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Green Behavior Diffusion with Positive and
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Abstract—How to comprehend the relationship between in-
formation spreading and individual behavior adoption is an
essential problem in complex networks. To this end, a novel two-
layer model to depict the diffusion of green behavior under the
impact of positive and negative information is proposed. Positive
information motivates people to adopt green behavior, while
negative information reduces the adoption of green behavior. In
the model, the physical contact layer describes the green behavior
diffusion, and the information layer describes the positive and
negative information spreading. Moreover, the social interactions
of individuals in two layers change with time and are illustrated
by an activity-driven model. Then, we develop the probability
transition equations and derive the green behavior threshold.
Next, experiments are carried out to confirm the preciseness
and theoretical predictions of the new model. It reveals that
the prevalence of green behavior can be promoted by restraining
the negative information transmission rate and recovery rate of
the green nodes while facilitating the positive information trans-
mission rate and green behavior transmission rate. Additionally,
reducing the positive information recovery rate and the recovery
rate of the green nodes, and increasing the rates of forgetting
negative information are beneficial for encouraging the outbreak
of green behavior. Furthermore, in the physical contact layer,
higher contact capacity and greater activity heterogeneity sig-
nificantly facilitate green behavior spreading. In the information
layer, smaller contact capacity and weaker activity heterogeneity
promote diffusion when negative information dominates, whereas
larger contact capacity and stronger activity heterogeneity are
beneficial when positive information prevails.

Index Terms—Green behavior diffusion, multiplex network,
negative information, positive information, time-varying.
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I. INTRODUCTION

A. Background and Motivation

IN the era of global warming, reducing carbon emissions
has become an essential issue, capturing worldwide atten-

tion [1]. An increasing number of individuals have become
conscious of the perilous state of our environment and energy
sources, and are strongly advocating green behavior. Green
behavior is the activities of individuals or social organizations
who embrace the world’s green principles, such as opting
for recycling materials, public transportation, efficiently uti-
lizing energy, and safeguarding the species and living en-
vironment [2]. Given the critical role that green behavior
plays in mitigating environmental degradation, it is essential
to understand how these behaviors spread through populations
to effectively promote sustainable practices.

To understand how green behavior spreads, it is essential
to consider the context of complex networks, which are
ubiquitous in various systems such as cells, the human brain,
ecosystems, and the Internet [3]. Based on the theory of
complex networks, researchers can more accurately model the
diffusion process, such as information diffusion [4], green
behavior diffusion [2], and rumor diffusion [5]. Since green
behavior diffusion is often considered to be similar to epidemic
diffusion, many researchers simulate the diffusion dynamics
of green behavior based on the classical epidemic spreading
model [6]. However, real-world systems are frequently asso-
ciated with each other, complex systems may be made up of
several interacting sub-systems [7]. For instance, the power
grids frequently rely on the communication systems to transmit
the controlling signals, while communication systems typically
depend on power grids for their operation [8]. Additionally,
offline people persuade their friends to adopt one thing (opin-
ion, product, or service) through word-of-mouth, while online
information cascades through social networks can influence
offline behavior [9]. As a result, investigating the dynamics
and structure on top of multi-layer networks is currently a hot
topic in the study of complex systems.

As network technology has advanced, online social net-
works have evolved into a momentous stage for people to
communicate, exchange information, and share files [10]. With
the growing concern about environmental issues, information
related to green behavior propagating through online social
networks, may wield considerable influence on the adoption
of green behavior [11]. Once individuals acquire information
about green behavior from online social networks, they are
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likely to adopt corresponding green behavior to protect the
environment [12]. Actually, plenty of connections among ac-
tual individuals take place at different levels and exert mutual
effects. Hence, a two-layer network should be considered to
depict the dynamic interplay between green behavior spreading
and information diffusion [6].

Nowadays, multiplex networks have gained widespread to
model the dynamic propagation process among individuals at
different layers [13]. In a multiplex network, there are two
layers: the information layer and the physical contact layer.
These layers interact and influence each other, providing a
more comprehensive framework to study the spread of green
behavior and the diffusion of information.

Even though the previous models properly depict the rela-
tionship between information diffusion and green behavior, the
spread of green behavior reveals some novel characteristics.
Many works focused on the impact of a single type of
information on green behavior, for example, all people are
likely to receive messages that support green behavior. In
practice, individuals may exhibit different attitudes toward
green behavior, and individuals’ behavior may display signif-
icant heterogeneity [14]. Specifically, when green behaviors
propagate in the physical contact layer, some negative informa-
tion regarding green behavior emerges, which can potentially
discourage individuals from adopting green behavior [15].
For example, when it comes to commutes, some people in
remote areas contend that car-dependent lifestyles normalize
their recreation, work, and residence, and green behavior may
reduce the convenience of people’s lives [16]. Moreover, with
regard to the purchase of green goods, some people think
that the green feature is accompanied by premium pricing
which leads to them giving up green goods [17]. In reality,
customers will not compromise their requirements or desires
for the sake of environmental sustainability. Conversely, in
order to reduce carbon emissions and preserve energy, some
people actively promote and practice green behavior. Hence,
there are typically two forms of information about green
behavior that propagate simultaneously on social networks: 1)
positive information; and 2) negative information. People can
be influenced by different information about green behavior
in online social networks to decide whether they adopt green
behavior. Therefore, it is imperative to delve into the effect of
various information on the dissemination of green behavior.

Additionally, many studies focus on the spreading model
in static networks. Static connections and interactions are
approximations, representing time-aggregated versions of ac-
tual interactions [18]. In other words, these models can be
characterized as connectivity models, where the connections
between individuals are long-lasting elements [19]. This ap-
proach completely ignores the time-varying nature of connec-
tivity patterns. Actually, with the prevalence of diverse social
networks, interactions among individuals are often rapidly
changing and occur within a very short timeframe, such as
mobile calls between individuals or the rapid diffusion of
information through email [20]. To more accurately understand
spreading dynamics in the real world, it is essential to consider
the time-dependent interactions between network layers [21].
Therefore, in this paper, we consider the time-varying multi-

plex networks to describe the dynamic interplay between the
information layer and the physical contact layer.

B. Main Contributions

For the sake of getting over the restrictions men-
tioned above, we develop a new dynamics model called
UA1A2U − SGS model, which can precisely depict the pro-
cess of green behavior propagation. Moreover, we consider
time-varying interactions in networks to make the model
more grounded in reality. This paper’s main contributions are
summarised below.

1) UA1A2U − SGS model: Considering the educational
background, the accumulation of knowledge, income,
region, etc., individuals have different levels of percep-
tions, which leads to different attitudes toward green
behaviors. Specifically, there exist typically two forms of
information about green behavior that propagate in social
networks: Positive information and negative information.
People can be simultaneously influenced by two types
of information about green behavior in online social net-
works to decide whether they adopt green behavior. Then,
we propose the UA1A2U − SGS model for analyzing
the interaction between green behavior and information,
which utilizes two-layered multiplex networks.

2) Time-varying multiplex networks: Considering interac-
tions among individuals frequently change over time in
real-world scenarios, time-varying networks can more
accurately capture the fundamental characteristics of
complex systems [22]. Thus, we adopt the activity-driven
network to describe the physical contact layer and infor-
mation layer, making both layers time-varying.

3) Green behavior threshold: Predicting the threshold for
the propagation of green behavior holds profound signif-
icance in safeguarding the environment. Thus, we calcu-
late the green behavior threshold of the UA1A2U−SGS
model using the microscopic Markov chain.

C. Outline

The paper is organized as follows. We review the related
works in Section II. We develop a novel dynamics model of
the green behavior and information propagation in multiplex
networks in Section III. In Section IV, we compute the green
behavior threshold by the microscopic Markov chain. The
extensive simulations are conducted in Section V. Lastly, the
conclusions of this paper are clarified in Section VI.

