) + v(k),

α0(k) =



atan( y1−y(k)
x1−x(k) ), x1 ≥ x(k), y1 ≥ y(k),

π + atan( y1−y(k)
x1−x(k) ), x1 < x(k), y1 ≥ y(k),

π + atan( y1−y(k)
x1−x(k) ), x1 < x(k), y1 < y(k),

2π + atan( y1−y(k)
x1−x(k) ), x1 ≥ x(k), y1 < y(k),

β0(k) =



atan( y(k)−y1

x(k)−x1
), x(k) ≥ x1, y(k) ≥ y1,

π + atan( y(k)−y1

x(k)−x1
), x(k) < x1, y(k) ≥ y1,

π + atan( y(k)−y1

x(k)−x1
), x(k) < x1, y(k) < y1,

2π + atan( y(k)−y1

x(k)−x1
), x(k) ≥ x1, y(k) < y1,

where (x1, y1) is the position of home BS, c is the speed of
light, t(k), α(k), and β(k) are the measured TOA, AOD, and
AOA parameters, respectively. The r0(k), α0(k), and β0(k)
denote the actual range, the AOD and the AOA, respectively,
whereas atan is the function of inverse tangent. The n(k),
m(k), and v(k) are white Gaussian random variables with the
standard deviation σn, σα, and σβ , respectively.
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Fig. 1. Measurement model with LOS or OB scattering path.

However, for the signal experiencing OB scattering
path [26], [29]–[42], the mathematical expressions can be
provided as

r(k) =
√
(x(k)− x′(k))2 + (y(k)− y′(k))2

+
√

(x1 − x′(k))2 + (y1 − y′(k))2 + n(k)

=r0(k) + n(k) = c · t(k),
α(k) = α0(k) +m(k), (3)

β(k) = β0(k) + v(k),

α0(k) =



atan

(
y

′
(k)− y(k)

x′(k)− x(k)

)
,

x
′
(k) ≥ x(k), y

′
(k) ≥ y(k),

π + atan

(
y

′
(k)− y(k)

x′(k)− x(k)

)
,

x
′
(k) < x(k), y

′
(k) ≥ y(k),

π + atan

(
y

′
(k)− y(k)

x′(k)− x(k)

)
,

x
′
(k) < x(k), y

′
(k) < y(k),

2π + atan

(
y

′
(k)− y(k)

x′(k)− x(k)

)
,

x
′
(k) ≥ x(k), y

′
(k) < y(k),

β0(k) =



atan( y
′
(k)−y1

x′ (k)−x1
), x

′
(k) ≥ x1, y

′
(k) ≥ y1,

π + atan( y
′
(k)−y1

x′ (k)−x1
), x

′
(k)) < x1, y

′
(k) ≥ y1,

π + atan( y
′
(k)−y1

x′ (k)−x1
), x

′
(k) < x1, y

′
(k) < y1,

2π + atan( y
′
(k)−y1

x′ (k)−x1
), x

′
(k) ≥ x1, y

′
(k) < y1,

where (x
′
(k), y

′
(k)) is the unknown position of the scatterer

at time k.

The continuous motion of MT inherently results in dy-
namic variations within the propagation paths. In addition,
in a multipath environment where LOS path is absent, one
OB path is typically selected for MT tracking. However, it
cannot guarantee that an OB path with similar scattering
characteristics will consistently be chosen at any given time.
As a result, the random position of scatter is more convincing
and adaptable to the different propagation environment.

III. THE PROPOSED TRACKING ALGORITHMS WITH ONLY
LOS PATH

In the LOS propagation environment, based on the linear
state model defined in (1), we can directly apply the existing
algorithms, such as EKF or UKF to track the position of
MT with nonlinear measurement parameters that are shown
in (2). Since this nonlinear measurement can be adequately
approximated utilizing the first-order Taylor series lineariza-
tion, an EKF is introduced, offering a comparable performance
to the UKF while providing a reduced computational burden.
Furthermore, leveraging the geometric relationship among
TOA/AOD/AOA measurements offers a potential to further
enhance the tracking performance.

A. The Tracking Algorithms based on Nonlinear Filtering
The nonlinear measurement parameters defined in (2) can

be expressed as a vector form:

r(k) = h(X(k)) + n(k), (4)

where

r(k) =

 r(k)
α(k)
β(k)

 ,n(k) =

 n(k)
m(k)
v(k)

 ,

h(X(k)) =

 √(x(k)− x1)2 + (y(k)− y1)2

α0(k)
β0(k)

 .

This nonlinear measurement can be linearized around the
predicted estimateX̂(k) and it is expressed as

h(X(k)) = h(X̂(k)) +H · (X(k)− X̂(k)), (5)

where

H = [
∂h

∂x(k)
(X̂(k)),

∂h

∂y(k)
(X̂(k)),03×1,03×1], (6)

∂h

∂x(k)
=


x(k)−x1√

(x(k)−x1)2+(y(k)−y1)2

− y(k)−y1

(x(k)−x1)2+(y(k)−y1)2

− y(k)−y1

(x(k)−x1)2+(y(k)−y1)2

 ,

∂h

∂y(k)
=


y(k)−y1√

(x(k)−x1)2+(y(k)−y1)2

x(k)−x1

(x(k)−x1)2+(y(k)−y1)2

x(k)−x1

(x(k)−x1)2+(y(k)−y1)2

 .

By substituting (5) into (4), we obtain the approximated
measurement equations:

r(k) = h(X̂(k)) +H · (X(k)− X̂(k)) + n(k). (7)

The EKF recursive algorithm [36] for LOS propagation
environment is summarized in Algorithm 1.
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Algorithm 1 LOS-EKF
1: Initialization: k = 0, set the state vector X(0) and the

covariance P (0);
2: Recursive estimation: For k = 1, 2, · · ·
3: Time update: Project the state vector and covariance ahead

from (1), X̂(k) = A ·X(k−1), P̂ (k) = A ·P (k−1) ·AT

+G ·Q ·GT ;
4: Measurement update: Compute the linear vector H ac-

cording to (6);
5: Compute the covariance of measurement noise in (5) R =

diag[σ2
α, σ

2
β , σ

2
n];

6: Calculate the Kalman gain K = P̂ (k)·HT ·(H ·P̂ (k)·HT

+R)−1;
7: Update the state vector and covariance estimate with

measurement r(k) shown in (4) and (7), X(k) = X̂(k)+
K · (r(k)− h(X̂(k))), P (k) = P̂ (k)−K ·H · P̂ (k);

Fig. 2. Possible position of MT with LOS or OB path.

