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Abstract—Recent trends led to higher data volumes to be
transferred and processed over the network. Legacy routing
protocols, e.g., OSPF for intra-domain routing, send data from
a source to destination on one of the shortest paths. We propose
a novel approach to parallelize data transfers by leveraging
the multi-core CPUs in the routers. We describe an end-to-
end method to optimize data flows on multiple paths. Multi-
core parallel routing (MCPR) generates new virtual topology
substrates from the underlying router topology and performs the
shortest path routing on each substrate. Even though calculating
the shortest paths could be done with well-known techniques
such as OSPF’s Dijkstra implementation, finding optimal sub-
strates and setting their link weights to maximize the network
throughput over multiple end-to-end paths is still an NP-hard
problem. In MCPR, we focus on designing heuristics for substrate
generation from a given router topology. Each substrate is a
subgraph of the router topology and each link on each substrate
is to be assigned a weight to steer the shortest-path routing
for maximal network throughput. Heuristics’ interim goal is to
generate substrates in such a way that the shortest path between
a source-destination pair on each substrate minimally overlaps
with the shortest paths calculated by the other substrates. Once
these substrates are determined, we assign each substrate to a
core in the router and employ a multi-path transport protocol,
similar to MPTCP, to perform end-to-end data transfers. We
designed heuristics that utilize node centrality, edge centrality, or
flow patterns. We evaluated the MCPR heuristics on router-level
ISP topologies and compared the network throughput against
single shortest-path routing under extensive simulation scenarios
including heterogeneous core count across the routers and net-
work failures. The evaluations showed that MCPR heuristics can
attain network throughput speedups reaching 2.6 while incurring
only polynomial control overhead.

Index Terms—Big data, load balancing, multi-core routers,
network centrality, network management, routing protocols.

I. INTRODUCTION

THE amount of data to be processed at computers and
datacenters as well as transferred across the Internet

are growing at an immense pace. 100 to 400 Gbps speeds
for inter- and intra-datacenter transfers are becoming the
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norm [3]. As the datacenters keep their central role in the
Internet’s big data traffic, effective and efficient management
and routing of big data transfers at large speeds across data-
centers are critical challenges. The legacy end-to-end (e2e)
transfer techniques are not adequate to reach such speeds
of 100–400 Gbps [4]–[6]. This led to design of new e2e
transport mechanisms that can leverage multiple paths, i.e.,
multi-path TCP (MPTCP) [7]–[9]. The basic concept is to
split the e2e flow into parallel subflows to better utilize the
underlying network paths. If these parallel data transfers can
be spread in a non-overlapping manner, they can improve the
aggregate throughput. Availability of such e2e paths allows
parallel TCP streams or subflows to be fed onto different
paths and thereby attain a higher utilization of the underlying
network capacity which is not possible with legacy single path
shortest-path routing algorithms [10], [11]. Hence, in order
to successfully increase network throughput, these parallel
transfers require multi-path routing capability.

The key focus of multi-path routing techniques is to diver-
sify and spread the paths available to the e2e transport while
satisfying constraints such as delay or loss. Since the problem
is complex, most multi-path routing work resort to heavy pre-
computations of paths as an approach to find non-shortest
paths. Although these multi-path routing techniques proved to
be useful for scaling up the e2e reliable transfers, they require
considerable updates to legacy routers which are designed and
optimized for shortest path computations. Practical protocols
that can offer multiple non-shortest paths while effectively
handling network dynamics and failures are still of high need.
Existing e2e transfer methods and legacy multi-path routing
schemes are still yet to utilize multi-core CPUs available in
most routers. Although, [12] shows that CPU utilization reach
to 90% under heavy data transfers, consideration of multiple
cores of the router CPUs as a first-class citizen in the network
layer control-plane functions, like routing, has been missing.

In this paper, we propose a multi-path routing framework,
multi-core parallel routing (MCPR), that explicitly considers
multi-core routers in design while utilizing the highly opti-
mized legacy shortest-path calculations. MCPR leverages the
advent of multi-core CPUs in routers and eases the compu-
tational complexities of close-to-optimal multi-path routing
algorithms by dividing the overall multi-path routing problem
into smaller parts and lending each to a separate CPU core.
The basic idea is to virtually slice the router topology into
“substrate” topologies and assign them to separate router cores,
which calculate the classical shortest paths on the assigned
substrate.

Rather than solving the multi-path routing problem all at
once, MCPR transforms it into two subproblems: (i) slicing
out substrates from the router topology so that the collection
of the shortest paths on each substrate is diverse and non-
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overlapping, and (ii) calculating shortest paths on each sub-
strate. Since the latter problem is already handled in legacy
routers, MCPR can easily be adapted to current routers if
the former problem is solvable. From one point of view, our
approach transforms the multi-path routing problem into a
topology/substrate generation problem. Main contributions of
our work include:

• An effective multi-path routing framework that utilizes
shortest-path routing and multiple virtual topologies,
which we call substrate topologies/graphs. The frame-
work explicitly recognizes the multi-core routers and
envisions assignment of multiple shortest-path routing
daemons to separate cores on the routers.

• A novel divide-and-conquer approach to the multi-path
routing problem that effectively transforms the multi-path
routing problem to a substrate topology generation prob-
lem, which is aligned with multi-topology routing stan-
dards and can be deployed with minimal disruption to
legacy protocols. The approach generates multiple sub-
strate networks that are maintained in parallel and there
is a shortest-path routing protocol running on each.

• Formal description of the substrate generation problem as
an optimization and analysis showing the NP-hardness of
the problem.

• Novel heuristic solutions to the substrate generation prob-
lem by using node or edge centrality measures of the
underlying network as well as traffic flow patterns.

• Extensive simulation-based evaluation of the heuristics
over router-level topologies by considering a number of
different design dimensions, including heterogeneity of
core counts on routers and network failures.

The paper is organized as follows: Section II covers related
work on routing techniques and multi-core networking solu-
tions. Section III explains basic design principles of MCPR
and shows a canonical example. We, then, formulate the
substrate generation problem in Section IV. Next, in Section V,
we design graph-based and flow-based substrate generation
heuristics, and make a qualitative comparison. Section VI
presents an experimental setup and extensive evaluation of
the heuristics under various scenarios (e.g., heterogeneous vs.
homogeneous traffic and core distribution, and link failures)
against the legacy single shortest-path routing. Lastly, we
summarize MCPR approaches and insights gained from the
evaluations, and discuss future work in Section VII.

II. RELATED WORK

Attaining high data transfer speeds require simultaneous
handling of load balancing (or traffic engineering (TE)) and
congestion management. To reach 100+ Gbps throughput
levels, a plethora of such efforts has been made in utilizing the
network. Techniques explored include smart scheduling over
single [13] or multiple [14] paths, getting congestion notifi-
cations from the network [15], running multiple TCP streams
each with its own congestion control loop [16], [17], parallel
sub-streams with a joint control loop such as MPTCP [9], hav-
ing multi-core abilities to improve network performance [18],

using software-defined networking (SDN) to manage traffic
among geo-distributed inter-data centers during the data migra-
tion [19]. These approaches to increase the possible throughput
out of a network are heavily vested on the availability of
diverse, non-overlapping and robust end-to-end paths that
are easy to compute and deploy. MCPR is complementary
these methods, that manipulate e2e paths for higher network
throughput, and focuses on devising an effective multi-path
routing approach with the aim providing more diverse e2e
paths.

A. Multi-Path Routing

Multi-path routing [10], [20]–[22] has been a popular topic
for researchers to solve the TE problem over a network. The
main purpose generally has been path diversity. In addition
to general use of multiple paths as in MPTCP, there has been
recent interest in multi-path routing in various specific settings
such as wide-area transfers [23], dynamic provisioning in
optical backbones [24], and data-centers [25]. Further, recent
efforts have explored interesting directions such as the mix
of clustering and multi-path routing for low-energy wireless
sensor networks [26], and use of network coding to implement
multiple paths within individual paths [27].