II. RELATED WORK

A. The Development of Green Behavior Model

The topic of green sustainable development has grown in
prominence as a significant human concern. Understanding
the dynamics of how green behavior spreads can significantly
enhance the effectiveness of interventions aimed at promoting
sustainable practices.

In single-layer networks, the green behavior spreading
model typically involves analyzing the factors that influence
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green behavior, such as environmental education [23], energy
price [24], environmental activist behavior [25], and trans-
portation [26]. Li et al. [27] combined the game theory with
green behavior, and found that people tend to prioritize adopt-
ing green behavior when they display a lower activity rate or
higher connectivity. Wang et al. [28] investigated the impact of
information regarding green attributes and green certification
on consumer perceptions. Geng et al. [15] proposed a three-
color theoretical model, exploring motivation and behavior
in a two-dimensional context. Kyoi et al. [29] developed a
dynamic model in social networks to depict the spread of pro-
environmental behaviors and identify promising approaches
for supporting them.

Moving beyond single-layer networks, researchers have
explored the diffusion of green behavior in multiplex networks.
Multiplex networks provide a more realistic representation of
social systems, capturing the complexity of how individuals
interact across various contexts such as family, work, and
social circles. The advent of online social networks has
witnessed an unparalleled surge in their adoption, profoundly
transforming the landscape of interpersonal communication
and prompting extensive research into their impacts on offline
user behavior [30], such as green behavior [31], voting [32],
health behavior [33], and epidemic spreading [34]. Therefore,
many studies focused on the coupled diffusion of information
on online social networks and green behavior in the physical
contact layer. Gao et al. [35] investigated green behavior and
knowledge propagation in multiplex networks and found that
government policies are critical to green behavior diffusion.
According to the Microscopic Markov Chain Approach, Li et
al. [11] investigated the influence of information propagation
on green behavior spreading in multiplex networks. Li et
al. [31] investigated the effects of negative information diffu-
sion on green behaviors employing the HGBS model. Yin et
al. [2] developed a dynamic model to depict that green
behavior spreading is not only related to green information
but also influenced by changes in social relationships.

B. The Development of the Time-varying Multiplex Networks

Temporal networks allow information and green behavior
propagation along links only when they exist in time, and this
leads to considerable influences on propagation efficiency [36].
Currently, the activity-driven model is one of the main time-
dependent systems, which highlights the structure’s response
to its dynamics. The activity-driven model is simple in its basic
form and produces a nontrivial temporal structure that affects
how dynamical processes develop [37]. Due to its simplicity,
the initial activity-driven model is unable to reproduce some
common characteristics of social networks, such as memory
effects, and assortative mixing [38]. Thanks to these reasons,
modifications to the initial model have been implemented and
investigated [39]. Chai et al. [40] introduced activity-driven
networks to characterize realistic temporal networks, and the
node-based SIRS model was used to depict the dissemination
dynamics from a microcosmic aspect. Pozzana et al. [41]
studied SIS spreading processes using a recently developed
extension of the activity-driven modeling framework.

Based on the activity-driven model, scholars have extended
their work to multiplex networks. Guo et al. [42] considered
that the layer of information is an activity-driven network,
whereas the layer of physical contact is a static network.
Li et al. [43] regarded information spreading network as a
static network, while physical contact network is time-varying.
Yang et al. [18] depicted information and epidemic diffusion
in an activity-driven multiplex network. Huang et al. [44]
analyzed the dynamic model of epidemic propagation and
resource dissemination in time-varying multiplex networks.
Unfortunately, research on green behavior in time-varying
multiplex networks is scarce. Therefore, we focus on the dif-
fusion of green behavior in time-varying multiplex networks.

III. COUPLED DYNAMIC MODEL OF INFORMATION
SPREADING AND GREEN BEHAVIOR DIFFUSION

A. Time-varying Multiplex Networks

Given that human behavior is generally transmitted through
face-to-face interactions, those who live or work in close
proximity often have a substantial influence on your behavior.
Thus, green behavior propagates through a physical contact
network, wherein the connections represent relationships with
individuals you encounter daily, such as colleagues, neighbors,
and family members. Moreover, messages about green behav-
ior diffuse through an information network, where the con-
nections represent relationships with individuals with whom
you share information. Once individuals acquire information
about green behavior from an information network, they are
likely to adopt corresponding green behavior to protect the
environment. Therefore, in addition to regular physical contact,
this network should also encompass connections established
through digital communication channels [11].

To depict the dynamic interaction between the dissemination
of green behavior and information, two-layered multiplex
networks are utilized. The lower layer is the physical contact
network P , illustrating the spread of green behavior, while the
upper layer is the information network V , such as Facebook or
WeChat, focusing on the dissemination of information related
to green behavior. Specifically, in two-layered networks, the
mapping relation between associated individuals is one-to-
one, which means each individual exists concurrently in the
information layer and the physical contact layer [45]. Addi-
tionally, each edge in the two-layered network is assumed to
be unweighted and undirected.

We employ the activity-driven model to create each layer of
the networks. Fig. 1 displays the procedures involved in build-
ing the time-varying multiplex network. The network consists
of N nodes, each with a fixed activity level that determines
the chance of the node being activated and establishing new
connections with other nodes. Specifically, in the information
layer V , the activity level of the node i is ai = ηvxi, and in
the physical contact layer P is bi = ηpyi. Parameters of xi and
yi represent the activity potentials following power-law distri-
butions Fv (x) ∝ x−γv and Fp (x) ∝ y−γp , respectively [46].
Parameters of ηv and ηp are the rescaling factors. Moreover,
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Fig. 1. Schematic diagram of the coupled UA1A2U−SGS model in time-varying multiplex networks. The upper layer is the information layer V representing
the diffusion of positive and negative information, where nodes have three possible states: U (unaware of green information ); A1 (aware of positive green
information); and A2 (aware of negative green information). The lower one is the physical contact layer P describing the green behavior propagation,
where nodes also have two possible states: susceptible (S) and green (G). The dotted lines connecting two layers denote the one-to-one relationship between
individuals. Each node has its corresponding activity level. (a) Firstly, some isolated nodes in the two layers with different activity levels. In the physical
contact layer, nodes 3 and 7 are randomly chosen as green nodes. Thus, the two individuals in the information layer are in the state of A1, and the others
are in the state of US,A1S and A2S. (b) Secondly, according to the activity levels of nodes, an instantaneous network is generated that nodes 2, 6, and 7 in
the physical contact layer and nodes 3, and 4 in the information layer are activated, as shown by a red number near each node. Each active node generates
2 inks to randomly connect other nodes. For example, node 2 receives information from node 3 in the layer V , and node 4 receives information from node
5 in the layer V . In the layer P , node 8 is infected by node 7 and turns to the state of A1 in the layer V . All connections are eliminated at the subsequent
step and the step of (b) is repeated until the diffusion has either ceased or achieved a stationary state in both layers.

parameters of γv and γp refer to activity exponents of the
upper and lower layers, respectively [47].

Definition 1: (Activity-driven network) Based on the con-
figurations, the generative steps of the activity-driven net-
work (ADN) are as follows.
• At time t, each layer is comprised of N nodes that are

separated from each other, and there exists a one-to-one
relationship between nodes in two layers.

• The node i becomes active with a probability of ai∆t
(bi∆t), and produces mv (mp) connections to other nodes
that are chosen at random.

• At the next time step t+∆t, we remove all connections
and repeat the first and second phases until the diffusion
reaches a stationary state or is terminated in both layers.