B. The Tracking Algorithms based on Linear Filtering

It is obvious that LOS propagation is the special case of
OB scattering. As shown in Fig. 2, when the path is LOS
propagation, the scatterer C is on the line of BS and MT, both
A and B will converge to the position of MT. Thus, we can
utilize the position of A and B to estimate the position of MT.
The position of A and B related to the measured model in (2)
can be calculated as

(
xA

yA

)
=

(
x1

y1

)
+

(
r(k) · cos(β(k))
r(k) · sin(β(k))

)
, (8)

(
xB

yB

)
=

(
x1

y1

)
−
(

r(k) · cos(α(k))
r(k) · sin(α(k))

)
. (9)

In general, it is assumed that the angle noise v(k) is small.
Therefore, we have cos(v(k)) ≈ 1 and sin(v(k)) ≈ v(k).
Substituting the angle measurement equations (2) into (8)
and dropping the quadratic term of the noise, the following
approximation can be obtained(

xA

yA

)
≈
(

x1

y1

)
+

(
r0(k) · cos(β0(k)) + a1
r0(k) · sin(β0(k)) + b1

)
=

(
x(k)
y(k)

)
+

(
a1
b1

)
, (10)

where a1 = −r0(k) · sin(β0(k)) · v(k) + cos(β0(k)) · n(k),
b1 = r0(k) · cos(β0(k)) · v(k) + sin(β0(k)) · n(k). Similarly,
the position of B can be derived as(

xB

yB

)
≈
(

x1

y1

)
−
(

r0(k) · cos(α0(k)) + a2
r0(k) · sin(α0(k)) + b2

)
=

(
x(k)
y(k)

)
+

(
a2
b2

)
, (11)

where a2 = r0(k) · sin(α0(k)) · m(k) − cos(α0(k)) · n(k),
b2 = −r0(k) · cos(α0(k)) ·m(k)− sin(α0(k)) · n(k).

Combining (10) with (11), a new linear measurement equa-
tion with matrix form is expressed as

Y1(k) = H1 ·X(k) + S(k), (12)

where

H1 =

[
1 0 0 0
0 1 0 0

]
, S(k) =

1

2

(
a1 + a2
b1 + b2

)
,

Y1(k) =
1

2

((
xA

yA

)
+

(
xB

yB

))
. (13)

Due to the unknown actual range and angles of the vector
S(k), we exploit the measured range and angles to replace
them. Then, we can express the covariance estimate of S(k)
as

R =

[
R11 R12

R21 R22

]
, (14)

where

R11 =
1

4
((cos(β(k))− cos(α(k)))2 · σ2

n + (r(k) · sin(α(k)))2

× σ2
α + (r(k) · sin(β(k)))2 · σ2

β),
(15)

R22 =

1

4
((sin(β(k))− sin(α(k)))2 × σ2

n + (r(k) · cos(α(k)))2

× σ2
α + (r(k) · cos(β(k)))2 · σ2

β),
(16)

R12 = R21 =

1

4
((cos(β(k))− cos(α(k))) · (sin(β(k))

− sin(α(k))) · σ2
n − r(k)2 · sin(α(k)) · cos(α(k))

× σ2
α − r(k)2 · sin(β(k)) · cos(β(k)) · σ2

β).

(17)

From (8) to (17), the TOA/AOD/AOA measurements
are strategically segregated into two distinct combinations:
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Algorithm 2 LOS-LKF
1: Initialization: k = 0, set the state vector X(0) and the

covariance P (0);
2: Recursive estimation: For k = 1, 2, · · ·
3: Time update: Project the state vector and covariance ahead

from (1), X̂(k) = A ·X(k−1), P̂ (k) = A ·P (k−1) ·AT

+G ·Q ·GT ;
4: Measurement update: Compute the new measurement

Y1(k) according to (8), (9), and (13);
5: Compute the covariance estimate of S(k) according

to (14), (15), (16), and (17);
6: Calculate the Kalman gain K = P̂ (k) ·HT

1 · (H1 · P̂ (k) ·
HT

1 +R)−1;
7: Update the state vector and covariance estimate, X(k) =

X̂(k)+K · (Y1(k)−H1 · X̂(k)), P (k) = P̂ (k)−K ·H1 ·
P̂ (k);

TOA/AOD and TOA/AOA. Each of these combinations in-
dividually computes the position of MT by exploiting the
underlying geometric relations, subsequently averaging the
results to mitigate the impact of noise. Therefore, the tracking
performance of LKF can be improved. Combing (1) and (12),
the classical LKF recursive algorithm for LOS propagation
environment is given in Algorithm 2.

IV. THE PROPOSED TRACKING ALGORITHMS WITH ONLY
OB PATH

In the OB scattering scenario, although the measured pa-
rameters shown in (3) are the nonlinear function of motion
state X(k), it is not possible to directly apply the existing
algorithms, such as EKF or UKF, to track the position of MT.
This is due to the fact that the position of the scatterer is
unknown. In this section, we present two methods to cope
with this problem. One is to derive the nonlinear relation
between position of scatterer and the actual AOD/AOA, and
the other one is to construct a new linear relation of the motion
state X(k) utilizing the geometric feature among the actual
TOA/AOD/AOA.

A. The Tracking Algorithms based on Nonlinear Filtering

As shown in Fig. 2, the position of scatterer C is the
interSection point of two lines. The equations of these two
lines can be expressed as

y − y(k) = tan(α0(k)) · (x− x(k))

y − y1 = tan(β0(k)) · (x− x1), (18)

where tan is the function of tangent. Therefore, we can
compute the position of scatterer as

x
′
(k) =

a

tan(α0(k))− tan(β0(k))
,

y
′
(k) =

b

tan(α0(k))− tan(β0(k))
, (19)

where a = y1 − tan(β0(k)) · x1 + x(k) · tan(α0(k))− y(k),
b = tan(α0(k))·y1−tan(α0(k))·tan(β0(k))·x1+tan(α0(k))·
tan(β0(k)) · x(k)− tan(β0(k)) · y(k).

Substituting (19) into (3), we can obtain the nonlinear
measurement as follows:

r(k) = h(X(k),m(k), v(k)) + n(k), (20)

where

h(X(k),m(k), v(k)) =
√

(x(k)− x′(k))2 + (y(k)− y′(k))2

+
√
(x1 − x′(k))2 + (y1 − y′(k))2,

(21)

Following similar concepts of Taylor series, we can linearize
this nonlinear measurement function around the predicted
estimate X̂(k) using the partial derivatives of the measurement
function as follows:

h(X(k),m(k), v(k)) =h(X̂(k), 0, 0) +H · (X(k)− X̂(k))

+ V ·
(

m(k)
v(k)

)
,

(22)

where

H =

[
∂h

∂x(k)
(X̂(k), 0, 0),

∂h

∂y(k)
(X̂(k), 0, 0), 0, 0

]
, (23)

∂h

∂x(k)
=
(x

′
(k)− x(k))(∂x

′
(k)

∂x(k) − 1) + (y
′
(k)− y(k))∂y

′
(k)

∂x(k)√
(x′(k)− x(k))2 + (y′(k)− y(k))2

+
(x

′
(k)− x1)

∂x
′
(k)

∂x(k) + (y
′
(k)− y1)

∂y
′
(k)

∂x(k)√
(x′(k)− x1)2 + (y′(k)− y1)2

,

∂h

∂y(k)
=
(x

′
(k)− x(k))∂x

′
(k)

∂y(k) + (y
′
(k)− y(k))(∂y

′
(k)

∂y(k) − 1)√
(x′(k)− x(k))2 + (y′(k)− y(k))2

+
(x

′
(k)− x1)