A major topic of multi-path routing research has been
finding disjoint paths in a network [28]. Most of these efforts
have been for mobile wireless networks where disjoint paths
can be very useful for routing over the same radio frequency
and attaining QoS guarantees [29]. More related to our work
is disjoint multi-path routing in wireline networking which
has been mostly for attaining better reliability when facing
failures. Studies in this line of research included proactive
setup of alternative disjoint paths for robustness against fail-
ures [30], centralized computation of disjoint multiple paths
with minimal network cost where cost is broadly defined [31],
two-phased computation of multiple paths that considers cost
of all paths and devises a scalable heuristic to find disjoint
paths [32], integrating the goal of finding disjoint paths with
path quality guarantees [33], and efficient design of failure-
resistant routing in data-center networks [34], [35]. These stud-
ies of disjoint multi-path routing assumed entirely centralized
computation of the paths and did not consider the use of
multiple (virtual) topologies. MCPR differs in its design by
splitting the computation task to topology construction and
shortest-path calculation and uses explicitly defined virtual
topologies.

Both path generation and selection need to be performed
in a short time period for deployability. Given a large set of
paths, path selection [11] was also studied to find the best
subset of paths. To generate dynamic multi-path routing, an
overlay architecture is proposed by controlling the data traffic
dynamically via selected nodes [36]. Thus, a key challenge
with multi-path routing has been the adaptation to the real
systems because of its computation costs and the lack of sup-
port from the existing routing infrastructure which is optimized
for shortest-path calculations and rarely allows to send data
through more than one paths with current protocols. MCPR
considers both of these challenges in its design.
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Potential impacts of multi-path routing on the underly-
ing routing infrastructure can be very large. Recent efforts
included customizing the infrastructure hardware so as to
perform parallel computation of multi-path routing, e.g., by
a custom circuit design [37]. More prominently, software-
based solutions to the problem have attracted attention, e.g.,
multi-threaded designs to find paths for global routing between
netlists [38], asynchronous pipelining for the sets of threads to
attain high performance with multi-core systems [39], effective
control plane management to better utilize link capacities for
update messages [23], and faster lookup of IPv6 addresses
with parallelized store/scan of routing tables over multi-
ple cores [40]. A software-based approach [41] to optimize
throughput and energy consumption of multi-core routers was
explored as well. A common pattern of these developments is
the use of multi-core CPUs for simplifying routing. The advent
of multi-core routers presents an opportunity for networking
and communications [42]. MCPR considers multi-core CPUs
as a first-class citizen of its design and decides the number
of available e2e paths according to the number of cores in
routers.

B. Multi-Topology Routing

Early literature introduced the concept of multi-topology
routing (MTR) as an extension to legacy intra-domain routing
protocols [43], [44]. MTR enables the use multiple virtual
topologies for routing on the underlying physical topology.
The design of MTR includes the intra-domain routing protocol
to work on setting links weights on the multiple virtual topolo-
gies and calculate paths on each of these virtual topologies.
Then, the routing also has to determine what fraction of e2e
flows are supposed to be fed to each virtual topology. The
main goals of MTR are to enable more flexibility in e2e paths
for attaining network-wide goals such as TE, multicasting,
and fault tolerance. MCPR aligns with the main goals of
MTR, which is to improve network performance by using
virtual topologies and directing fractions of traffic to each
virtual topology. Key differences of MCPR from MTR are
two-fold. First, MCPR uses multiple independent shortest-
path routing protocols each running on a different virtual
topology. In MTR, there is one routing protocol that calculates
paths on each virtual topology which can overload the routing
daemon when facing failures or other disruptions. MCPR’s
approach can better utilize multiple cores on router CPUs as
each routing protocol daemon can be assigned to a separate
core. In this aspect, MCPR is a more general version of MTR.
Second, MCPR strictly enforces shortest-path routing on each
virtual topology while MTR allows non-shortest-path routing
calculations. In this aspect, MCPR is a special case of MTR.

A natural use of MTR is to perform TE [45], [46]. In the
same essence as MCPR, MTR enables balancing of traffic
across the network by splitting e2e flows to each virtual
topology. Early studies aimed to solve the TE problem for
a given traffic matrix [47] or a varying traffic demand [48].
These efforts assumed to know what proportion of each e2e
flow will land on each link of the virtual topologies. MCPR
assumes no a-priori knowledge of traffic projections and builds

its virtual topologies for generic demand by focusing on topo-
logical properties only. More recently, Mirzamany et al. [49]
focused on finding disjointed topologies for MTR so as to
improve TE performance and proved that finding the multiple
disjointed logical topology is NP-hard. Though the insights
from this study are useful for MCPR, MCPR does not require
disjoint virtual topologies and searches for solutions from a
larger design space.

From its start, a key motivation for MTR has been at-
taining fault-tolerance. The most common approach to using
MTR for fault-tolerance involved utilizing the existence of
multiple virtual topologies to form backup paths. Several
approaches [50]–[52] were proposed to implement IP fast-
reroute using MTR. The concept is to switch to a pre-
determined virtual topology when an adjacency in the intra-
domain routing fails. In the same vein, Cicic [53] outlined
a framework to design separated sets from a topology to
minimize the possibility of multiple virtual topologies being
affected by a failure. In these MTR-based fault-tolerance
studies, minimizing the number of virtual topologies was also
a major goal for reduced maintenance overhead. MCPR differs
from these efforts as it focuses on maximizing throughput.

The concept of multiple virtual topologies has applications
beyond intra-domain routing. Most recently, there have been
proposals to use MTR for enhancing wireless resource man-
agement [54], access predictability [55], and latency minimiza-
tion [56].

III. MCPR: A PARALLEL ROUTING FRAMEWORK

Legacy routing systems, especially for the inter-datacenter
connections, employ shortest path algorithms to find e2e paths.
However, due to its greedy nature, such shortest path routing
causes congestion, and hence limits the amount of data that
can be sent over the network. Attaining better load balancing
and higher throughput heavily depends on fast, scalable and ro-
bust calculations of multiple paths between source-destination
pairs. Since such multi-path calculations are complex, MCPR
takes a divide-and-conquer approach [2]. It divides the multi-
path routing problem into multiple shortest path calculation
problems by abstracting the underlying network topology as
different substrates, and uses legacy shortest path calculation
algorithms to swiftly and efficiently calculate/conquer each
substrate.

The main idea of MCPR is that different slices (i.e., sub-
strates) of the router topology are given to each core and the
e2e data transfer is split onto shortest paths calculated on each
substrate topology. Once assigned to a substrate i, a flow will
follow the shortest path calculated by the substrate i. However,
all the flows will be using the same underlying physical
topology regardless of which substrate they are assigned.
Hence, MCPR can lead to a system where “parallel” routes
are produced on virtual substrates over the same physical
topology.

Many of the current routers have multi-cores which can be
utilized to execute the conquer phase of MCPR. Different from
most of multi-threaded solutions for routing, MCPR runs a
separate instance of a legacy shortest path algorithm on each
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core and does not need to concatenate the results coming from
each instance/core. The resulting set of multiple paths is the
combination of the shortest paths calculated by each core. It
is then up to the e2e transport protocols such as MPTCP to
decide which one of these paths from the substrate topologies
to use and with what rate.

A. Design Approach and Principles

The following principles summarize the main design fea-
tures of MCPR:

i- Shortest path is abundant and efficient. Legacy shortest
path routing solutions are very much optimized and designed
into the fabric of routers. Multi-path calculations utilizing them
will be straightforward to deploy.

ii- Multi-core CPUs are readily available. It is possible
to execute multiple shortest path routing daemons in parallel
on the existing routers with multiple cores. Each core can
run a separate instance of legacy routing protocols such as
OSPF [57].

iii- Robustness against network dynamics is achievable via
shortest-path (re)-calculations. A critical challenge of multi-
path routing is its brittleness against network dynamics such
as failures or demand spikes. Such network changes may
require re-calculation of the entire multi-path set, which can be
prohibitively costly in routing timescales. MCPR delegates the
path re-calculation to each substrate and lets the shortest path
routing algorithm on each substrate perform the re-calculation
using the existing optimization approaches.

iv- Substrate generation can be centralized. The “divide”
part of the MCPR is the most challenging as it requires finding
the best set of substrate topologies so that their shortest paths
minimally overlap. This is a heavy computation task (see
Section IV). On the other hand, such heavy computation can
be done in SDN controllers or other centralized locations with
high computation power. Additionally, the substrate generation
could be done at larger timescales without any major sub-
optimality. Failures or network dynamics do not necessitate the
substrate generation to be done within the routers themselves
since the re-calculations of shortest paths can be independently
performed by each core. Finally, centralizing substrate gener-
ation allows goals like multi-path traffic engineering which
requires a global and centralized view of the network.