B. The Description of the UA1A2U − SGS Model

In the upper layer, the UA1A2U model is proposed to
depict the green information diffusion. Nodes in this layer are
divided into three groups: U (unaware of green information);
A1 (aware of positive green information); and A2 (aware of
negative green information). People in state A1 receive positive
messages and agree on the importance of green behavior which
contributes to adopting green behavior. Yet, people in state A2

receiving negative information, such as the inconvenience of
transport [15], and relatively high expenses of green consump-
tion [48], are not conducive to adopting green behavior. People
in states A1 and A2 will spread information about the positive
and negative information of green behavior to their neighbors
in multiplex networks, respectively. In addition, individuals
have not received any information on green behavior in the
state U , but can get it by communicating with aware neighbors.

In the lower layer, the SGS green behavior model is
employed to represent the green behavior diffusion. Then,
individuals are divided into two groups: 1) S (susceptible)

Fig. 2. The possible state transition for the UA1A2U − SGS model. The
US nodes will receive the corresponding information disseminated by the
spreaders of positive or negative information and turn to the state of A1S
or A2S. Moreover, nodes in states A1S and A2S may change into the state
US because of forgetting or losing interest in the green information. The
US, A1S and A2S nodes may be infected by the green nodes and transfer
to the state of A1G. Besides, green nodes will also give up practicing green
behavior and return to the state of US, A1S or A2S.

and 2) G (green). On the one hand, the green node encourages
the susceptible individuals to follow the green behavior, and
on the other hand, they can abandon the green behavior
due to price, income, or other reasons and return to the S
state. Susceptible nodes have the potential to adopt the green
behavior by contacting a green individual.

Based on the coupling of information diffusion and green
behavior propagation, there exist six states: US, UG, A1S,
A1G, A2S, and A2G. Moreover, once individuals are in the
green state, they must be aware of the information about
green behavior and thus UG cannot be included in the
model. Additionally, if nodes are in the green state, they
will transmit positive information to encourage neighbors to
follow green behavior, and thus A2G is excluded from the
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model. Therefore, we only consider four potential states in
multiplex networks: 1) A1S (who is susceptible and aware
of positive information); 2) A2S (who is susceptible and
aware of negative information); 3) US (who is susceptible
and unaware of any information); and 4) A1G (who is green
and aware of positive information). Additionally, we assume
that if an individual accepts a specific type of information,
they are unlikely to accept any other information. Fig. 2
displays the diagram of the potential state transition for the
UA1A2U − SGS model.

According to the above description of different states, the
propagation rules for the UA1A2U − SGS model can be
summarized as follows.

• The US nodes will receive the corresponding information
disseminated by the spreaders of positive or negative
information at rates λ1 and λ2, respectively.

• Nodes in states A1S and A2S may return to the state
US because of forgetting or losing interest in the green
information at the recovery rate δ1 and δ2, respectively.
Furthermore, green nodes do not forget the positive
information about green behavior before they give up
practicing green behavior.

• When susceptible nodes come into contact with green
nodes, their behaviors receive the influence of a green
neighbor and are infected to be green nodes. The green
nodes can propagate green behavior to their susceptible
neighbors with probability β.

• Besides, green nodes will also give up practicing green
behavior with a recovery rate µ.

Parameters γ1 and γ2
(
1 ≤ γ1 ≤ 1/βU , 0 ≤ γ2 ≤ 1

)
are

used to control the impact of positive nodes and negative
nodes in the information layer on the physical contact layer,
respectively. Compared with unaware nodes, aware nodes
whose state is A1S are more inclined to act in an ecologically
beneficial way, and nodes whose state is A2S are skeptical of
green behavior [49]. Thus, we use γ1 and γ2 to distinguish
the adoption rate among A1S, A2S, and US nodes. If an
individual is in the state of US, its adoption rate of green
behavior is βU , while adoption rates of A1S and A2S nodes
are represented by βA1 = γ1β

Uand βA2 = γ2β
U . When the

values of γ1 and γ2 are bigger, the nodes are more likely
to practice green behavior. In particular, when γ1 = 1 and
γ2 = 1, interactions between two layers disappear, and the
configuration is equal to executing the dynamic diffusion in
the single-layer network.

IV. THEORETICAL ANALYSIS BASED ON THE
MICROSCOPIC MARKOV CHAIN APPROACH

Based on the microscopic Markov chain (MMC) ap-
proach [50], the green behavior threshold βc is derived. In
our model, there exist four possible states: 1) A1S; 2) A2S;
3) US; and 4) A1G. At time t, the possibility that a node i is
in each of the four states can be defined as PA1S

i (t), PA2S
i (t),

PUS
i (t), and PA1G

i (t), respectively. Moreover, the normalized
condition PA1S

i (t) + PA2S
i (t) + PA1G

i (t) + PUS
i (t) = 1

should be satisfied. The notations of all symbols are shown in
Table I.

In the upper layer, at time t, the probability of the node i is
not informed of positive or negative information by rA1

i (t) and
rA2
i (t), respectively. Additionally, if the node is not informed

of the positive or negative information, at the time step t,
the possibility that the node will not affected by neighbors
is defined as qUi (t). Similarly, the possibility that the node i
in the physical layer in A1 or A2 is not affected by its green
neighbors is expressed as qA1

i (t) and qA2
i (t), respectively. The

expressions of rA1
i (t) and rA2

i (t) are described as follows:

rA1
i (t) =

∏
j

[
1− λ1

mv

N
PA1
j (t) (ai + aj)

]
, (1)

rA2
i (t) =

∏
j

[
1− λ2

mv

N
PA2
j (t) (ai + aj)

]
, (2)

where PA1
j (t) = PA1S

j (t) + PA1G
j (t) and PA2

j (t) =

PA2S
j (t). According to the theory of the activity-driven

model [21], the expression for mvP
A1
j (t) (ai + aj) /N is the

possibility that i and j in the information layer are neighbors,
where the first part mvaiP

A1
j (t) /N represents the active

node i that establishes a connection with node j that is in the
state A1 and the other part mvajP

A1
j (t) /N represents the

individual i receiving a connection from the active individual
j in the state A1. The expression for mvP

A2
j (t) (ai + aj) /N

represents the possibility that the node i and j in the state
A2 are neighbors in the information layer. Similarly, the
expressions of qUi (t), qA1

i (t), and qA2
i (t) are described as

follows:

qA1
i (t) =

∏
j

[
1− βA1

mp

N
PA1G
j (t) (bi + bj)

]
, (3)

qA2
i (t) =

∏
j

[
1− βA2

mp

N
PA1G
j (t) (bi + bj)

]
, (4)

qUi (t) =
∏
j

[
1− βU mp

N
PA1G
j (t) (bi + bj)

]
, (5)

where mpP
A1G
j (t) (bi + bj) /N is the possibility that i and

j in the physical contact layer which is in the A1G state are
neighbors. Based on the above definitions, Fig. 3 shows the
probability trees of different states in multiplex networks.

The features of the asymmetrically interacting diffusion
dynamics in time-varying multiplex networks suggest that
the microscopic Markov chain approach should be employed
for theoretical analysis and prediction. According to (1)–(5)
and the probability trees in Fig. 3, the transition equations
for different states can be developed by utilizing MMC [51]
in (6), where PUS

i (t+ 1) , PA1S
i (t+ 1) , PA2S

i (t+ 1), and
PA1G
i (t+ 1) denote the possibility that the node i will be

in the state of US, A1S, A2S, and A1G at the following
time step. The system will obtain the stationary solution when
t → ∞, and satisfying the following relations.

PUS
i (t+ 1) = PUS

i (t) = PUS
i ,

PA1S
i (t+ 1) = PA1S

i (t) = PA1S
i ,

PA2S
i (t+ 1) = PA2S

i (t) = PA2S
i ,

PA1G
i (t+ 1) = PA1G

i (t) = PA1G
i ,

(7)
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TABLE I
DEFINITIONS OF SOME KEY QUANTITIES OR PARAMETERS IN THE PROPOSED GREEN BEHAVIOR MODEL.