∂x
′
(k)

∂y(k) + (y
′
(k)− y1)

∂y
′
(k)

∂y(k)√
(x′(k)− x1)2 + (y′(k)− y1)2

,

∂x
′
(k)

∂x(k)
=

tan(α0(k))

tan(α0(k))− tan(β0(k))
,

∂x
′
(k)

∂y(k)
= − 1

tan(α0(k))− tan(β0(k))
,

∂y
′
(k)

∂x(k)
=

tan(α0(k)) · tan(β0(k))

tan(α0(k))− tan(β0(k))
,

∂y
′
(k)

∂y(k)
= − tan(β0(k))

tan(α0(k))− tan(β0(k))
,

V =

[
∂h

∂m(k)
(X̂(k), 0, 0),

∂h

∂v(k)
(X̂(k), 0, 0), 0, 0

]
, (24)

∂h

∂m(k)
=
(x

′
(k)− x(k))∂x

′
(k)

∂m(k) + (y
′
(k)− y(k))∂y

′
(k)

∂m(k)√
(x′(k)− x(k))2 + (y′(k)− y(k))2

+
(x

′
(k)− x1)

∂x
′
(k)

∂m(k) + (y
′
(k)− y1)

∂y
′
(k)

∂m(k)√
(x′(k)− x1)2 + (y′(k)− y1)2

,



WU et al.: SINGLE BASE STATION TRACKING APPROACHES WITH HYBRID ... 623

∂h

∂v(k)
=
(x

′
(k)− x(k))∂x

′
(k)

∂v(k) + (y
′
(k)− y(k))∂y

′
(k)

∂v(k)√
(x′(k)− x(k))2 + (y′(k)− y(k))2

+
(x

′
(k)− x1)

∂x
′
(k)

∂v(k) + (y
′
(k)− y1)

∂y
′
(k)

∂v(k)√
(x′(k)− x1)2 + (y′(k)− y1)2

,

∂x
′
(k)

∂m(k)
=

x(k) · −(tan(α0(k))−tan(β0(k)))
cos2(α0(k)) − −a

cos2(α0(k))

(tan(α0(k))− tan(β0(k)))2
,

∂y
′
(k)

∂m(k)
=

x1 · tan(α0(k))−tan(β0(k))
cos2(α0(k)) − a

cos2(α0(k))

(tan(α0(k))− tan(β0(k)))2
,

∂x
′
(k)

∂v(k)
=

d · (tan(α0(k))− tan(β0(k))) + b · 1
cos2(α0(k))

(tan(α0(k))− tan(β0(k))2
,

∂y
′
(k)

∂v(k)
=

e · (tan(α0(k))− tan(β0(k)))− b · 1
cos2(β0(k))

(tan(α0(k))− tan(β0(k)))2
,

d = −y1·
1

cos2(α0(k))
+(x1−x(k))·tan(β0(k))· 1

cos2(α0(k))
,

e = (x1−x(k))·tan(α0(k))· 1

cos2(β0(k))
+y(k)· 1

cos2(β0(k))
.

Substituting (22) into (20), we obtain the approximated
range as follows:

r(k) =h(X̂(k), 0, 0) +H · (X(k)− X̂(k)) (25)

+ V ·
(

m(k)
v(k)

)
+ n(k).

Thus, the EKF recursive algorithm for OB scattering envi-
ronment is summarized in Algorithm 3.

As we know, EKF linearizes the nonlinear system model
by Taylor series expansion and assumes that the noise is
Gaussian distribution. From (20), due to the unknown scatterer
whose position is computed from (19), it is highly nonlinear
relation with the position of MT. In addition, the noise
in (20) is non-Gaussian. Therefore, EKF may lead to large
errors in OB scattering environment. Different to EKF, the
UKF approximates the probability distribution of nonlinear
functions through the unscented transform, a process that
does not entirely rely on the assumption of Gaussian noise.
The UKF selects a specific set of points known as sigma
points, which can represent the Gaussian distribution of the
original state. These points are then transformed through
the nonlinear function, yielding an approximation of the
probability distribution of the transformed state. This method
can preserve the characteristics of nonlinear functions more
accurately, thereby providing good performance even when
dealing with nonlinear Gaussian noise [43], [44]. Furthermore,
in our tracking problem, the state model of (1) is linear and
Gaussian, whereas the measurement model of (20) is nonlinear

Algorithm 3 OB-EKF
1: Initialization: k = 0, set the state vector X(0) and the

covariance P (0);
2: Recursive estimation: For k = 1, 2, · · ·
3: Time update: Project the state vector and covariance ahead

from (1), X̂(k) = A ·X(k−1), P̂ (k) = A ·P (k−1) ·AT

+G ·Q ·GT ;
4: Measurement update: Compute the position of scatterer

with X̂(k) according to (19);
5: Compute the linear vector H and V according to (23)

and (24).
6: Compute the variance of measurement noise in (25), R =

V ·
[

σ2
α 0
0 σ2

β

]
· V H + σ2

n;

7: Calculate the Kalman gain K = P̂ (k)·HT ·(H ·P̂ (k)·HT

+R)−1;
8: Update the state vector and covariance estimate with mea-

surement r(k) shown in (21) and (25), X(k) = X̂(k) +
K · (r(k)− h(X̂(k), 0, 0)), P (k) = P̂ (k)−K ·H · P̂ (k);

and non-Gaussian. This scenario can be effectively handled by
the UKF [44], and the utilization of particle filters is advocated
in scenarios for which the models are entirely nonlinear and
non-Gaussian.

Since the state vector can be predicted from (1), we can di-
rectly generate the sigma points in the UKF through unscented
transform

χi(k) =



X̂
′
(k), i = 0

X̂
′
(k) +

(√
(M + λ)P̂ ′(k)

)i

,

i = 1, · · ·,M

X̂
′
(k)−

(√
(M + λ)P̂ ′(k)

)i

,

i = M + 1, · · ·, 2M
(26)

where M is the dimension of vector X̂
′
(k), λ = α2(M+κ)−

M is a scaling parameter, α is a parameter that determines
the spread of the sigma points and is usually set to a small
positive value (for example, 1e-3), κ is a secondary scaling

parameter which is usually set to 0, (

√
(M + λ)P̂ ′(k))i is

the ith row of the matrix square root X which is satisfied with
X ·X = (M + λ)P̂

′
(k), where

X̂
′
(k) =

 X̂(k)
0
0


M×1

,

P̂
′
(k) =


P̂ (k) 04×1 04×1 04×1

01×4 σ2
n 0 0

01×4 0 σ2
α 0

01×4 0 0 σ2
β

 ,

0m×n is a m-by-n matrix of zeros.
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Algorithm 4 OB-UKF
1: Initialization: k = 0, set the state vector X(0) and the

covariance P (0);
2: Recursive estimation: For k = 1, 2, · · ·
3: Time update: Project the state vector and covariance ahead

from (1), X̂(k) = A ·X(k−1), P̂ (k) = A ·P (k−1) ·AT

+G ·Q ·GT ;
4: Measurement update: Generate the sigma points with

X̂(k) and P̂ (k), and the corresponding weights according
to (26) and (27);