B. A Motivating Scenario

If (i) different virtual routing topologies based on the actual
topology are assigned to a separate core of multi-core routers,
(ii) data transfers could be distributed over these virtual topolo-
gies, and (iii) the current well-known shortest-path calculation
techniques are executed on each core; then data load could
potentially be better distributed over the network.

Fig. 1 illustrates a motivating scenario where two virtual
substrates are produced. substrate 0 is equivalent to the
genuine router topology, whilst substrate 1 is generated by
removing node 3 from substrate 0. Even though there are
many other possible paths available over the network, current
systems would carry 5 Mb/s on a single path. But, if these two
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Fig. 1. Motivating scenario with two cores.

TABLE I
IMPORTANT SYMBOLS.

Symbol Meaning
G = {V,E} Graph representation of physical network with V

vertex set and E edge set
wuv Weight (or cost) of the edge from vertex u to

vertex v
Gi = {Vi, Ei} A subgraph of G with Vi ⊆ V and Ei ⊆ E
Si = {Gi,Wi} A substrate of G, composed of subgraph

Gi = {Vi, Ei} with edge weights Wi

S The set of all possible substrates of G
Q A subset of S, all possible substrates of G
P (Q) The set of shortest paths generated from substrates

in Q
T (Q) Total throughput of the shortest paths in P (Q)
VS The subset of vertices in G that generate a flow
VD The subset of vertices in G that are flow destina-

tions
fs→d A flow from source s to destination d
F The set of all flows
fuv A flow on edge (u, v) ∈ E
f i
uv A flow on en edge (u, v) in Si, i.e., (u, v) ∈ Ei

topologies were given to a two-core router and current shortest
path finding algorithms were executed in parallel on each core,
then each path could transfer 5 Mb/s data. Compared to the
current systems, each substrate’s shortest path is different, and
the two collectively yield a total of 10 Mb/s throughput from
node 1 to 4 for the two cores scenario.

While creating a new substrate, in addition to removing
node(s), some edge(s) can also be omitted, such as the edge
connecting node 1 and node 3. In that case, similar to the
previous example, there would be two different paths to reach
the destination node 4, i.e., path 1-3-4 and path 1-2-4. Each
substrate is able to find the shortest path that can carry 5 Mb/s
and a total of 10 Mb/s capacity can be transferred. This is
double the capacity of current systems that calculate single
shortest-path over the topology, e.g., OSPF.

IV. SUBSTRATE GENERATION PROBLEM

We provide a formal definition of the substrate graph
generation problem of MCPR. Table I shows the notation
we use for the formulation. Consider an underlying network
topology as a graph G = {V,E} with a set of vertices V and
edges (u, v) ∈ E where u, v ∈ V . Assuming there are n nodes
and m links in the topology, |V | = n and |E| = m. Given G,
MCPR’s substrate graph generation involves several decision
parameters: (i) number of substrate graphs to generate and (ii)
edge weights on each substrate graph. Let wuv be the weight
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(or cost) of the edge from u to v where u, v ∈ V . Suppose
the weights can be set to k − 1 different integer values or an
infinitely large number, i.e., wuv ∈ {1, 2, · · ·, k − 1} ∪ {∞}
for all u, v ∈ V . Let S be the set of all possible substrates of
G. Since each edge in E can have k different weight values,
the number of possible substrate graphs from G is |S| = km.
Accordingly, a substrate Si ∈ S, can be expressed as Si =
{Gi,Wi} = {{Vi, Ei},Wi} where Vi ⊆ V , Ei ⊆ E, and Wi

is the weights assigned to the edges in Ei.
To formally define our problem, we further define the

followings: The capacity of an edge is a mapping c : E → R+

denoted by cuv where (u, v) ∈ E. It represents the maximum
amount of flow that can pass through an edge. Let VS ⊆ V and
VD ⊆ V be the set of sources and destinations, respectively.
We define a flow on an edge as a mapping f : E → R+

denoted by fuv where (u, v) ∈ E and fuv < cuv . Without
loss of generality, we further define throughput (or rate) of a
flow fs→d from a source s ∈ VS to destination d ∈ VD as:

|fs→d| =
∑

v:(s,v)∈E

fsv =
∑

v:(v,d)∈E

fvd. (1)

This approach models the flow throughput as a fluid flowing
through the network, following the capacity constraints and
directions of each edge.

A. Maximum Substrate Set Problem

The overall goal of MCPR is to maximize the throughput
of the network by using the shortest paths from a subset of the
substrates. Let F be the set of all flows fs→d where s ∈ VS

and d ∈ VD. Further, let Q ⊆ S represent a set of substrates
Q = {S1, S2, · · ·, Sq} and P (Si) be the collection of shortest
paths generated from substrate Si. Further, let T (Si) be the
total throughput attained from the shortest paths in P (Si).
We can formulate MCPR’s problem of generating a set of
substrates that maximizes the throughput as follows:

MAXSUBSTRATESET(G,F ):

Q∗ = argmax
Q⊆S

∑
Si∈Q

T (Si) (2)

subject to∑
v:(s,v)∈E

fsv =
∑

v:(v,d)∈E

fvd, fs→d ∈ F , (3)

∑
u:(u,v)∈E

fuv =
∑

w:(v,w)∈E

fvw, v ∈ V \ {s, d} ∀fs→d, (4)

fuv ≤ cuv, ∀(u, v) ∈ E, and (5)

∃ u→ v ∈
⋃

Si∈Q

P (Si), u, v ∈ V, (6)

where s ∈ VS and d ∈ VD are source and destinations of
the flows to be carried by the network, and u → v is a
path from node u to node v. The constraints (3) make sure
each flow departs its source and arrives its destination in its
entirety. Equation (4) assures the conservation of each flow
at all vertices other than its source and destination. Equation
(5) is the capacity constraints for all edges of G. Finally, (6)
assures the resulting multi-path routing provides at least one
path between all source-destination pairs.

We now further detail MAXSUBSTRATESET by expanding
T (Q). To do so, we denote a flow on substrate Si with f i

uv

where (u, v) ∈ Ei. Also, we denote the shortest path from
vertex u to vertex v as an ordered set of edges P (u→ v) ⊆ E.
With that, we rewrite MAXSUBSTRATESET(G,F ) as follows:

Q∗ = argmax
Q⊆S,fi

sv,i=1···q

∑
s∈VS

∑
Si∈Q

∑
v:(s,v)∈Ei

f i
sv (7)

subject to
(3)− (6),∑

Si∈Q

∑
v:(s,v)∈Ei

f i
sv

|fs→d|
= 1,∀fs→d, (8)

∑
u:(u,v)∈Ei

f i
uv =

∑
w:(v,w)∈Ei

f i
vw, v ∈ Ei \ {s, d} ∀fs→d ∀Si ∈ Q, (9)

∃v : f i
sv =

∑
v:(s,v)∈Ei

f i
sv, v ∈ Si,∀fs→d ∀Si ∈ Q, and (10)

∑
(u,v)∈Ei\P (s→d)

f i
uv = 0, ∀fs→d ∀Si ∈ Q. (11)

The objective function now details that the sum of the through-
put of the flows starting at all sources is to be maximized. The
constraint (8) makes sure the fractions of each flow assigned
to each substrate graph sum to 1. Equation (9) is the set
of constraints assuring that flows in each substrate graph are
conserved. Equation (10) assures that there is only one flow
from each source inside a substrate graph. Finally, (11) assures
that only the edges on the shortest paths inside a substrate
graph are utilized.