Notation Description
N Number of nodes in networks.
ai The activity level of the node i in the information layer.
bi The activity level of the node i in the physical contact layer.
mv The number of connections the active nodes generate in a time step in the information layer.
mp The number of connections the active nodes generate in a time step in the physical contact layer.
ηv Rescaling factor in the information layer.
ηp Rescaling factor in the physical contact layer.
xi Activity potential of the node i in the information layer.
yi Activity potential of the node i in the physical contact layer.

Fv (x) The distribution of the node’s activity potential in the information layer.
Fp (y) The distribution of the node’s activity potential in the physical contact layer.
γv Activity exponent of the information layer.
γp Activity exponent of the physical contact layer.
λ1 Positive information transmission rate.
λ2 Negative information transmission rate.
δ1 Positive information recovery rate.
δ2 Negative information recovery rate.
β Green behavior transmission rate.

βA1 Green behavior transmission rate for A1 node.
βA2 Green behavior transmission rate for A2 node.
βU Green behavior transmission rate for U node.
µ Recovery rate of green nodes.
γ1 The parameter controls the impact of the positive information on the physical contact layer.
γ2 The parameter controls the impact of the negative information on the physical contact layer.

rA1
i (t) The probability that the node i is not informed of positive information at the time step t.
rA2
i (t) The probability that the node i is not informed of negative information at the time step t.
qA1
i (t) The probability of the node i in A1 is not infected by its neighbors in the physical layer at the time step t.
qA2
i (t) The probability of the node i in A2 is not infected by its neighbors in the physical layer at the time step t.
qUi (t) The probability of the node i in U is not infected by its neighbors in the physical layer at the time step t.

where PUS
i , PA1S

i , PA2S
i , and PA1G

i stand for the proportions
of nodes in US, A1S, A2S, and A1G at the steady state.

Identifying the extent to which green behavior can be widely
adopted is significant. Then, we analyze the green behavior
threshold βc. If βU > βc, the green behavior begins to break
out, while βU < βc, a large proportion of the people do not
embrace green behavior. Hence, the proportion of green nodes
is near 0 when βU is close to βc at the steady state, and we
can assume that PA1G

i = ϵi ≪ 1. According to (3)–(5), the
higher-order terms can be disregarded, yielding the following
approximation.

qA1
i (t) ≈ 1− βA1mp

(
biρ

A1G + θA1G
b

)
,

qA2
i (t) ≈ 1− βA2mp

(
biρ

A1G + θA1G
b

)
,

qUi (t) ≈ 1− βUmp

(
biρ

A1G + θA1G
b

)
,

(8)

where ρA1G =
∑
j

PA1G
j (t)/N , and θA1G

b =
∑
j

bjP
A1G
j /N .

For simplicity, we can define that αA1
i = βA1mp

(
biρ

A1G

+θA1G
b

)
, αA2

i = βA2mp

(
biρ

A1G + θA1G
b

)
, and αU

i =

βUmp

(
biρ

A1G + θA1G
b

)
. As a result, the expression of (6)

PUS
i (t+ 1) = PA1S

i (t) δ1q
U
i (t) + PA2S

i (t) δ2q
U
i (t) + PA1G

i (t) δ1µ+ PUS
i (t) rA1

i (t) rA2
i (t) qUi (t)

PA1G
i (t+ 1) = PA1S

i (t)
{
δ1

[
1− qUi (t)

]
+ (1− δ1)

[
1− qA1

i (t)
]}

+ PA1G
i (t) (1− µ) + PUS

i (t)
{
rA1
i (t) rA2

i (t)[
1− qUi (t)

]
+
[
1− rA1

i (t)−
(
1− rA1

i (t)
)(

1− rA2
i (t)

)] [
1− qA1

i (t)
]
+

[
1− rA2

i (t)
] [

1− qA2
i (t)

]}
+ PA2S

i (t)
{
δ2

[
1− qUi (t)

]
+ (1− δ2)

[
1− qA2

i (t)
]}

PA1S
i (t+ 1) = PA1S

i (t) (1− δ1) q
A1
i (t) + PUS

i (t)
[
1− rA1

i (t)−
(
1− rA1

i (t)
)(

1− rA2
i (t)

)]
qA1
i (t)

+ PA1G
i (t) (1− δ1)µ

PA2S
i (t+ 1) = PA2S

i (t) (1− δ2) q
A2
i (t) + PUS

i (t)
[
1− rA2

i (t)
]
qA2
i (t)

(6)
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can be converted into the subsequent form:

PUS
i = PA1S

i δ1
(
1− αU

i

)
+ PA2S

i δ2
(
1− αU

i

)
+ PA1G

i δ1µ+ PUS
i rA1

i rA2
i

(
1− αU

i

)
,

PA1G
i = PA1S

i

[
δ1α

U
i + (1− δ1)α

A1
i

]
+ PA2S

i

[
δ2α

U
i

+(1− δ2)α
A2
i

]
+ PUS

i

[(
1− rA1

i

)
rA2
i αA1

i

+rA1
i rA2

i αU
i +

(
1− rA2

i

)
αA2
i

]
+ PA1G

i (1− µ) ,

PA1S
i = PA1S

i (1− δ1)
(
1− αA1

i

)
+ PA1G

i (1− δ1)µ

+ PUS
i

(
rA2
i − rA1

i rA2
i

)(
1− αA1

i

)
,

PA2S
i = PA2S

i (1− δ2)
(
1− αA2

i

)
+ PUS

i

(
1− rA2

i

)
(
1− αA2

i

)
.

(9)

Next, the higher-order components of (9) can be ignored to
further simplify the equation.

PUS
i = PA1S

i δ1 + PA2S
i δ2 + PUS

i rA1
i rA2

i ,

PA1S
i = PA1S

i (1− δ1) + PUS
i

(
rA2
i − rA1

i rA2
i

)
,

PA2S
i = PA2S

i (1− δ2) + PUS
i

(
1− rA2

i

)
,

PA1G
i = PA1S

i

[
δ1α

U
i + (1− δ1)α

A1
i

]
+ PA2S

i

[
δ2α

U
i

+ (1− δ2)α
A2
i

]
+ PUS

i

[(
1− rA1

i

)
rA2
i αA1

i

+ rA1
i rA2

i αU
i +

(
1− rA2

i

)
αA2
i

]
+ PA1G

i (1− µ) .

(10)

Based on the first three equations in (10), the last equation in
(10) can be simplified.

µPA1G
i = αU

i

(
PA1S
i δ1 + PA2S

i δ2 + PUS
i rA1

i rA2
i

)
+ αA1

i

[
PA1S
i (1− δ1) +

(
1− rA1

i

)
rA2
i PUS

i

]
+ αA2

i

[
PA2S
i (1− δ2) + PUS

i

(
1− rA2

i

)]
= αU

i P
US
i + αA1

i PA1S
i + αA2

i PA2S
i .

(11)

Next, (11) can be simplified as:

µPA1G
i = βUmp

(
biρ

A1G + θA1G
b

)
PUS
i + βA1mp(

biρ
A1G + θA1G

b

)
PA1S
i + βA2mp

(
biρ

A1G

+θA1G
b

)
PA2S
i

= βmp

(
biρ

A1G + θA1G
b

)(
PUS
i + PA1S

i γ1

+PA2S
i γ2

)
.