5: For each sigma point χi(k), compute the position of scat-
terer and the estimated range h(χi(k)) according to (19)
and (21);

6: Compute the estimated mean and variance of range mea-
surement, and then the covariance of state vector and range
measurement µr(k) =

∑2M
i=0 Wmi · h(χi(k)), Prr(k) =∑2M

i=0 Wci · (h(χi(k)) − µr(k)) · (h(χi(k)) − µr(k))
T ,

PXr(k) =
∑2M

i=0 Wci · (χi(k)1:4 − X̂(k)) · (h(χi(k)) −
µr(k))

T , where χi(k)1:4 denotes the four dimensional
vector whose value is the same as the first four elements
of χi(k);

7: Calculate the Kalman gain K = PXr(k) · Prr(k)
−1;

8: Update the state vector and covariance estimate X(k) =
X̂(k)+K · (r(k)−µr(k)), P (k) = P̂ (k)−K ·PXr(k)

T ;

The corresponding weights of sigma points are defined as

Wmi =

{
λ

M+λ , i = 0
1

2(M+λ) , i ̸= 0
,

Wci =

{
λ

M+λ + 1− α2 + β, i = 0
1

2(M+λ) , i ̸= 0
, (27)

where β is used to incorporate prior knowledge of the dis-
tribution (β = 2 is optimal for Gaussian distribution). Wmi

and Wci are used to compute the mean and covariance of the
posterior sigma points, respectively.

Based on the above explanation, the UKF recursive al-
gorithm for OB scattering environment is summarized in
Algorithm 4.

B. The Tracking Algorithm based on Linear Filtering

From (3), it is obvious that the nonlinear filter can be used
to deal with this tracking problem. However, when signal
experiences OB scattering, as shown in Fig. 2, the position
of MT is on the line of AB if the measured noise is ignored.
Thus, the true nonlinear measured parameters in (3) can be
transformed into the following linear form:(

cos(α0(k)) + cos(β0(k))
)
· y(k)

−
(
sin(α0(k)) + sin(β0(k))

)
· x(k)

= y1 ·
(
cos(α0(k)) + cos(β0(k))

)
− x1 ·

(
sin(α0(k)) + sin(β0(k))

)
− r0(k) · sin(α0(k)− β0(k)).

(28)

When substituting the measured parameters in (3) into (28),
to obtain the simple results, a reasonable approximation about

Algorithm 5 OB-LKF
1: Initialization: k = 0, set the state vector X(0) and the

covariance P (0);
2: Recursive estimation: For k = 1, 2, · · ·
3: Time update: Project the state vector and covariance ahead

from (1), X̂(k) = A ·X(k−1), P̂ (k) = A ·P (k−1) ·AT

+G ·Q ·GT ;
4: Measurement update: Compute linear matrix H(k) and

new measurement Y (k) according to (31) and (32);
5: Compute the variance of ε(k) according to (33), R =

r2(k)cos2(α(k)−β(k))(σ2
α+σ2

β)+sin2(α(k)−β(k))σ2
n+

cos2(α(k)− β(k))(σ2
α + σ2

β)σ
2
n;

6: Calculate the Kalman gain K = P̂ (k) ·H(k)T · (H(k) ·
P̂ (k) ·H(k)T +R)−1;

7: Update the state vector and covariance estimate, X(k) =
X̂(k) +K · (Y (k) −H(k) · X̂(k)), P (k) = P̂ (k) −K ·
H(k) · P̂ (k);

trigonometric function of actual angles can be given as fol-
lows:

cos(α0(k)) + cos(β0(k)) ≈cos(α(k)) + cos(β(k))

sin(α0(k)) + sin(β0(k)) ≈sin(α(k)) + sin(β(k))

sin(α0(k)− β0(k)) ≈sin(α(k)− β(k))− cos(α(k)

− β(k)) · (m(k)− v(k)).
(29)

Then, we can obtain the following approximation equation
in matrix form:

Y (k) = H(k) ·X(k) + ε(k), (30)

where

Y (k) =y1 · (cos(α(k)) + cos(β(k)))− x1 · (sin(α(k))
+ sin(β(k)))− r(k) · sin(α(k)− β(k)),

(31)

H(k) = (32)
[−sin(α(k))− sin(β(k)), cos(α(k)) + cos(β(k)), 0, 0],

ε(k) =r(k) · cos(α(k)− β(k)) · (m(k)− v(k)) + sin(α(k)

− β(k)) · n(k)− cos(α(k)− β(k)) · n(k) ·m(k)

+ cos(α(k)− β(k)) · n(k) · v(k).
(33)

From (33), the noise ε(k) contains not only additive noise,
but also multiplicative noise, but it can be approximated as a
Gaussian distribution. Combining (1) with (30), the classical
LKF recursive algorithm for OB scattering environment is
provided in Algorithm 5.
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Fig. 3. The architecture of IMM algorithm.

V. THE PROPOSED TRACKING ALGORITHMS WITH
HYBRID LOS AND OB PATH

The above analysis assume that all the propagation paths are
LOS or OB scattering. However, the LOS and OB scattering
shown in Fig. 1 may appear alternatively. Thus, when both
LOS and OB scattering paths are present, the proposed EKF,
UKF or LKF algorithms shown in Section III and IV are not
adaptable. Therefore, new methods need to be developed to
deal with this scenario. Our idea is developed based on two
aspects. On the one hand, the propagation path LOS or OB
scattering is considered to be a Markov process with two
interactive modes named as IMM. On the other hand, LOS
or OB scattering is identified first, and then the corresponding
filtering algorithm is applied to it.

A. Modified IMM LKF Tracking Algorithm

The signal propagation between the BS and the MT with
LOS or OB scattering can be considered as a switching mode
system and a two-state Markov process can describe this
switching mode system. Thus, based on the basic principle
of IMM algorithm [6], [8], [11], [18], [22], we can directly
track the position of MT with our proposed LOS-LKF and
OB-LKF algorithms. This algorithm illustrated in Fig.3 is
consists of five parts, the mixing probability, the interaction,
the LKF algorithm, the mode probability update and the
combination. The state is estimated by two parallel LKF
algorithms (i.e., Algorithm 2: LOS-LKF and Algorithm 5:
OB-LKF) based on the corresponding models.