Formulations of MAXSUBSTRATESET above look at the
problem in a black box manner. It is possible to express the
substrate generation problem from the network’s point of view
in a white box style. In particular, network throughput is max-
imized when routing calculates paths with minimal overlap.
Next, we will express the substrate generation problem in
terms of minimizing overlap.

B. Minimum Substrate Set Problem

For a graph g={υ, ϵ}, let Rg be the routing vector such that
Rg(l) is the number of shortest paths traversing link l ∈ ϵ.
Note that Rg(l) is the edge betweenness centrality of a node.
Given a set of substrate graphs Q = {S1, S2, · · ·, Sj} in MCPR,
we can express the number of shortest paths traversing l as

t(l, P ) =
∑
Si∈Q

∑
g∈P (Si)

Rg(l). (12)

The substrate generation problem of MCPR is, then, to make
the use of each link as even as possible, which also implies
a minimal overlap among shortest paths. To factor in the
varying number of substrates, we can aim to minimize the
difference between the minimum and the maximum Rg(l).
Hence, we write MCPR’s substrate generation problem as
a minimization of the unevenness in the usage of links,
MINSUBSTRATESET(G,F ), in G={V,E}:

Q∗ = argmin
Q⊆S

(max
l∈V

t(l, Q)−min
l∈V

t(l, Q)) (13)



SORAN et al.: MCPR: ROUTING USING PARALLEL SHORTEST PATHS 371

subject to (3)− (6).

MINSUBSTRATESET provides a clear guidance on how heuris-
tics should be designed for the substrate generation problem.
In the next section, we will use this guidance to minimize the
maximum load on individual links while trying to maximize
the aggregate throughput. Producing a new substrate dynam-
ically to reach the optimum result is hard to determine in a
tractable time cost. On each step, we remove one or more
network element(s). In MCPR, we determine the elements by
using some heuristics, based on network centrality metrics,
detailed later in Section V.

C. Analysis

The MAXSUBSTRATESET(G,F) problem is quite similar to
the multi-commodity flow (MCF) problem, which is the basis
for quite a lot of multi-path routing problems [58]–[61]. The
goal of MAXSUBSTRATESET(G,F) is the same as MCF, i.e.,
maximizing the network flow. However, MAXSUBSTRATE-
SET(G,F) differs from MCF as it requires the paths to be
shortest in a subgraph of G. Instead of finding the optimal
fraction of flows on each edge as in MCF, it tries to find
the optimal set of subgraphs (i.e., Q ⊆ S) as well as the
fraction of flows on each subgraph (i.e., f i

sv) to maximize
the network flow. To be compliant with routing practices,
MAXSUBSTRATESET(G,F) assigns weights to each edge (i.e.,
wuv) when generating a substrate. These are virtual values
and allows MAXSUBSTRATESET(G,F) to produce different
shortest paths in each substrate so that the overall network
flow can be maximized.
Corollary 1: MAXSUBSTRATESET’s search space is O(2km

).
Proof: Let Q∗ be the Q that maximizes T (Q). Finding
Q∗ requires scanning of all possible Qs. Let Q̂ be the set
of all possible Q ⊆ S. Then, the search space size for
MAXSUBSTRATESET is the size of Q̂, which is:

|Q̂| =
∑

i=1···|S|

(
|S|
i

)
= 2|S| − 1. (14)

Substituting |S| = km in (14), we find the number of possible
substrate sets |Q̂| = 2k

m − 1, which is clearly not polynomial
in terms of the number of edges m. □

MCF is known to be NP-Complete when the flow rates are
integer, but can be solved in polynomial time if fractional flows
are allowed. Since MAXSUBSTRATESET(G,F) requires set-
ting of the link weights wuv within each substrate, it is a more
complex version of the network link weight setting (NLWS)
problem. For a single network (or substrate), optimal setting of
link weights to maximize throughput of shortest path routing
for a given set of flows was shown to be NP-hard [62],
[63]. Let NETLINKWEIGHT(G,F) be the problem of finding
the optimal link weights for graph G such that the network
throughput is maximized for the flow set F .
Corollary 2: The maximum network throughput for graph G
with optimal solution to NLWS is greater than or equal to the
maximum network throughput of any of its subgraph G′ with
optimal solution to NLWS, i.e., NETLINKWEIGHT(G′,F) ≤
NETLINKWEIGHT(G,F) for G′ ⊆ G.

Algorithm 1 A Solution to MAXSUBSTRATESET using
NETLINKWEIGHT

1: procedure MAXSUBSTRATESET(G,F)
2: Inputs
3: G = {V,E}: Bidirectional graph representation of a

network
4: F : A set of flows fs→d where s, d ∈ V
5: Output
6: Q: A set of substrate graphs maximizing flow of F on G
7: Q← ∅
8: while |E|! = 0 and

∑
fsd∈F F ! = 0 do

9: S ← NETLINKWEIGHT(G,F)
10: Q← Q ∪ S
11: F̂ ← SHORTESTPATHFLOW(S,F)
12: F ← F − F̂
13: Remove all edges of G that are maxed out by F̂
14: end while
15: return Q
16: end procedure

Proof: G′ is either equivalent to G or it does not have one
or more edge of G. Removing any edge (or vertex) from
G will eliminate the possibility of utilizing the capacity of
that edge (or the edges connected to that vertex) when trying
to maximize the network throughput over the subgraph G′.
Regardless of how the routing of flows will be on G′, the total
network throughput will not be greater than what is possible
with G. □

Lemma 1: When the number of substrates is limited to 1 (i.e.,
|Q∗| = 1), MAXSUBSTRATESET(G,F) is equivalent to the
NLWS problem, which is NP-hard.

Proof: A substrate Si = {Gi,Wi} of G has two compo-
nents: The set of vertices Vi and edges Ei from the original
graph G and the weights Wi of the edges in Ei. Intuitively,
removing any edge (or vertex) from G when generating the
only substrate in Q will eliminate the possibility of utilizing
the capacity of that edge (or the edges connected to that
vertex) when trying to maximize the network throughput using
that substrate. In other words, NETLINKWEIGHT(Gi,F) ≤
NETLINKWEIGHT(G,F), which follows from Corollary 2. □

Beyond setting link weights in a substrate, MAXSUB-
STRATESET(G,F) requires optimal selection of (i) a substrate
set Q from the original network G and (ii) the fraction of
flows f i

sv assigned to each substrate. These factors further
complicate the problem.

Lemma 2: MAXSUBSTRATESET(G,F) is polynom-
inal time reducible to the NLWS problem, i.e.,
MAXSUBSTRATESET(G,F) <P NETLINKWEIGHT(G,F).
Proof: We prove by devising an iterative algorithm to reduce
MAXSUBSTRATESET to NETLINKWEIGHT. Algorithm 1
shows the steps of the algorithm assuming an O(1) solution
to NETLINKWEIGHT(G,F) is available.

In each of its iteration, the reduction algorithm calls (line 9)
NETLINKWEIGHT with the input graph, G, representing the
physical network and the set of flows, F , to be laid on the
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network. This returns the optimum weight assignment to the
edges on G such that the flows in F are maximally satisfied.
This weight assignment and the original graph G becomes the
first substrate to be added (line 10) to the solution Q. Then,
in line 11, we apply shortest-path routing of F on S and
obtain what fraction of the flows in F are satisfied by this
routing. Some of these flows will compete on the same edges,
in which case an arbitrary mechanism to share the contended
edge capacity can be employed. Then, in line 12, the satisfied
portion of the flows are subtracted from the original set of flow
demands. Finally, at end of the iteration, the edges that have
no capacity left are removed from the graph G. The algorithm
iterates until either there are no edges left in G or there are
no flows left in F to satisfy.