(12)

Meanwhile, the system reaches a steady state when PA1S
i +

PA1G
i = PA1

i , and PA2S
i = PA2

i . Given that the proportion of
green nodes can be negligible when the value of β is close to
βc at the steady state, we can obtain PA1S

i +PA2S
i ≈ PA1

i +
PA2
i , and PUS

i = 1−PA1S
i −PA2S

i ≈ 1−PA2
i −PA1

i . Hence,
in accordance with (12), we obtain the following equation:

µPA1G
i =

(
1− PA2

i − PA1
i + PA1S

i γ1 + PA2S
i γ2

)
βmp

(
biρ

A1G + θA1G
b

)
=

(
1− PA2

i − PA1
i + PA1

i γ1 + PA2
i γ2

)
βmp

(
biρ

A1G + θA1G
b

)
=

[
1− (1− γ1)P

A1
i −

(
(1− γ2)P

A2
i

)]
βmp

(
biρ

A1G + θA1G
b

)
.

(13)

Next, (13) can be further expressed as:

µPA1G
i = βmp

[
biρ

A1G − (1− γ1) biρ
A1GPA1

i −

(1− γ2) biρ
A1GPA2

i + θA1G
b − (1− γ1)P

A1
i

θA1G
b − (1− γ2)P

A2
i θA1G

b

]
.

(14)

To obtain the proportion of the green node, we can take the
average over all nodes, and obtain the next equation:

µρA1G =
µ

N

∑
i

PA1G
i . (15)

Combining (14) and (15), we get:

µρA1G = βmp

{
ρA1G

[
⟨b⟩ − (1− γ1) θ

A1

b − (1− γ2) θ
A2

b

]
+θA1G

b

[
1− (1− γ1) ρ

A1 − (1− γ2) ρ
A2

]}
,

(16)

where θA2

b =
∑
j

bjP
A2
j /N , and ρA1 =

∑
i

PA1
i /N . To obtain

a closed expression of θA1G
b , we multiply bi on two sides of

(14) and calculate the average across all nodes.

µθA1G
b = βmp

{
ρA1G

[〈
b2
〉
− (1− γ1) θ

A1

b2 − (1− γ2) θ
A2

b2

]
+θA1G

b

[
⟨b⟩ − (1− γ1) θ

A1

b − (1− γ2) θ
A2

b

]}
,

(17)

where θA2

b2 =
∑
j

bj
2PA2

j /N . The expressions of (16) and (17)

can be as a matrix as follows:

H

[
ρA1G

θA1G
b

]
=

µ

βmp

[
ρA1G

θA1G
b

]
. (18)

The expression for H is shown in (19) at the bottom of this
page.

As the green behavior begins to spread throughout the
network at the steady state, the minimum value of β is βc

H =

[
⟨b⟩ − (1− γ1) θ

A1

b − (1− γ2) θ
A2

b 1− (1− γ1) ρ
A1 − (1− γ2) ρ

A2〈
b2
〉
− (1− γ1) θ

A1

b2 − (1− γ2) θ
A2

b2 ⟨b⟩ − (1− γ1) θ
A1

b − (1− γ2) θ
A2

b

]
. (19)
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Fig. 3. The probability transition tree for the US, A1S, A2S, and A1G nodes. UG is an intermediate state that will eventually disappear. Nodes in states
A1S and A2S may forget or grow disinterested in the green information and return to the state US at the recovery rate δ1 and δ2, respectively. Moreover,
rA1 and rA2 represent the probability that a node is not informed of positive and negative information, respectively. Similarly, qA1 (qA2 or qU ) stands
for the probability that a node in A1 (A2 or U ) is not infected by its neighbors in the physical layer. A green node will give up the green behavior with a
recovery probability µ.

which satisfies (18) with
[

ρA1G

θA1G
b

]
̸= 0 [42]. Moreover, the

value of f µ/ (βcmp) is equivalent to the biggest eigenvalue
of the matrix H . Then the biggest eigenvalue is:

Λmax (H) =
√
x+ ⟨b⟩ − (1− γ1) θ

A1

b − (1− γ2) θ
A2

b ,

where x =
[
1− (1− γ1) ρ

A1 − (1− γ2) ρ
A2

] [〈
b2
〉
−

(1− γ1) θ
A1

b2 − (1− γ2) θ
A2

b2

]
.

As a result, we can get:

βc =
µ

mpΛmax (H)

=
µ

mp

[√
x+ ⟨b⟩ − (1− γ1) θ

A1

b − (1− γ2) θ
A2

b

]−1

.

(20)

It is evident from (20) that the green behavior threshold
is associated with the spread of two kinds of information.
Additionally, the green behavior threshold of the proposed
model is influenced by the parameter γ1 and γ2, the recovery
probability µ, and the physical network’s topological structure.

V. NUMERICAL SIMULATIONS

Several simulations are performed in this section to validate
the proposed model, coupling green behavior diffusion and
information spreading. Firstly, we describe the variation of

each node over time in synthetic networks and real-world
networks. Secondly, the impact of various parameters in the
upper and lower networks on green behavior spreading is
investigated. Thirdly, the effect of relevant parameters on green
behavior thresholds is analyzed. Fourthly, the influence of
time-varying properties on the spread of green behavior is
examined.

For the synthetic network, we construct the multiplex net-
works with 1,000 nodes by activity-driven model. Referring
to [53] and [54], we set the activity exponent of different layers
as γp = γv = 2.1, the number of connections that active nodes
have produced as mv = mp = 5, and the rescaling factors as
ηv = ηp = 1. It should be noted that unless certain parameters
are chosen as variables, their values remain constant.

For the sake of verifying the practicality of the
UA1A2U − SGS model, we carry out some simulations on
real-world time-varying multiplex networks. We supply the ex-
periments of model propagation on Social Evolution Dataset,
which is conducted by the MIT Media Lab [55]. The Social
Evolution experiment tracked the everyday life of a whole
undergraduate dormitory with mobile phones from October
2008 to May 2009. The data set is represented by a temporal
duplex network, constituted by two different layers: A physical
layer, formed by face-to-face interactions, and a digital layer
built by sharing all tagged Facebook photos, or sharing blog/
live journal/ Twitter activities. Subsequently, we divide the
period into independent intervals, extract subgraphs for each
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(a) (b) (c)

Fig. 4. The evolution of green behavior and information diffusion in synthetic time-varying multiplex networks. The fixed parameters are set as λ1 = λ2 = 0.6,
δ1 = δ2 = 0.3, β = 0.4, and µ = 0.5, which is the same as [56]. In panel (a), the settings are γ1 = 1.2, γ2 = 0.2. In panel (b), the settings are
γ1 = 1.5, γ2 = 0.5. In panel (c), the settings are γ1 = 1.8, γ2 = 0.8. In all cases, the density of green individuals increases rapidly in the initial stages until
it reaches a peak. This peak is influenced by the values of γ1 and γ2; higher values of γ1 and γ2 lead to a higher peak density of green individuals.

raw dataset, and generate four corresponding activity-driven
networks. Similar to the method in [53], we measure the
activity rate of each node as the number of interactions it
performs in a given time interval, divided by the maximum
number of interactions performed by all nodes during the same
time interval.

A. The Trend of Change at Different Nodes

To more accurately depict the diffusion of green behavior
and the correspondent information, we designate the evolution
of green behavior and information diffusion over time in
both synthetic networks and real-world networks. Specially,
ρA1G stands for the percentage of green individuals in the
lower layer at the steady state. ρUS stands for the percentage
of susceptible individuals who are unaware of the green
information at the steady state. ρA1S and ρA2S indicate the
proportions of susceptible nodes that are aware of positive
and negative green information at the steady state. In each
experiment, the initial values of ρA1G, ρA1S , ρA2S , and ρUS

are 0.1, 0, 0.1, and 0.98. According to the processes outlined
in Fig. 1 and Fig. 3, we progress the interaction dynamics in
the information and physical contact layers.