In [6], [11], [22], the mode probabilities of the present
conditions are calculated and updated by a likelihood function
via their respective estimate errors. However, the likelihood
function in LOS-LKF is not suitable. The error of (12) in
LOS-LKF is a two-dimensional vector, its likelihood function
needs to compute the covariance matrix of errors. After a
few iterations, the probability of LOS is almost zero, which
lead to the performance degradation of tracking. Therefore,
we need to find another likelihood function to adapt the

Algorithm 6 Modified IMM-LKF (M-IMM-LKF)
1: Initialization: k = 0, Set the initial mean and covariance

of two LKF algorithms Xi(0), Pi(0), i = 1, 2, the prior
probabilities µi(0), i = 1, 2, and the transition probability

matrix T =

[
p11 p12
p21 p22

]
;

2: Recursive estimation: For k = 1, 2, · · ·
3: Mixing probability calculation i, j = 1, 2, µi|j(k − 1) =

(1/c̃j)pijµj(k − 1), c̃j =
∑2

i=1 pijµi(k − 1) ;
4: Interaction j = 1, 2 X̂j(k−1) =

∑2
i=1 Xi(k−1)·µi|j(k−

1), P̂j(k− 1) =
∑2

i=1 µi|j(k− 1) · (Pi(k− 1)+ (Xi(k−
1)− X̂j(k − 1)) · (Xi(k − 1)− X̂j(k − 1))T );

5: Two LKF algorithms: LOS-LKF shown in Algorithm 3
outputs the mean X1(k) and covariance P1(k), then use
X1(k) to compute the estimated range r̂(k) from (2).
Thus, the error is e1(k) = r(k) − r̂(k) and variance
W1(k) = σ2

n. Then, the likelihood function of LOS prop-
agation is

∧
1(k) = N(e1(k); 0,W1(k)). OB-LKF shown

in Algorithm 6 also outputs the mean X2(k) and covari-
ance P2(k), then compute the error e2(k) = Y (k)−H(k)·
X̂2(k) and variance W2(k) = H(k) · P̂ (k) ·H(k)T +R,
then the likelihood function of OB scattering propagation
is
∧

2(k) = N(e2(k); 0,W2(k));
6: Mode probability update: j = 1, 2, µj(k) =

1
c

∧
j(k) · c̃j ,

c =
∑2

j=1

∧
j(k) · c̃j ;

7: Combination X(k) =
∑2

j=1 Xj(k) · µj(k), P (k) =∑2
j=1 µj(k)·(Pj(k)+(Xj(k)−X(k))·(Xj(k)−X(k))T );

Algorithm 7 I-LKF
1: Initialization: k = 0, Set the state vector X(0), the

covariance P (0), and the probability of detection Pd;
2: Recursive estimation: For k = 1, 2, · · ·
3: Compute the threshold ∆ from (35) with the known

standard deviation of angle measurement σα and σβ ;
4: Determine whether the AOD and AOA measurement is

satisfied with (34);
5: If it is satisfied, LOS-LKF shown in Algorithm 2 outputs

the updated state vector X(k) and covariance P (k);
6: Otherwise, OB-LKF shown in Algorithm 5 outputs the

updated state vector X(k) and covariance P (k);

LOS-LKF mode. Fortunately, in LOS propagation, we can
use the estimate error of range measurement to evaluate
the tracking accuracy of MT rather than the estimate error
of (12). Thus, the modified IMM-LKF recursive algorithm
referred to as M-IMM-LKF is proposed and summarized in
Algorithm 6.

B. LKF Tracking Algorithm based on LOS Identification

Without the knowledge of signal propagation condition, the
idea of IMM algorithm is to model it as a two-state Markov
process. However, if the condition of signal propagation can be
identified correctly, we can then apply the corresponding LOS
or OB LKF algorithm to track the position of MT. The work
in [31] introduces a small positive number ∆ as a threshold



626 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 6, DECEMBER 2024

Fig. 4. Simulation scenario in a wireless network.
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Fig. 5. ALE versus the standard deviation of angle measurement in LOS
environment.

to identify LOS propagation when it satisfies the following
condition:

π −∆ ≤ |α(k)− β(k)| ≤ π +∆. (34)

Furthermore, this threshold ∆ is determined by the proba-
bility of detection Pd as

1− 2 ·Q(
∆√

σ2
α + σ2

β

) = Pd, (35)

where Q(x) = (1/
√
2π)

∫∞
x

e−t2/2dt.
Then, the identified LKF recursive algorithm with linear

state model (1) and linear measurement model (12) or (30)
denoted as I-LKF is presented in Algorithm 7.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we provide simulation results to validate
the proposed tracking algorithms and compare the localiza-
tion accuracy of MT tracking under different propagation
environments. The MT has a steady velocity of 10 m/s and
moves in a trajectory as shown in Fig. 4. The sample length
and the sample interval ∆t are 200 and 1 s, respectively.
The position of BS is (0, 0) and the random acceleration
variance σ2

w shown in (1) is chosen as 1 m/s2. The angle
measurement noise shown in (2) and (3) is assumed to
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Fig. 6. CDF of localization error in LOS environment.
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be a white Gaussian random variable with zero mean and
the same standard deviation σα = σβ , whereas the range
measurement noise is also assumed to be a white random
variable with zero mean and standard deviation σn = 5 m.
The initial estimate of MT is X(0) = [−500, 0, 0,−10]T with
initial covariance matrix P (0) = diag[100, 100, 100, 100].
In order to compare the estimated trajectory and cumu-
lative probability distribution (CDF) of localization error
with different algorithms, root square error (RSE) de-
fined as RSE =

√
(x̂(k)− x(k))2 + (ŷ(k)− y(k))2 is

chosen as the criterion. Moreover, in order to smooth
the effect of measured noise at time k, the corre-
sponding average localization error (ALE) defined as
ALE = (1/N)

∑N
i=1

√
(x̂i(k)− x(k))2 + (ŷi(k)− y(k))2,

where N = 500 is the number of Monte-Carlo simulations.
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scattering environment.

A. Simulation of LOS or OB Scattering Environment

1) Simulation of LOS environment: For LOS scenario,
the range and angle measurement parameters are generated
from (2). We have evaluated and compared two algorithms,
i.e., LOS-EKF and LOS-LKF, each with and without AOD
measurements. Due to significant effect of the angle error,
Fig. 5 shows the ALE versus the standard deviation of angle
measurement. When the angle error is small, all the algorithms
have the similar performance. However, as the increase of the
angle error, the performance of all algorithms is degraded. No-
tably, our proposed LOS-LKF with TOA/AOD/AOA performs
the best tracking accuracy. Interestingly, it is observed that the
inclusion of AOD measurement in EKF does not enhance but
rather diminishes its tracking accuracy. The reason is that the
AOD is highly correlated with the AOA, and the non-diagonal
elements of the covariance matrix will be significantly non-
zero. This affects the calculation of Kalman gain, resulting
in a decrease in tracking accuracy. The standard deviation of
angle measurement is set to 2◦, the ALE versus time instant
k is presented in Fig. ??, and the CDF of localization error is
shown in Fig. 6. In addition, Fig. 7 illustrates the estimated
and actual trajectories of MT. From Figs. ??–7, we realize that
the tracking accuracy of our proposed LOS-LKF is the best,
and comparatively large localization errors are occurred when
the motion direction of MT is changed.