Each iteration of the algorithm has O(n log n + m) com-
plexity due to the shortest-path calculation in line 11. A
careful inspection of the algorithm reveals that it will not
iterate more than m times. This is due to the assumption that
NETLINKWEIGHT find the optimum link weights for carrying
the remaining flows on the remaining graph. Since it is finding
the optimum weights, it must find the maximum flow for at
least one flow in F . From the max-flow min-cut theorem [64],
we can deduce that the outcome of line 9 will cause at least
one edge to be maxed out. This means that line 13 will
remove at least one edge at every iteration of the algorithm,
which guarantees that the while loop will not iterate more
than m times. Hence, the overall complexity of the reduction
algorithm is O(mn log n+m2), which is polynomial. □

Theorem 1: MAXSUBSTRATESET is NP-hard.
Proof: It follows from Lemma 1 and Lemma 2. □

V. MCPR HEURISTIC DESIGN

MCPR creates virtual slices, i.e., substrates, from the entire
router topology to run those substrates on each core for getting
more diversified paths for e2e data transfers. In the entire set
of possible substrates, some topologies could be incapable of
producing better results, e.g., that could include a partitioned
set of nodes in a substrate which can not route within the
substrate. Considering such constraints, our design goal of
MCPR is to find optimal substrates that yield diverse and
non-overlapping shortest paths. Thus, we develop intuitive
heuristics to create new substrates which can improve total
aggregate throughput.

When generating the substrates, a crucial challenge is to
assure all-to-all connectivity. To address this issue, we define
substrate 0 as the actual topology. When generating the
subsequent substrates, however, some nodes or edges are going
to be omitted based on some criteria. A simple heuristic step
could be to omit the nodes/edges that are being used the most
by the shortest paths in substrate 0.

While generating subsequent substrates, some network ele-
ments, such as nodes or edges, will be omitted from the net-
work. Our heuristics analyze the genuine topology to predict
which routers/edges could be maxed out (i.e., utilized) earlier
than others. These routers/edges are removed from some of the
subsequent substrates to balance the load in the underlying

Algorithm 2 Graph-based removal

procedure GRAPH-BASED(amount, coreCount)
substrateList.Add(actualTopology)
metrics← [NBC,NCC,NDC, etc.]
sortedList← nodes.Sort(metrics)
numOfSubstrates← 1
while numOfSubstrates < coreCount do

elements← sortedList.Select(amount)
newTopology ← formerT.Remove(elements)
substrateList.Add(newTopology)
numOfSubstrates← numOfSubstrates+ 1

end while
end procedure

network. Thus, the primary design parameter is to decide
which nodes/edges are going to be omitted on the generated
substrate. Our first step of heuristics could be to omit the most
utilized nodes or edges that might be more centralized as these
elements can be used more than the others.

Depending on the timescale of changes to the best solution,
we use two different heuristic criteria for determining the
“central elements” of the network: Graph-based or flow-based.
The former suits to large timescale multi-path calculations
while the latter focuses on short timescale network traffic
dynamics. In the graph-based technique, the whole topology
is analyzed and all the edges connected to the central elements
are expelled on the next generated substrate. Similarly, in the
flow-based method, the traffic pattern at the particular time
is inspected, and selected edges with highest utilization will
not be on the new substrate. Therefore, our heuristics are
concentrated on figuring out the possible network dynamics
in a feasible way, and finding the central network elements
that can be omitted to generate new substrates.

As substrate 0 is the original topology to guarantee the
connectivity for other substrates, the generating process could
be done in a cumulative approach or an independent approach.
In the cumulative method, all substrates are generated from
the previous substrate that is already produced. This process
ensures that network elements removed in the previous sub-
strates, cannot be on the newly created substrate. For instance,
in order to calculate the 4th substrate for a 4-core router, 2nd

and 3rd substrates should have already been calculated for
that router. If an edge was removed in the 2nd substrate, it
would not be on the 3rd or subsequent substrates. Whereas,
in the independent method, all substrates are calculated from
the original topology, and so, all of the other substrates can
be generated at the same time.

A. Graph-Based MCPR Heuristics

Graph-based heuristics are purely based on the graph prop-
erties of the genuine topology. In graph-based heuristics,
network centrality metrics are used to find the most ‘cen-
tral’ nodes/edges as they are most likely to be maxed out
by traffic flows. The main purpose of these methods is to
increase the number of non-overlapping paths for the newly
generated substrate. For the graph-based approaches, the only
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consideration will be the topology information, regardless of
the traffic pattern, to determine the order of nodes/edges to
be removed. Therefore, the selected nodes/edges for removal
can be pre-calculated and remain unchanged until the topology
changes. On the other hand, the graph-based methods might
not be robust with the dynamic traffic flow patterns because
they determine the potential congestion areas only by using
the topology information. Algorithm 2 shows the steps for
graph-based heuristics.

The graph-based heuristics are based on the centrality
characteristics of the nodes/edges in the network topology.
Central nodes/edges are calculated and selected as potential
congestion areas without analysis of the actual network flow.

Node centrality. We utilized the following centrality metrics
to determine which nodes to remove:

Node degree centrality (NDC) measures the number of in/out
connections between the nodes. If a node has a higher degree,
that node can potentially carry more traffic than others around
it as it connects to a greater number of nodes. In NDC, the
highest degree nodes are eliminated first.

Node betweenness centrality (NBC) is a metric that measures
the number of shortest paths among all pair of nodes traversing
through a particular node. NBC calculates all shortest paths
between every possible node pair to find how many shortest
paths pass through a particular node. NBC reduces possible
intersection of the paths that is most commonly used on the
shortest paths. NBC, in essence, captures the very basic notion
of overlapping shortest paths. Thus, eliminating the nodes with
high NBC is in direct intuition with the goal of graph-based
heuristics, i.e., to increase non-overlapping shortest paths in
the subsequent substrates.

Node closeness centrality (NCC) measures the distance from
a node to all others to determine which node is the closest to
every node. This heuristic would identify nodes that are at the
center of the graph. NCC selects the nodes for removal when
they have the average shortest distance to all other nodes, with
the intuition that such a node would be on more of the shortest
paths.

Harmonic closeness centrality (HCC) is a modified version of
the NCC where the sum of distances is inverted. In particular,
HCC calculates the sum of the inverted distances. We try to
see the effect of this little change on MCPR.

Eigen vector centrality (EVC) measures the centrality of a
node based on the centralities of its neighbors in a recursive
manner. This measure accounts for nodes that are not only high
degree but are also connected to other high-centrality nodes.
Hence, this heuristic would identify nodes that are not only
central themselves but also connected to other central nodes.

Page rank centrality (PRC) is an extension of EVC that pro-
vides a default centrality to all nodes independent of their
links. PRC provides a centrality score to all nodes as EVC
gives a centrality of zero to nodes that are not in the strongly
connected component. We used a damping factor of 0.85 as
suggested by [65].

Random node (RN) provides a greedy solution with the mini-
mal computation cost as baseline. RN randomly picks nodes to
remove until the removal percentage is fulfilled. This heuris-
tic allows us to observe the performance of an uninformed
removal process.
Edge centrality. We utilized the following centrality metrics
to determine which edges to remove:

Edge betweenness centrality (EBC) is the edge version of
NBC. Instead of counting the number of shortest paths through
a given node, EBC calculates how many shortest paths use a
given edge. Removing the most used edges can be helpful to
obtain higher aggregate throughput over the network rather
than losing the most central node with all of its edges.

Edge closeness centrality (ECC) measures closeness of an
edge to other edges (similar to NCC) and removes the edge
at the center of the graph from the substrates.

B. Flow-based MCPR Heuristics
As current systems typically use the shortest path for

deciding a path from a source to a destination, some edges
can be shared by multiple paths. Hence, overlaps of e2e
paths causes congested spots on the network. Intuitively, the
bandwidth of the most used edges are going to be maxed
out earlier than the other edges. As each substrate calculates
its own shortest paths, load on the shared edges of different
substrates could be high. As we remove the most utilized edges
from the previous substrate(s), we try to obtain short paths
that avoid congestion spots. Thus, our main goal in flow-based
heuristics is predicting which edges carry more data than other
edges, and balancing the load across all edges of the topology.