1) Synthetic networks: Fig. 4 illustrates the evolution of
green behavior and information diffusion in synthetic time-
varying multiplex networks, with three subplots (a, b, c)
representing different parameter settings. In the above three
cases, the green nodes increase rapidly, stabilizing at a sig-
nificant proportion over time. The node that is susceptible
and unaware of any information decreases correspondingly,
indicating successful diffusion of green behavior. Individuals
who are susceptible and aware of positive information initially
increase and then stabilize, while A2S nodes increase and then
decrease to 0. Comparing Figs. 4(a), 4(b), and 4(c), the density
of green individuals surges in the early stages until it peaks,
with the peak value being higher for larger γ1 and γ2. This
demonstrates that increasing γ1 and γ2 enhances the overall
diffusion and stable adoption of green behavior in the network.

2) Real-world networks: Fig. 5 illustrates the evolution
of green behavior and information diffusion in real-world
networks. Comparing Fig. 4 with Fig. 5, the results of the real

and synthetic data are consistent: the trend of the individual
nodes is the same. In the above three cases, the green behavior
nodes increase rapidly, reaching a stable proportion as time
progresses. The US node decreases over time, indicating that
fewer individuals remain susceptible as the green behavior
spreads. A2S nodes will eventually disappear from the system,
and the trend for A1S nodes as well as A1G nodes is quite
similar. Comparing the three subplots in Fig. 5, the greater
the values of the parameter γ1 and γ2, the more people adopt
green behaviors.

B. Validation and Sensitivity Analysis

Here, we conduct experiments to examine the effects of
some key parameters of the UA1A2U − SGS model. We
designate the density of green nodes in the lower layer at
the steady state as ρG. Moreover, ρA1 and ρA2 are employed
to depict the percentage of nodes in the upper layer that are
aware of positive and negative green information at the steady
state. In the computations of the MMC iterative, we define

ρG =

(∑
i

PA1G
i

)
/N, ρA1 =

[∑
i

(
PA1G
i + PA1S

i

)]
/N ,

and ρA2 =

(∑
i

PA2S
i

)
/N .

1) Influence of parameters in physical contact layer
on propagation: In order to verify our MMC theoreti-
cal analysis, we supplement the Monte Carlo (MC) sim-
ulations and compare them with the theoretical solu-
tion. Moreover, for the result of MC simulations, ρG =
NA1G/N, ρA1 = (NA1G +NA1S) /N , and ρA2 = NA2S/N ,
where NA1G, NA1S , and NA2S are the number of nodes at the
states of A1G,A1S, and A2S in the steady state, respectively.

Fig. 6 clearly depicts the changes in three states(
ρG, ρA1 , ρA2

)
as functions of the transmission rate β which

is obtained by MMC and MC. It is observed that the positive
information and the green behavior simultaneously outbreak
around the threshold βc. Specifically, when β < βc, the value
of ρG and ρA1 is 0, and when β > βc, the values of ρG

and ρA1 begin to increase. Additionally, the proportion of
nodes that disseminate negative information starts to decrease
when β approaches the threshold βc. Possible explanations
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(a) (b) (c)

Fig. 5. The evolution of green behavior and information diffusion on the Social Evolution Dataset, which is conducted by the MIT Media Lab. The fixed
parameters are set as λ1 = λ2 = 0.6, δ1 = δ2 = 0.3, β = 0.4, and µ = 0.5. In panel (a), the settings are γ1 = 1.2, γ2 = 0.2. In panel (b), the settings
are γ1 = 1.5, γ2 = 0.5. In panel (c), the settings are γ1 = 1.8, γ2 = 0.8. In all cases, the density of green individuals mounts up in the early stages until it
reaches the maximum value, and the larger the γ1 and γ2, the larger this value is.

(a) (b) (c)

Fig. 6. The analysis of the outcomes achieved by MC and MMC with the increase of green behavior transmission rate β. The fixed parameters are set as
λ1 = λ2 = 0.6, δ1 = δ2 = 0.3, and µ = 0.5. In panel (a), the settings are γ1 = 1.2, γ2 = 0.2. In panel (b), the settings are γ1 = 1.5, γ2 = 0.5. In panel
(c), the settings are γ1 = 1.8, γ2 = 0.8. In all cases, when β > βc, the values of ρG and ρA1 begin to increase, and ρA2 starts to decrease as the value of
β is increased, demonstrating the advantage of increasing the green behavior transmission rate in promoting green behavior spreading.

Fig. 7. Densities of the green nodes versus green behavior transmission rate
under different recovery rates of green nodes. The fixed parameters are set as
λ1 = λ2 = 0.6, δ1 = δ2 = 0.3, γ1 = 1.5, and γ2 = 0.5. As β increases,
the density of green nodes increases, and lower recovery rates µ result in
higher densities of green nodes.

for the above phenomenon can be concluded as follows. The
proportion of green nodes grows as the transmission rate grows
when β > βc. Once the individuals transition into green
nodes, they will promptly disseminate positive information.
Thus, the positive information and the green behavior outbreak

around the threshold βc simultaneously. Conversely, when the
green behavior transmission rate is high, people are more
likely to adopt green behavior. This will lead to more people
spreading positive messages, thus suppressing the spread of
negative information. Hence, an excellent way to prompt the
outbreak of green behavior is by suppressing the transmission
of negative information. Additionally, comparing Figs. 6(a),
6(b), and 6(c), the threshold for the green behavior is smaller,
and the green behavior prevalence increases. The reason is the
greater the values of the parameter γ1 and γ2, the greater the
green behavior transmission rate for A1 and A2 nodes. Thus,
more effective dissemination of information will help to green
behavior outbreaks and expand its prevalence.

Fig. 7 effectively illustrates the sensitivity of green behavior
density to varying green behavior transmission rates and
recovery rates of green nodes. This figure is essential for
conducting a sensitivity analysis to understand how varying
recovery rates impact the spread and stabilization of green
behavior in the time-varying multiplex networks. It is clear
to see that for all values of µ, as the propagation rate β
increases, the density of green nodes ρG increases, indicating
a higher adoption rate of green behavior. The sensitivity of
ρG to changes in β varies with µ; lower values of µ show a
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(a) (b)

Fig. 8. The heat maps of green nodes as a function of positive and
negative information spreading rate. The parameters are δ1 = δ2 = 0.3,
µ = 0.5,γ1 = 1.2, γ2 = 0.2. In panel (a), the fixed parameters are β = 0.3.
In panel (b), the fixed parameters are β = 0.4. As λ1 increases and
λ2 decreases, the density of green behavior increases, indicating inhibiting
the transmission of negative information and promoting the propagation
of positive information are effective in encouraging the adoption of green
behavior.

steeper increase in ρG with β, while higher values of µ show
a more gradual increase. The reason is that individuals who
adopt green behavior are less likely to revert with a lower
recovery rate µ, allowing the behavior to spread and stabilize
quickly. Yet, higher recovery rates µ make it challenging for
green behavior to spread and stabilize, as individuals are more
likely to revert from green behavior. Hence, lower recovery
rates enhance the spread and stabilization of green behavior,
while higher recovery rates hinder it.

2) Influence of parameters in information layer on propa-
gation: Subsequently, it is imperative to examine the impact
of the rate at which positive or negative information is trans-
mitted on green behavior prevalence. Fig. 8 clearly depicts
the prevalence of green behavior within a wide range of λ1

and λ2. For a fixed λ1, when the value of λ2 is greater
than a particular value, the prevalence of green behavior
decreases as λ2 increases. Moreover, as λ1 gets smaller, the
specific value gets smaller and A2 can inhibit the spread
of green behaviors at a smaller spread rate. The following
are explanations that may account for this phenomenon: the
role of negative information keeps increasing and the role of
positive information keeps being weakened as the increase
of negative information transmission, leading to the green
behavior prevalence decreases; moreover, when the value of
λ1 is large, the spread of negative information would have
to be very high to inhibit the spread of green behavior.
Furthermore, comparing panel (a) with panel (b) in Fig. 8,
the value of λ2 must be at least 0.6 to exert a dominant
effect of inhibition in panel (b), since a large number of nodes
adopt green behavior leads to more positive information in
networks, and negative information is hard to propagate based
on the high green behavior transmission rate. Generally, it is
possible to improve green behavior prevalence by inhibiting
the transmission of negative information and promoting the
propagation of positive information.