2) Simulation of OB scattering environment: In OB scatter-
ing environment, the range and angle measurement parameters
are generated from (3). The position of scatterer is located
inside a circular disk of fixed radius Rd, which is called
the circular scattering model [25], [30], [31], [32], [45], [46]
whose distance from a scatterer to MT is uniformly distributed
in the range of [0, Rd], and the angle is uniformly distributed
in the range of [0, 2π] . Three algorithms, i.e., OB-EKF, OB-
UKF, and OB-LKF are evaluated and compared. Our proposed
OB-LKF assumes that the angle error is small. In order to
validate the effectiveness of it with large angle error, Fig. 8

0 50 100 150 200

Time step

0

20

40

60

80

100

120

140

160

180

200

A
L
E

 (
m

)

OB-EKF

OB-UKF

OB-LKF

Fig. 9. The estimated and actual trajectories of MT in OB scattering
environment.
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Fig. 10. CDF of localization error in OB scattering environment.

illustrates the ALE versus the standard deviation of angle
measurement. It is shown that both OB-LKF and OB-UKF are
better than OB-EKF. As the increase of the angle error, the
performance of two algorithms is degraded. When the angle
error is small, OB-LKF is slightly superior to OB-UKF. As
the increase of the angle error whose value is larger than four
degrees, OB-LKF is slightly worse than OB-UKF. In addition,
the standard deviation of angle measurement is set to 1◦, Fig. 9
presents the estimated and actual trajectories of MT, the CDF
of localization error is shown in Fig. 10, and the ALE versus
time instant k is presented in Fig. 11. From Figs. 9–11, it
is easy to see that, most of the time, the OB-LKF has the
highest localization accuracy, followed by OB-UKF and then
OB-EKF. The OB-LKF and OB-UKF can track the trajectory
of MT very well, whereas the tracking accuracy of OB-EKF is
decreased as time goes by. The reason is that EKF algorithm
with first-order Taylor series expansion is not effective for
highly nonlinear problems. As the same conclusion in LOS
environment, comparatively large localization errors also occur
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TABLE I
COMPUTER RUNNING TIME OF THREE ALGORITHMS.

Methods UKF EKF LKF
Computer LOS - 0.026 ms 0.021 ms

running time OB scattering 0.077 ms 0.013 ms 0.010 ms

when the motion direction of MT is changed.

3) Comparison of running time: From the literature, the
computational complexity of EKF, UKF, and LKF can be eas-
ily understood. UKF is the highest, followed by EKF and then
LKF. However, the comparison of the actual computational
time about these three algorithms is more convincing. Table I
provides the computational time of three algorithms with an
average of 10000 runs. The experiments are processed on the
computer with Intel ® Core™ i5-6200U CPU 64 bit processor
and 4 GB memory. From Table I, it can be realized that the
computer running time of LKF is the lowest, while that of
UKF is the highest. These results confirm our knowledge on
this. However, it is seen that the running time of these three
algorithms in OB scattering is more than that of LOS. In
fact, the updated stage of UKF and EKF need to compute the
estimated range and angles in LOS, whereas only the estimated
range is computed in OB scattering. In addition, there are two
measurement equations in LOS, while only one is existing in
OB scattering. Therefore, it is reasonable that the running time
of LOS is higher than that of OB scattering.

In this subsection, three algorithms, i.e., EKF, UKF and
LKF, are compared with hybrid TOA/AOD/AOA measure-
ments in LOS or OB scattering condition. From the simulation
results, in any of these conditions, the proposed LKF algorithm
can track the position of MT accurately. Moreover, the com-
parison of running time demonstrates that LKF algorithm has
also the lowest computational time. Therefore, our proposed
LKF algorithms are better methods to track the position of
MT in their respective conditions.
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B. Simulation of Hybrid LOS and OB Scattering Environment

In our simulation, LOS or OB scattering is changed for each
50 samples in an alternate way. The measured range and angle
are generated using the same method mentioned in Section A.
The two-state Markov transition probability matrix for the

M-IMM-LKF algorithm is chosen by T =

[
p11 p12
p21 p22

]
=[

0.95 0.05
0.05 0.95

]
, and the initial prior probabilities are set to

µi = 0.5, i = 1, 2. The probability of detection for I-LKF is
set to Pd = 0.95.

1) Analysis of the proposed tracking algorithms: The per-
formance of the proposed tracking algorithms are affected
by three factors, i.e., the range standard deviation σn, angle
standard deviation σα, σβ , and scattering radius Rd. Fig. 12
provides the CDF of localization error with different σn.
When σn is small, the proposed two algorithms have the same
performance. As it increases, I-LKF is slightly better than M-
IMM-LKF. As shown in Fig. 13, we see that σα, σβ has greater
influence on our proposed algorithms than σn. As the increase
of σα, σβ , the performance is greatly reduced. But, I-LKF is
still superior to M-IMM-LKF . From Fig. 14, it is shown that
Rd has little effect on our proposed algorithms.

2) Comparison with the existing algorithms: Due to the one
propagation path with TOA/AOD/AOA measurement, only
three other algorithms, i.e., NLS [30], IMM [6,11,22], and
DF [31] can be compared. In hybrid LOS and OB scatter-
ing environment, Fig. 15 provides the estimated and actual
trajectories of MT, the CDF of localization error is shown
in Fig. 16, and the ALE versus time instant k is presented
in Fig. 17. From Figs. 15–17, we see that IMM algorithm
is not capable of tracking the position of MT accurately,
and the proposed two algorithms are better than NLS and
DF. When the motion direction of MT is changed and the
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environment.
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LOS/OB scattering transition is happened, large localization
error is present for our proposed algorithms. The reason is the
inaccurate state estimation, and this state needs to be updated
by the TOA/AOD/AOA measurement. After several iterations,
the tracking accuracy is significantly improved. However, the
localization errors of NLS and DF are relatively small, because
these two algorithms do not rely on the state equation, and
directly localize the MT with TOA/AOD/AOA measurements.
Overall, the proposed algorithms are superior to the existing
algorithms. In addition, from Algorithm 6 and Algorithm 7, it
is obvious that the computational complexity of I-LKF is lower
than that of IMM-LKF, and it is not necessary to compare the
actual computational time of these two algorithms. Therefore,
for hybrid TOA/AOA/AOD localization model, both M-IMM-
LKF and I-LKF algorithm can deal with the problem about
the frequent transition between LOS and OB scattering.
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VII. CONCLUSIONS

In this paper, hybrid TOA/AOD/AOA tracking algorithms
with single BS and one path were investigated in different
propagation environments. In LOS propagation environment,
the proposed LKF algorithm had the same localization accu-
racy with the existing EKF and UKF algorithms, but lower
computational time. Moreover, in OB scattering environment,
the performance of the proposed EKF, UKF, and LKF al-
gorithms were evaluated and compared. Simulation results
and running time analysis showed that LKF algorithm was
superior to EKF and UKF algorithms. Finally, practical con-
dition suffered from frequent transition between LOS and OB
scattering was examined, two algorithms referred to as M-
IMM-LKF and I-LKF were proposed to deal with the large
localization error when the transition between the LOS and OB
scattering occurred. it was also demonstrated that the proposed
algorithms could remarkably reduce these localization errors.

REFERENCES

[1] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location: Challenges faced in developing techniques for accurate wireless
location information,” IEEE Signal Process. Mag., vol. 22, no. 4,
pp. 24–40, Jul. 2005.

[2] S. Wu, J. Li, and S. Liu, “Improved localization algorithms based
on reference selection of linear least squares in LOS and NLOS
environments,” Wireless Personal Commun., vol. 68, no. 1, pp. 187–200,
Jan. 2013.