The graph-based properties might not capture the dynamism
of network traffic. Designing heuristics that consider the
current utilization of edges could be favorable to adapt the
substrate generation process. We also employ flow-based
heuristics as a dynamic approach that depends on the traffic
patterns in addition to the underlying topology. The generated
substrates change with the estimated data flows. For each
flow set, a new substrate set must be generated periodically,
which increases the computational overhead. While flow-
based heuristics are adaptive to the traffic dynamics, they are
computationally intensive. We consider the following flow-
based heuristic:

Highest flow (HF) focuses on the current flow of edges. To
generate a new substrate, HF counts existing flows traversing
each edge and omits the highest load edges in substrate i to
produce subsequent substrate i+1. In each step of the substrate
generation, we remove a number of edges according to the
target removal percentage. If s = |Q| represents the number
of substrates and f = |F| is the number of flows, the time
complexity for HF is O(sfn2 log n). Although the method can
be faster than some of the graph-based heuristics, HF should
be performed whenever the traffic load changes.

C. Removal Methods
Both of the graph-based and flow-based heuristics produce

an ordered list of network elements (i.e., nodes or edges) to
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TABLE II
SUBSTRATE GENERATION HEURISTICS AND REMOVAL METHODS.

Highest Graph-based Graph-based Random
flow (edge removal) (node removal) removal

Block + + + -
Bucket - + + -
Region - + + -

Individual - + + -

be removed based on how central they are to the network.
In MCPR a measure of aggressiveness, “removal percentage”,
is given as the percent of elements to be removed from the
topology for generating the next substrate. To complete the
substrate generation step, selected heuristic removes network
elements up to the a given removal percentage. We consider
four different selection methods to remove elements from the
centrality list and apply heuristics in Table II.

(a) Block remove chooses a block of elements, starting from
the most central node to the least, filling up the removal
percentage. In the first substrate, it removes the highest ranged
block; in the second one, the elements in the second highest
block are removed, and so on. This method removes the most
central nodes at the same time, and tries to offload the load
to the less central nodes in the subsequent substrates.

(b) Bucket remove creates the blocks as described in the block
remove, but, instead of clearing the whole block at once it
uses blocks as different clusters of the items on the ordered
list. It uses a round robin to choose one element from each
group into the bucket and then clears different buckets in each
substrate. Hence, this method does not remove the most central
components at the same time.

(c) Region remove performs breadth first search (BFS) [66] to
discover the neighbors of the most central item (i.e., the most
central element in the given ordered list) and remove the net-
work element along with its BFS tree. For the next substrate,
it choose the subsequent most central element, and so on to
clear the neighboring region. We do not impose a depth limit
while creating the BFS tree and continue until it reaches the
given removal percentage target. We applied both edge-based
and node-based regional remove in our experiments.

(d) Individual remove focuses on one element from the top of
the centrality list. Note that this method is not applicable to
heuristics and does not use the “removal percentage” notion
since it omits only one element in each step.

D. Handling Heterogeneity in Core Distribution

There are different kinds of routers manufactured by various
companies with multiple CPU cores. Since upgrading a large
network with new routers is not possible in a short period of
time, the homogeneity of the routers cannot be assumed. As a
result, we need to find MCPR heuristics that can work across
heterogeneous routers with different number of core.

Each router core will have a different topology as MCPR
empowers each core to handle one of the generated substrates.
The substrates may not be efficiently hosted by some of

the routers if their core count is fewer than the number of
generated substrates.For example, when four substrates (i.e.,
substrate 0–3) are created, substrate 2 and substrate 3 cannot
be assigned to a dedicated core at a 2-core router. When the
2-core router has a flow coming from a substrate that is not
assigned to a separate core (e.g., substrate 3), the forwarding
of the data packets for that flow will have to be handled by
one of the two cores that are already assigned a substrate
(e.g., substrate 0 or substrate 1). This means that the flows on
these “unassigned” substrates will have to share the cores with
other substrates. Such sharing of the cores will slow down the
control plane and, in turn, forwarding actions. Hence variance
in the number of cores deteriorate the overall performance.

To design MCPR heuristics that can run over routers with
the heterogeneous count of cores, we take two different design
approaches:

(a) Preventing excessive substrates (PES) removes excessive
substrates. In this approach, after deciding which elements
will be removed to generate a new substrate, routers are also
omitted if their core count is fewer than the substrate count.
Because such routers will not able to process the data coming
from the excessive substrates, the nodes with a core count
fewer than i are omitted while generating the substrate j
where j > i. Note that this is a preventive approach since it
eliminates the possibility of having substrate count exceeding
the core count of routers.

(b) Data loss model (DLM) generates substrates as if there is
a homogenous core count across the routers, and then create
a data loss model by considering the additional processing
delay at the routers with excessive substrates. This allows the
possibility that some routers will serve more substrates than
their core count. In these cases, we estimate the additional load
on the routers due to the excessive substrates. Following the
observations on the performance of MPTCP, we proportionally
reduce the achievable data flow speeds for the overloaded
routers [67], [68]. In order to evaluate the performance of this
approach, we reduce the data flow speed in proportion to how
many times the router’s interfaces were used. We calculate the
scaling factor of nodes according to their overload, i.e., scaling
factor for a 2-cored router with 4 substrates will be 2/4, and
compute an aggregate data loss for each flow by considering
all nodes traversed by the data flow. When computing the
aggregate data loss on a path, we consider delay-tolerant
and loss-tolerant transfers since application traffic may have
different preferences. In loss-tolerant transfers, we multiply
scaling factors of the nodes on the path, which we call
DLM-product (DLM-P). In delay-tolerant transfers, we use
the arithmetic average to determine the portion of data loss,
which we call DLM-arithmetic (DLM-A). We also use the
harmonic average to mix both delay and throughput tolerant
scenarios, which we call DLM-harmoni (DLM-H). At the end,
the calculated portion of the data is determined as data loss
because of the excessive substrates.
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TABLE III
CHARACTERISTICS OF ROCKETFUEL NETWORK TOPOLOGIES.

Network Nodes Edges Max Avg. Avg. Cluster. Assortativity
deg deg path len coeff.

AboveNet 141 922 40 13.1 3.62 0.269 0.698
Ebone 87 403 51 9.3 3.90 0.299 0.357
Exodus 79 352 24 8.9 3.94 0.286 0.749

SprintLink 315 2333 90 14.8 3.89 0.331 0.387
Telstra 108 368 92 6.8 2.89 0.171 0.006
Tiscali 161 874 406 10.9 2.31 0.072 -0.063

VI. EVALUATION OF MCPR HEURISTICS

A. Experimental Setup

We performed static analysis of the MCPR heuristics in C++
by creating a new environment for calculating the amount of
data throughput over a given network. In this analysis, we
create substrates with the heuristic methods, find the end-to-
end paths for data flows on each substrate, carry all data on
the substrates by using max-min allocation method for sharing
capacities of edges/links. Then, aggregate throughput can be
calculated for a given scenario.

We tested our heuristics on six Rocketfuel topologies that
have different characteristics [69]. Table III presents the num-
ber of nodes, number of edges, maximum degree, average
degree, average path length, clustering coefficient, and assor-
tativity of the topologies we have used.

We compared the MCPR against the -currently used- single
shortest path routing to analyze the performance based on the
total throughput across the network. Since the information
provided by Rocketfuel is not enough to see all aspects of
the given network, we created a new network model that also
includes flow patterns, link capacities, flow demands of the
end nodes. We generated network flows between all node
pairs based on the gravity model (the product of populations
divided by the square of the geo-distance) between the point
of presences (PoPs) of Rocketfuel topologies. We assumed the
link capacities are inversely proportional to the link weights
that were provided by Rocketfuel, since the edges with lower
weights will more likely be on the shortest paths. Then,
we used max-min allocation to determine the e2e rates the
flows will attain. We normalized the flow rates based on the
smallest flow rate, and, so our throughput results are shown
in normalized units.

Topology: Rocketfuel topologies have information on
merely nodes and links. In our analysis, we determine link ca-
pacities inversely proportional to the delay-based edge weights
provided by Rocketfuel.

Flow patterns: In our analysis, the gravity-based flow pat-
tern, which uses actual population and geo-location of the
cities where nodes are located, is applied to generate the
data traffic for each pair of nodes. Flow demands (or rates)
are calculated with the product of populations divided by
the square of the geo-distance between two locations. We
also normalized the flow demands by the minimum flow rate
attained by any flow in the network.