Fig. 9 effectively illustrates the sensitivity of green behavior
density to varying green behavior transmission rates and
positive or negative information recovery rates. This figure
is divided into two panels: Panel (a) focuses on five positive
information recovery rates, while panel (b) focuses on five

1
=0.1

1
=0.3

1
=0.5

1
=0.7

1
=0.9

(a) (b)

Fig. 9. Densities of the green nodes versus green behavior transmission rate
under positive or negative information recovery rate. The fixed parameters
are set as λ1 = λ2 = 0.6, γ1 = 1.5, γ2 = 0.5, and µ = 0.5. In panel
(a), the fixed parameters are δ2 = 0.3. In panel (b), the fixed parameters are
δ1 = 0.3. Both panels show a rapid increase in ρG with increasing β; lower
values of δ1 and higher values of δ2 result in a rapid increase in the density
of green nodes.

negative recovery rates. In panel (a), lower positive recovery
rates δ1 result in a rapid increase in the density of green
nodes ρG at lower values of β. Yet, higher positive recovery
rates δ1 make it more challenging for green behavior to
spread, requiring higher β values to reach similar densities.
In panel (b), higher negative recovery rates δ2 also result in a
rapid increase in ρG. Contrary to the trend observed with δ1,
lower negative recovery rates δ2 hinder the spread of green
behavior, requiring higher β values to achieve comparable
densities. For both panels, when β is large, the final density of
green nodes ρG shows little variation across different values
of δ1 and δ2, indicating that the transmission rate β plays a
dominant role in determining the equilibrium density of green
behavior. Therefore, lower positive information recovery rates
enhance the spread and stabilization of green behavior, while
lower negative information recovery rates hinder it. However,
when the green behavior transmission rate β is sufficiently
high, the final density of green nodes becomes less sensitive
to variations in information recovery rates, emphasizing the
critical role of transmission rate in behavior adoption.

C. Influence of Related Parameters on Green Behavior
Threshold

In this subsection, we explore different parameters on the
green behavior threshold computed by (20). In Fig. 10(a),
when the values of δ1, δ2, µ and λ2 are fixed, the threshold
βc exhibits a progressively decreasing trend as the value of
λ1 is varied from 0.3 to 0.9. Similarly, when δ1, δ2, µ, and
λ1 are fixed, the threshold βc increases as λ2 increases from
0.1 to 0.6. Therefore, it is possible to prompt the outbreak
of green behavior by preventing the diffusion of negative
information and facilitating the spread of positive information.
In Fig. 10(b), while keeping the parameters λ1, λ2, δ1 and
µ constant, the green behavior threshold βc decreases as δ2
increases, whereas it decreases as δ1 decreases when λ1, λ2,
δ2 and µ are fixed. Hence, reducing the rates of forgetting
positive information and increasing the rates of forgetting
negative information can be considered beneficial approaches
to encourage the outbreak of green behavior. Furthermore,
the threshold of green behavior also increases as the recovery
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(a) (b)

Fig. 10. Green behavior threshold as a function of recovery rate of green nodes
µ. Panel (a) depicts the relationship between the green behavior threshold
and recovery rate of green nodes under the different values of the information
transmission rate. The parameters are set as δ1 = δ2 = 0.05. Panel (b) depicts
the relationship between the green behavior threshold and recovery rate of
green nodes under the different values of the information recovery rate. The
parameters that control the impact of the information on the physical contact
layer are set as γ1 = 1.2 and γ2 = 0.8 in panel (a) and panel (b). In both
panels, thresholds increase as the recovery rates of green nodes increase.

(a) (b)

Fig. 11. Green behavior threshold as a function of recovery rate of green
nodes µ for different values of γ1 and γ2. The fixed parameters are set as
λ1 = λ2 = 0.5, δ1 = δ2 = 0.01. In panel (a), γ2 remains constant and
γ1 changes. In panel (b), γ1 remains constant and γ2 changes. The threshold
increases as the recovery rate increases. Moreover, the larger values of γ1 and
γ2 result in a lower threshold.

rate µ increases. Therefore, it is also possible to prompt the
outbreak of green behavior by reducing the probability of
abandoning green behavior.

Additionally, we analyze the impact of the γ1 and γ2 on
the green behavior threshold in Fig. 11. It is clear to see
that the green behavior threshold gradually decreases as γ1
increases while other parameters are fixed in Fig. 11(a). This
implies that the stronger the influence of positive information,
the more people are willing to adopt green behavior and the
lower the threshold is. Conversely, in Fig. 11(b), the stronger
the inhibitory effect of negative information, the lower the
probability of an individual adopting green behavior, and the
green behavior threshold increases. As a result, mitigating
the influence of negative messages and increasing the impact
of positive information can facilitate the outbreak of green
behavior.

D. Influence of Time-varying Properties on Green Behavior
Diffusion

Subsequently, we try to figure out how the changing struc-
ture of the adaptive network, including the contact capacity
and activity heterogeneity, affects the process of coupled
dynamics. Since there are two types of information and their

roles are opposite in the system, the relationship between
green behavior spreading and topological structure is different
when different information plays a dominant role. Hence, the
simulation will be discussed in the following two aspects.

• Positive information is predominant: Positive information
plays a bigger role than negative information.

• Negative information is predominant: Negative informa-
tion plays a bigger role than positive information.

1) Influence of nodal activity heterogeneity on green be-
havior diffusion: Fig. 12 depicts how the green behavior
threshold and the final green behavior proportion are affected
by the value of γv . In Fig. 12(a), there are two types of
relationships between the threshold and activity exponent of
the information layer. When λ1 is larger than λ2, it is visual
to see the green behavior threshold increases with the activity
exponent of the physical contact layer γv . Conversely, when
λ2 is larger than λ1, the green behavior threshold decreases
with γv . The principal reason for this phenomenon is that a
higher activity exponent results in less heterogeneity of the
nodes, and an increase in γv leads to a weakening effect of
the node A1 when λ1 is larger than λ2. Hence, weakened
dissemination of positive messages leads to a higher green
behavior threshold. Conversely, when the negative information
plays a dominant role in the upper layer, an increase in γv
results in a decrease in the weakening effect of negative
information in the system. Moreover, to analyze the effect of
the final green behavior proportion, we selected one set of
parameters from the three sets of parameters for each type.
Specifically, we choose λ1 = 0.8, λ2 = 0.2 when positive
information plays a bigger role than negative information; and
we choose λ1 = 0.2, λ2 = 0.8 when negative information
plays a bigger role than positive information. In Fig. 12(b),
when β is certain and greater than the propagation threshold,
the final green behavior density decreases slightly as γv
increases, while the trend is reversed in Fig. 12(c). As a result,
when positive information is predominant, we should decrease
the activity exponent of the information layer; when negative
information is predominant in the system, we should increase
the activity exponent of the information layer.