[3] C. Laoudias et al., “A survey of enabling technologies for network
localization, tracking, and navigation,” IEEE Commun. Surveys Tut.,
vol. 20, no. 4, pp. 3607–3644, Jul. 2018.

[4] J. Huang, J. Liang, and S. Luo, “Method and analysis of TOA-
based localization in 5G ultra-dense networks with randomly distributed
nodes,” IEEE Access, vol. 7, pp. 174 986–175 002, Dec. 2019.

[5] D. Gaglione et al., “Classification-aided multitarget tracking using
the sum-product algorithm,” IEEE Signal Process. Lett., vol. 27,
pp. 1710–1714, Sep. 2020.

[6] J. F. Liao and B. S. Chen, “Robust mobile location estimator with NLOS
mitigation using interacting multiple model algorithm,” IEEE Trans.
Wireless Commun., vol. 5, no. 11, pp. 3002–3006, Dec. 2006.

[7] C. Rohrig and M. Muller, “Indoor location tracking in non-line-of-
sight environments using a IEEE 802.15.4a wireless network,” in Proc.
IEEE/RSJ IROS, 2009.

[8] L. Chen and L. Wu, “Mobile localization with NLOS mitigation using
improved Rao-Blackwellized particle filtering algorithm,” in Proc. IEEE
ISCE, 2009.

[9] L. Chen and L. Wu, “Mobile positioning in mixed LOS/NLOS condi-
tions using modifled EKF banks and data fusion method,” IEICE Trans.
Commun., vol. 92-B, no. 1, pp. 1318–1325, Jan. 2009.

[10] L. Chen and R. Piche, “Mobile tracking and parameter learning in
unknown non-line-of-sight conditions,” in Proc. IEEE FUSION, 2010.

[11] U. Hammes and A. M. Zoubir, “Robust mt tracking based on m-
estimation and interacting multiple model algorithm,” IEEE Trans.
Signal Process., vol. 59, no. 7, pp. 3398–3409, Jul. 2011.

[12] X. Zhou, A. Jin, and Q. Meng, “NLOS error mitigation in mobile
location based on modified extended Kalman filter,” in Proc. IEEE
WCNC, 2012.

[13] M. Ulmschneider and C. Gentner, “Multipath assisted positioning for
pedestrians using LTE signals,” in Proc. IEEE/ION PLANS, 2016.

[14] R. M. Vaghefi and R. M. Buehrer, “Cooperative source node tracking in
non-line-of-sight environments,” IEEE Trans. Mobile Comput., vol. 16,
no. 5, pp. 1287–1299, May. 2017.

[15] J. M. Pak, C. K. Ahn, and P. Shi, “Distributed hybrid particle/fir
filtering for mitigating NLOS effects in TOA based localization using
wireless sensor networks,” IEEE Trans. Ind. Electron., vol. 64, no. 6,
pp. 5182–5191, Jan. 2017.

[16] H. Zhang and S. Y. Tan, “TOA based indoor localization and tracking
via single-cluster PHD filtering,” in Proc. IEEE GLOBECOM, 2017.

[17] Y. Zhao, X. Li, Y. Wang, and C. Z. Xu, “Biased constrained hybrid
Kalman filter for range-based indoor localization,” IEEE Sensors J.,
vol. 18, no. 4, pp. 1647–1655, Feb. 2018.

[18] W. Cui, B. Li, L. Zhang, and W. Meng, “Robust mobile location
estimation in NLOS environment using GMM, IMM, and EKF,” IEEE
Systems J., vol. 13, no. 3, pp. 3490–3500, Sep. 2019.

[19] L. Cheng, H. Zhang, D. Wei, and J. Zhou, “An indoor tracking algorithm
based on particle filter and nearest neighbor data fusion for wireless
sensor networks,” Remote Sensing, vol. 22, no. 14, p. 5791, 2022.

[20] S. A. Loytty, N. Sirola, and R. Piche, “Consistency of three Kalman
filter extensions in hybrid navigation,” in Proc. MDOI ENC, 2005.

[21] C. D. Wann, Y. J. Yeh, and C. S. Hsueh, “Hybrid TDOA/AOA indoor
positioning and tracking using extended Kalman filters,” in Proc. IEEE
VTC, 2006.

[22] B. S. Chen, C. Y. Yang, F. K. Liao, and J. F. Liao, “Mobile location
estimator in a rough wireless environment using extended Kalman-
based imm and data fusion,” IEEE Trans. Veh. Technol., vol. 58, no.
3, pp 1157–1169, Mar. 2009.

[23] C. T. Chiang, P. H. Tseng, and K. T. Feng, “Hybrid unified Kalman
tracking algorithms for heterogeneous wireless location systems,” IEEE
Trans. Veh. Technol., vol. 61, no. 2, pp. 702–715, Feb. 2012.

[24] G. D. Angelis, G. Baruffa, and S. Cacopardi, “GNSS/cellular hybrid
positioning system for mobile users in urban scenarios,” IEEE Trans.
Intell. Transp. Syst., vol. 14, no. 1, pp. 313–321, Mar. 2013.

[25] S. Wu, D. Xu, J. Tan, K. Xu, and H. Wang, “Two base station
location techniques with adjusted measurements in circular scattering
environments,” Int. J. Commun. Syst., vol. 29, no. 6, pp. 1073–1083,
Apr. 2016.

[26] X. Sun, X. Gao, G. Y. Li, and W. Han, “Single-site localization based
on a new type of fingerprint for massive mimo-ofdm systems,” IEEE
Trans. Veh. Technol., vol. 67, no. 7, pp. 6134–6145, Jul. 2018.

[27] M. Ruble and I. Guvenc, “Wireless localization for mmwave networks
in urban environments,” EURASIP J. Adv. Signal Process., vol. 35, pp.
61–35, Jun. 2018.

[28] A. Bourdoux, A. N. Barreto, and B. V. Liempd, “6G white paper on
localization and sensing,” in arXiv: 2006.01779, 2020.

[29] A. K. Abdulrhman, Y. E. M. Ali, and S. Younis, “Emerging devel-
opment of wireless localization technologies aided with reconfigurable
intelligent surfaces: A comprehensive survey,” NTU J. Eng. Technol.,
vol. 3, no. 2, pp. 55–74, 2024.

[30] S. Wu, D. Xu, S. Zhang, and D. Huang, “Single base station hybrid
localization with scatter and angle of departure in circular scattering
environment,” Annals Telecommun., vol. 71, pp. 649–655, Jul. 2016.

[31] S. Wu, S. Zhang, K. Xu, and D. Huang, “A weighting localization
algorithm with LOS and one-bound NLOS identification in multipath
environments,” J. Inf. Sci. Eng., vol. 35, no. 6, pp. 1209–1222, Nov.
2019.

[32] S. Wu, Q. Feng, W. Huang, and K. Xu, “Linear cooperative localization
algorithm with TOA/AOA/AOD and multipath,” in Proc. WCCCT, 2021.