Traffic rate and link capacity unit compability: Flow de-
mands and the link capacities are both estimated and given in
normalized units. Thus, unit compatibility between these two
factors is needed to measure the total throughput. We perform

this compatibility during the max-min allocation when flows
share link capacities. Instead of equal distribution, we share
link capacities based on flow demands which are flown through
a particular edge. So, each flow gets their portion based on
their demands.

Load balancing on substrates: Our proposed method re-
duces multi-path calculation problem to another problem:
Finding optimal subsets of possible substrates to achieve
maximum total throughput sent over the network. In this
model, it is needed to determine the load on each substrate
for a specific flow. In our analysis, in order to calculate the
throughput attained by substrates, we assign flows’ traffic
loads incrementally. First, we send maximal traffic load on
the first substrate, re-arrange the link capacities and use the
next substrate(s) to send the rest of the traffic. For instance,
let us assume that we have two cores and one flow. We try to
send the whole flow on substrate 1. If there is still flow traffic
needed to be sent, we carry it on substrate 2. A finer grained
model could look for better ways of splitting the flows’ traffic
load on to the underlying substrates.

Distribution of the core count for heterogenous scenarios:
The core count of the routers has not been observed in the
Rocketfuel topologies. We create a new estimation model
for core numbers on the routers to test the MCPR with
heterogeneous scenarios. According to our assumption(s), the
most used router(s) should be able to process more data
passing through them than the other routers. To calculate the
core-numbers, we use geo-location and population data for a
router. We assign 2, 4, 8, 16, and 32 core counts to routers,
and we assume an equal amount of each router category in
the topology. For example, when a topology has 25 routers,
we assume that the top 5 most-used, based on the population
of their geo-locations, routers have 32 cores and following top
5 routers have 16 cores and so on.

B. Speedup Against Single Shortest Path

We compare MCPR heuristics against the single shortest
path according to the total throughput achieved from the
generated substrates in total. We test both the cumulative
and independent approaches during the substrate generation
process. In the independent generation, all substrate graphs
are generated from the actual topology. In the latter one, each
substrate is forked from the previously created one and hence
later graphs have a larger portion of the network removed.
We also test the performance in different percentage of node
removals and different removal approaches (Section V-C).
To analyze the speedup of heuristics, we use the single
shortest path performance as a baseline. Note that the flow-
based heuristic HF is expected to provide the best speedup
as it dynamically adopts to the network flow in substrates.
Similarly, the random node removal heuristic RN is expected
to provide the lower bound of speedup as it randomly removes
nodes from the substrates without any additional calculation
or estimation.

Regardless of the choice of substrate generation heuristic,
MCPR outperforms single shortest-path routing, with average
throughput speedup ranging from 1.3 with 2 cores to 2.6 with
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Fig. 2. Average performance of MCPR heuristics over all topologies.
x-axis indices: The first line shows the removal percentage of network nodes/edges (between 2% and 16% by increments of 2). The second line shows the
number of cores (i.e., 2, 4, 8, 16, 32 cores). The third line indicates the substrate creation approach.

32 cores. Fig. 2 presents the performance gain of the heuristics
compared to the single shortest path for the average of
Rocketfuel topologies. In the figure, x-axis has three different
indicators. First line on the top shows the removal percentage
of network nodes/links (which is varied between 2% and
16% by increments of 2). Second line gives the number of
cores (i.e., 2, 4, 8, 16, 32 cores) that will accommodate the
substrates. The last line indicates the substrate creation ap-
proach, i.e., independent or cumulative. Each heuristic yields
a higher performance than the single shortest path indicating
even with a poorly chosen heuristic (such as the random
node removal), MCPR can produce better throughput than
traditional single shortest path routing. We observe that MCPR
heuristics improve with the number of cores for independent
substrate generation. While, in some instances of independent
substrate generation (e.g., 16% removal with 32 cores), node
centrality heuristics perform slightly worse than the random
substrate generation, centrality heuristics overall yield better
results than RN. As expected, HF produces best throughput
speedup in majority of the instances as it adapts the substrate
generation based on network flows.

Having more cores in the routers consistently improves
the MCPR performance. In both independent and cumulative
methods, a specified percent of the nodes/edges are removed
in the next substrate. The independent method removes fewer
elements in generating the next substrate as it always uses
the actual topology. In Fig. 2, we observe that the cumulative
method performs worse with higher node/edge removal rates
in subsequent substrates. As there are greater number of
nodes/edges ignored in the later substrates, they are not able
to yield viable e2e paths. Hence, node centrality metrics
occasionally perform worse than RN. On the other hand,
with independent substrate generation, higher removal rates
yield better performance for the HF approach that adjusts
the substrates to the networks’ flows. Thus, in general with
higher cores, one should utilize the independent edge removal
to obtain paths that would provide higher throughput in the
network.

Edge-based MCPR heuristics offer a good balance between
high throughput and high computational complexity. In the HF

TABLE IV
MAXIMUM SPEEDUP ATTAINED ON ROCKETFUEL TOPOLOGIES.

Network HF HF Graph-based Graph-based
independent cumulative independent cumulative

SprintLink 4.26 4.21 3.56 3.13
AboveNet 3.80 3.83 3.41 3.42

Tiscali 2.45 2.70 1.80 1.43
Telstra 2.01 1.95 1.73 1.43
Ebone 1.50 1.49 1.48 1.43
Exodus 1.42 1.40 1.45 1.37

approach, small percentage of removals with higher number
of cores provides better throughput because HF removes hot
spot(s) from the subsequent substrates. However, HF needs
to recalculate the substrates after each flow change, which
incurs larger computation cost. Hence, it is viable to use
EBC that produces the best among centrality heuristics, which
incur lower computational complexity as it only recalculates
the substrates after a topology change. Overall, for a large
topology, edge centrality heuristics, particularly EBC, offer
a good trave-off when the number of cores is high and the
independent removal percentage within 8% to 10% is used.

The speedup attained by MCPR is in high correlation
with the node count, edge count, and average degree of the
underlying network topologies. When analyzing individual
topologies, in Table IV, we get from 1.45 to 4.26 times better
results than the single shortest path baseline. We observe that
the best overall performance is achieved with SprintLink and
AboveNet, two largest (in terms of node and edge counts)
networks in the data set. We observe smaller speedup on small
topologies compared to bigger ones since there are not enough
elements to remove from the topology. In our experiments,
Exodus is the smallest topology with 79 nodes and 352 edges
with the highest assortativity coefficient, which means that
the topology is very balanced, unlike a star topology. Single
shortest path routing attains a well balanced traffic routing
leaving little room for improvement. MCPR attains 1.45 times
better throughput than the shortest path approach on Exodus.
However, some of the graph-based heuristics perform better
than HF because of the assortative characteristics and the size
of the network. When we analyze the next smallest topology,
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TABLE V
QUALITATIVE COMPARISON OF MCPR HEURISTICS.

Graph-based Flow-based
Depends on topology Depends on flows

Pre-computed Dynamic
Coarse granularity Fine granularity

Ebone, the maximum speedup that MCPR attained is 1.5
with HF and 1.48 with the graph-based heuristics. Exodus
and Ebone topologies have the same average path length;
however, the maximum degree is 51 for Ebone which makes
the topology disassortative. Thus, HF performs slightly better
than the graph-based heuristics.

Topological properties of the underlying network plays a
significant role in MCPR’s performance. Telstra and Tiscali
are star-like topologies with a high-degree core. MCPR’s
throughput speedup is 2.01 and 2.45 for Telstra and Tiscali,
respectively. Tiscali has a slightly disassortative behavior
where highest degree nodes form a core of the network.
Hence, the centrality-based removals are not able to produce
viable substrates, and so, HF attains better throughput. Thus,
Tiscali shows the most significant difference between the HF
and other centrality metrics. Fig. 3 presents the effect of the
number of cores in the networks with 8% independent edge
removal for AboveNet, Tiscali, and Telstra.