Fig. 13 depicts how the green behavior threshold and the
final green behavior proportion are affected by the value of
γp. In Fig. 13(a), it is clear that the green behavior threshold
increases monotonically with the activity exponent of the
information layer γp. When γp is fixed, the larger λ1 is,
the smaller the threshold is. A possible explanation for the
above phenomenon is that a lower activity exponent results in
more heterogeneity of the nodes. Nodes are highly active when
the nodal activities are more heterogeneous. These nodes are
capable of sustaining their activities in sequential time steps,
which provides the spreading process with constant impetus.
Then, the smaller the γp, the more conducive the spread of
green behavior. Besides, the higher the propagation rate of
positive information, the more nodes will become A1 and
propagate green behavior at a higher rate, thus contributing
to the outbreak of green behavior. In Figs. 13(b) and 13(c),
regardless of who has a strong role in the upper layer, when β
is certain and greater than the propagation threshold, the larger
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(a) (b) (c)

Fig. 12. The impact of activity heterogeneity on green behavior propagation in the information layer. The parameters are set as δ1 = δ2 = µ = 0.5,
γ1 = 2, γ2 = 0.5, γp = 2.1. (a) The relationship between green behavior threshold βc and the activity exponent γv for different values of λ1 and λ2. (b)
The relationship between the density of green behavior nodes ρG versus the activity exponent γv and β when λ1 = 0.8 and λ2 = 0.2. (c) The relationship
between the density of green behavior nodes ρG versus the activity exponent γv and β when λ1 = 0.2, λ2 = 0.8. When λ1 is larger than λ2, as the nodal
activities in the information layer become more heterogeneous (corresponding to smaller values of γv), the green behavior threshold decreases and the final
infection density increases slightly. When λ2 is greater than λ1, the result is reversed.

(a) (b) (c)

Fig. 13. The impact of activity heterogeneity on green behavior propagation in the physical contact layer. The parameters are set as δ1 = δ2 = µ = 0.5,
γ1 = 2, γ2 = 0.5, γv = 2.1. (a) The relationship between the green behavior threshold βc and the activity exponent γp for different values of λ1 and λ2.
(b) The relationship between the density of green behavior nodes ρG versus the activity exponent γp and β when λ1 = 0.8, λ2 = 0.2. (c) The relationship
between the density of green behavior nodes ρG versus the activity exponent γp and β when λ1 = 0.2, λ2 = 0.8. The threshold is raised and the final
infection density is reduced as the value of γp is increased, demonstrating the disadvantage of reducing nodal activity heterogeneity in promoting the adoption
of green behavior.

γp is, the smaller the final green behavior density is. That is
to say, a smaller activity exponent leads to a greater density
of green behavior. Therefore, increasing the heterogeneity of
the nodal activities in the physical contact layer can prompt
green behavior spreading.

2) Influence of contact capacity on green behavior diffu-
sion: Fig. 14 depicts how the green behavior threshold and
the final green behavior density are affected by the value of
mv . In Fig. 14(a), when λ1 is larger than λ2, the value of green
behavior threshold decreases and then increases or stabilizes
as mv increases. Additionally, when λ2 is larger than λ1, the
value of green behavior threshold increases as mv increases
until saturation. The primary cause of this phenomenon is that
when λ1 is larger than λ2, A1 will connect more nodes as mv

increases, leading to more nodes supporting green behavior.
At this point, the propagation threshold decreases. However,
when mv increases to a certain level, A2 also connects more
nodes, and the inhibitory effect of A2 starts to manifest itself,
leading to a rise or stabilization of the threshold value. In
addition, when λ2 is larger than λ1, negative information plays

a dominant role in the upper layer, and the inhibitory effect of
negative information increases as mv increases. In Fig. 14(b),
when λ1 > λ2, the density of green behavior increases as
mv increases until saturation. In Fig. 14(c), when λ1 < λ2,
the density of green behavior increases and then decreases as
mv increases. As a result, when negative information plays a
dominant role, we should decrease the contact capacity of the
information layer; when positive information plays a dominant
role in the system, we should increase the contact capacity of
the information layer.

Fig. 15 depicts how the green behavior threshold and the
final green behavior proportion are affected by the value of
mp. The threshold for green behavior decreases with the
number of links generated by the active nodes increases in
the physical contact layer in a time step, regardless of the size
relationship between λ1 and λ2. A possible explanation for
the above phenomenon is that when mp is larger, the active
nodes will generate more edges and connect more nodes in
the physical contact layer, facilitating the propagation of green
behavior. Thus, the propagation threshold is smaller and the
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(a) (b) (c)

Fig. 14. The influence of contact capacity on green behavior propagation in the information layer. The parameters are set as δ1 = δ2 = µ = 0.5, γ1 = 2,
γ2 = 0.5. (a) The relationship between green behavior threshold βc and the contact capacity mv for different values of λ1 and λ2. (b) The relationship
between the density of green behavior nodes ρG versus the contact capacity mv and β when λ1 = 0.8, λ2 = 0.2. (c) The relationship between the density
of green behavior nodes ρG versus the contact capacity mv and β when λ1 = 0.2, λ2 = 0.8. When λ1 is larger than λ2, the green behavior threshold is
smaller than λ1 is less than λ2, and the prevalence of green behavior under the two scenarios is the opposite.

(a) (b) (c)

Fig. 15. The impact of contact capacity on green behavior propagation in the physical contact layer. The parameters are set as δ1 = δ2 = 0.5, µ = 0.1, γ1 =
2, γ2 = 0.5. (a) The relationship between green behavior threshold βc and the contact capacity mp for different values of λ1 and λ2. (b) The relationship
between the density of green behavior nodes ρG versus the activity exponent mp and β when λ1 = 0.8, λ2 = 0.2. (c) The relationship between the density
of green behavior nodes ρG versus the contact capacity mp and β when λ1 = 0.2, λ2 = 0.8. As the contact capacity in the physical contact layer increases,
the green behavior threshold decreases, and the final infection density tends to increase.

density of green behaviors is greater. Therefore, enhancing the
contact capacity of the nodes in the physical contact layer can
prompt green behavior diffusion.

VI. CONCLUSION

In this paper, the UA1A2U − SGS model in time-varying
multiplex networks is proposed to investigate the features of
green behavior diffusion under the impact of positive and
negative information. In time-varying multiplex networks, one
layer describes the positive and negative information diffusion
and the other represents the green behavior spreading. Based
on MMC, we build the probability transition equations and
calculate the green behavior threshold of the model. Then,
experiments are carried out to confirm the preciseness and
theoretical predictions of the new model. It reveals that the
prevalence of green behavior can be promoted by restraining
the negative information transmission rate and recovery rate
of the green nodes while facilitating the positive information
transmission rate and green behavior transmission rate. Ad-
ditionally, reducing the positive information recovery rate and

the recovery rate of the green nodes, and increasing the rates of
forgetting negative information are beneficial for encouraging
the outbreak of green behavior. Moreover, we investigate
the structure of the time-varying model that affects green
behavior propagation. In the physical contact layer, higher
contact capacity and greater activity heterogeneity significantly
facilitate green behavior spreading. In the information layer,
when negative information plays a dominant role, the smaller
contact capacity and the weaker activity heterogeneity can
promote green behavior diffusion; when positive information
plays a dominant role, the larger contact capacity and the
stronger activity heterogeneity of individuals can promote
green behavior diffusion.

This paper provides a general framework to investigate
green behavior diffusion in time-varying multiplex networks,
providing some insightful analysis of actual situations and
helping develop effective strategies to prompt green behavior
spreading. The two-layer approach, which separately analyzes
information diffusion and behavior spreading, allows for a
detailed examination of the interplay between positive and
negative information and green behavior adoption.
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There are several limitations of this paper, which also casts
light on future research directions. Firstly, the analysis is at
a generalized level and does not consider the heterogeneity
between different green behaviors or individual differences.
Further work should focus on a special green behavior, with
the consideration of individual heterogeneity. Secondly, the
impact of external factors, such as social influence and media
effects, is not explicitly considered in our model. Further work
should explore the role of external factors to gain a more
comprehensive understanding of green behavior adoption and
refine intervention strategies.
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