[33] S. Wu, M. Li, M. Zhang, K. Xu, and J. Cao, “Single base station hybrid
TOA/AOD/AOA localization algorithms with the synchronization error
in dense multipath environment,” EURASIP J. Wireless Commun. Netw.,
vol. 4, pp. 1–21, Jan. 2022.

[34] B. Qamar, S. Saleh, M. Elhabiby, and A. Noureldin, “A step cLOSer
towards 5G mmwave-based multipath positioning in dense urban envi-
ronments,” in Proc. ION GNSS, 2023.

[35] Z. Li, F. Jiang, H. Wymeersch, and F. Wen, “An iterative 5G positioning
and synchronization algorithm in NLOS environments with multi-
bounce paths,” IEEE Wireless Commun. Lett., vol. 12, no. 5, p. 804–808,
May. 2023.

[36] B. Y. Shikur, M. Farmani, and T. Weber, “TOA/AOA/AOD-based 3-D
mobile terminal tracking in NLOS multipath environments,” in Proc.
WPNC, 2012.

[37] Y. Zhicheng, J. Vinogradova, G. Fodor, and P. Hammarberg, “Vehicular
positioning and tracking in multipath non-line-of-sight channels,” in
Proc. IEEE VTC, 2022.

[38] X. Zhao, F. Tian, and Z. Shao, “Localization and tracking using
ODE-LSTM algorithm with non-line-of-sight channels,” in Proc. IEEE
ISPA/BDCloud/SocialCom/SustainCom, 2023.

[39] J. G. Andrews et al., “Modeling and analyzing millimeter wave cellular
systems,” IEEE Trans. Commun., vol. 65, no. 1, pp. 403–430, 2016.

[40] V. Y. Zhang and K. S. Wong, “Combined AOA and TOA NLOS local-
ization with nonlinear programming in severe multipath environments,”
in Proc. IEEE WCNC, 2009.

[41] H. Miao, K. Yu, and M. J. Juntti, “Positioning for NLOS propagation:
Algorithm derivations and Cramer–Rao bounds,” IEEE Trans. Veh.
Technol., vol. 56, no. 5, pp. 2568–2580, Sep. 2007.

[42] C. K. Seow and S. Y. Tan, “Non-line-of-sight localization in mul-
tipath environments,” IEEE Trans. Mobile Computing, vol. 7, no. 5,
pp. 647–660, May. 2008.



WU et al.: SINGLE BASE STATION TRACKING APPROACHES WITH HYBRID ... 631

[43] E. A. Wan and R. B. D. Merwe, “The unscented Kalman filter for
nonlinear estimation,” in Proc. IEEE AS-SPCC, 2000.

[44] M. Briers, S. R. Maskell, and R. Wright, “A Rao-Blackwellised un-
scented Kalman filter,” in Proc. IEEE FUSION, 2003.

[45] S. A. Jazzar, J. Caffery, and H. R. You, “Scattering-model-based methods
for TOA location in NLOS environments,” IEEE Trans. Vehicular
Technology, vol. 56, no. 2, pp. 583–593, Mar. 2007.

[46] S. Wu, D. Xu, and H. Wang, “Joint TOA/AOA location algorithms with
two BSs in circular scattering environments,” WSEAS Trans. Commun.,
vol. 14, pp. 235–240, Jul. 2015.

Shixun Wu was born in HuBei, China. He received
the B.S. and M.S. degrees in Applied Mathematics in
2006 and 2009, respectively. He received the PH.D.
Degree in 2012 at the Department of Electrical
and Computer Engineering, Central China Normal
University, China. Currently he is a Vice-Professor
at College of Information Science and Engineering,
Chongqing Jiaotong University. He is also a Vice-
Dean at Department of Communication Engineering.
His current research interests include wireless lo-
calization, neural network localization, and wireless

communication.

Miao Zhang (S’18, M’20) received his B.Sc. de-
gree in Optical Information Science and Technology
from Guizhou University, Guiyang, China, M.Sc.
in Communications and Signal Processing from the
University of Newcastle upon Tyne, Newcastle upon
Tyne, UK, and the PhD from the University of York,
York, UK in 2011, 2015 and 2020, respectively. He
is currently an Associate Professor at the School
of Information Science and Engineering, Chongqing
Jiaotong University, Chongqing, China. His research
interests are convex optimization techniques, intelli-

gent reflecting surface assisted wireless networks, physical layer security and
machine learning techniques for wireless communications.

Kanapathippillai Cumanan (Senior Member,
IEEE) received the B.Sc. degree (with first class
Hons.) in Electrical and Electronic Engineering from
the University of Peradeniya, Sri Lanka, in 2006
and the Ph.D. degree in Signal Processing for Wire-
less Communications from Loughborough Univer-
sity, Loughborough, U.K., in 2009. He is currently
a Senior Lecturer with the School of Physics, Engi-
neering and Technology, University of York, York,
U.K. From March 2012 to November 2014, he was
a Research Associate with the School of Electrical

and Electronic Engineering, Newcastle University, Newcastle upon Tyne, U.K.
Prior to this, he was with the School of Electronic, Electrical and System
Engineering, Loughborough University, Loughborough, U.K. In 2011, he
was an Academic Visitor with the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore. From January 2006
to August 2006, he was a Teaching Assistant with the Department of Electrical
and Electronic Engineering, University of Peradeniya, Sri Lanka. He has
authored or coauthored more than 100 journal articles and conference papers.
His research interests include non-orthogonal multiple access (NOMA), cell-
free massive MIMO, Open-RAN, WiFi networks, physical layer security,
convex optimization techniques, and resource allocation techniques. He is
currently an Associate Editor for IEEE JSAC-MACHINE LEARNING IN
COMMUNICATIONS AND NETWORKS, IEEE WIRELESS COMMUNI-
CATIONS LETTERS and IEEE OPEN JOURNAL OF COMMUNICATIONS
SOCIETY. Dr. Cumanan was the recipient of an Overseas Research Student
Award Scheme (ORSAS) from Cardiff University, Wales, U.K., where he was
a Research Student between September 2006 to July 2007.

Kai Xu was born in 1970. He received M.S. degree
in Control Theory and Control Engineering from
Chongqing University in 2006. From 1993 to 2003,
he was Senior Engineer in Xichang Satellite Launch-
ing Center. Since 2008, he is a Professor at college
of Information Science and Engineering, Chongqing
Jiaotong University. Prof. Xu is an Expert Commis-
sioner of Chongqing Science and Technology Com-
mission and Chongqing Construction Commission.
His current research interests include fuzzy control,
adaptive control, and intelligent algorithm.

Zhangli Lan was born in 1973. He received the
B.S degree in communication from the Electronic
Engineering College, Hefei, China, in 1997, the
M.S. degree in Computer System Structure from
Chongqing University, Chongqing, China, in 2004,
and the Ph. D.degree in Computer Software and The-
ory from Chongqing University, Chongqing, China,
2008. From 2011, he has been a Professor with
the School of Information Science and Engineering,
Chongqing Jiaotong University, Chongqing, China.
His current research interests include digital image

processing, pattern recognition, and traffic information processing.