C. Control Plane Overhead

Implementation of the MCPR heuristics will add new over-
head compared to the legacy shortest-path routing. This over-
head includes both the computation of the virtual topologies
as well as the messaging needed to install and maintain them.

1) Computational complexity: Graph-based heuristics are
based on the underlying topologies and infer which nodes
would be congested first by analyzing network centrality
metrics. Graph-based techniques are performed if the topology
is changed such as addition or failure of edges or nodes. On
the other hand, flow-based heuristics are based on data flows
and adapt to the current flows. Hence, they require additional
computations with each flow change. On the positive side,
the flow-based heuristics (e.g., HF in Fig. 2) achieve higher
aggregate throughput as they balance the load based on the
actual flows. Table V summarizes these tradeoffs between the
two heuristic approaches.

Overall, flow-based heuristic periodically adapts to the flow
patterns and is sensitive to the current network traffic during
the new substrate generation process. Hence, the HF gives
an upper bound for MCPR heuristics. Although HF is the
upper bound, it should be calculated each time when the flow
pattern changes and will increase control plane communication
to disseminate changes. Graph-based heuristics, however, give
pre-computed substrates and are independent of current flow
status. Table VI compares the computational complexities of
the heuristics where n is the number of nodes and m is the
number of edges in the underlying network, and s = |Q| is
the number of substrates being generated.

2) Messaging and memory complexity: The amount of
control messages that have to be transferred to routers will
depend on (i) the size of the virtual topology information and

TABLE VI
CONTROL OVERHEAD OF MCPR HEURISTICS.

Computation Memory Messaging
Heuristic complexity (s) complexity (bits) complexity (bps)

NDC O(n+m) O(sm) O(sm/tt)
NBC O(n2 logn) O(sm) O(sm/tt)
NCC O(n2 logn) O(sm) O(sm/tt)
HCC O(n2 logn) O(sm) O(sm/tt)
EVC O(n3) O(sm) O(sm/tt)
PRC O(n2)∗ O(sm) O(sm/tt)
RN O(1) O(sm) O(sm/tt)

EBC O(n2 logn) O(sm) O(sm/tt)
ECC O(n2 logn) O(sm) O(sm/tt)
HF O(sfn2 logn) O(sm) O(sm/tt + sm/tf )

∗Can be approximated in O(n+m).

(ii) the frequency of updates on the virtual topologies. Since
each virtual topology will include link-state information, its
size is going to be O(m) in bits. For all the MCPR heuristics,
the memory overhead for each router will be O(sm) bits as
they have to store the link-state information for each virtual
topology. Assuming the underlying topology changes at every
tt seconds, the messaging overhead of the node- or edge-based
MCPR heuristics is O(sm/tt) in bps. Likewise, assuming
that the traffic flows experience a sizable change at every
tf seconds, the messaging overhead of the flow-based MCPR
heuristics isO(sm/tt+sm/tf ) in bps. These overhead bounds
are shown in Table VI for each MCPR heuristic. Effective
messaging overhead will depend on the specifics of protocol
implementation and, more importantly, balancing of the trade-
off between the proactiveness of routing protocol and the
amount of network capacity spent on carrying the control
messages. Most legacy protocols, such as OSPF, handle this
trade-off by utilizing fixed timers to suppress the amount of
routing control messages in the network.

D. Graph Analysis of Substrates

Analyzing the changes in the graph properties of the sub-
strates being generated by MCPR heuristics sheds light into the
performance outcomes. We find that node centrality heuristics
impact the graph properties significantly more than the edge
centrality and flow-based heuristics. Fig. 4 presents the average
and maximum node degrees of substrate graphs generated by
the MCPR heuristics. The node degree statistics are averages
over all Rocketfuel topologies. We present the node degree
statistics for independent as well as cumulative substrate gen-
eration methods. Cumulative substrate generation significantly
changes graph characteristics and reduces connectivity in the
graph. We compare the best of the three heuristic groups:
NBC, EBC, and HF. As it is expected that the node cen-
trality heuristics disrupt the substrate graphs more than edge
centrality and HF heuristics, NBC reduces the node degree
much faster than the other two heuristics. Node centrality
heuristics have almost the same effect in terms of topology
disruption. We observe that small removal percentages have
small effects on substrate characteristics. However, in larger
removal percentages MCPR is not able to generate different
substrates and repeats itself after a threshold.

In node centrality heuristics, the first substrate removes the
most centralized nodes, which causes significant decrease in
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Fig. 3. Effect of the number of cores with 8% independent removal for different topologies.
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Fig. 4. Average and maximum node degree of the substrates across all
topologies.
x-axis indices: The first line shows the number of substrates generated from
1 to 32, with 1 corresponding to the original (single shortest-path) network.
The second line shows the removal percentage of network nodes/edges (2%
and 10%).

the average and maximum node degrees. After a point, MCPR
heuristics start to remove periphery nodes from the network
and this increases the average node degree. This indicates
that later substrates might not improve the performance as
removing periphery nodes does not contribute to balancing
the load. Average node degree, however, is not affected much
by the edge removal heuristics. As a result, edge removal
heuristics perform better than node centrality heuristics (in
Fig. 2). We can observe the same pattern for maximum node
degree.

E. Comparing Removal Approaches

Until this subsection, we presented the results for block
removal approach. We now compare the performance of
the removal techniques, i.e., bucket, region, individual, and
block removal approaches. Since EBC outperforms the other
centrality-based heuristics, we only show the comparison for
EBC in Fig. 5.

When we generate substrates cumulatively, the new sub-
strates are being disrupted rapidly which sets back the total
throughput. However, in the individual removal method, we
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Fig. 5. Comparison between the removal approaches (block, bucket, region,
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x-axis indices: The first line shows the removal percentage of network
nodes/edges (between 2% and 14% by increments of 4). The second line shows
the number of cores (i.e., 2, 4, 8, 16, 32 cores). The third line indicates the
substrate creation approach.

remove only one element at each step that lessens deforma-
tion on the substrates but improves the performance slightly.
Bucket removal performs better and reduces the topology
disruption for the cumulative method, but it does not entirely
clear congested spots. So, it does not sufficiently contribute
to the throughput speedup. Block removal omits a block of
nodes/edges to generate a new substrate. This removes the
most important elements in the first one, however, in later
substrates, it removes low-ranking elements which reduces the
performance significantly. Finally, region removal outperforms
all other heuristics because, in each substrate, it clears a
neighborhood of elements corresponding to hot spots. This
spatially correlated removal proves to be effective since traffic
congestion in networks tend to be highly localized.

In the independent removal substrate generation, region
and block perform better as in the cumulative process. The
Individual approach has moderate improvement, and Bucket
does not have significant contribution to the performance. In
bucket removal, we omit some elements in each block which
is unable to balance the load across the blocks. When we
remove the whole block, in block removal, we reduce the
load on most used nodes synchronously attains better load
balancing. Hence, block performs better than bucket. Besides,
region clears the neighborhood, so the overloaded nodes and
the neighborhoods around them will not exist on the newly
generated substrates. This results in higher throughput for the
early substrates. When we increase the number of cores, for the
later substrates, region will remove the area of the low-ranking
nodes as well and hence degrade the performance severely. In
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Fig. 5, we also show that region performs better than block,
but it is a dynamic approach, and the implementation is costly.
Even though region performs better in our later tests, we show
block results in the previous sections since it might be easily
adapted without additional implementation costs.

F. Effect of Heterogeneous Core Count

We test all topologies for heterogeneous scenarios with a
selected set of parameters for core and removal percentages
under independent substrate generation since it has a better
performance. We only show the performance of EBC and NBC
in Fig. 6 to demonstrate how MCPR performs under hetero-
geneous core distribution on average among all Rocketfuel
topologies.

We show the performance of PES and DLM methods. We
indicate the upper and lower bounds with a thick line. The
throughput of the homogeneous scenario is the upper limit
of the heuristics’ performance when all of the nodes have
enough capability to process all of the assigned substrates
without any data loss. However, in real environments, there
could be processing delay that causes significant data loss.
The PES method eliminates the nodes with fewer cores than
the number of substrates being assigned to them. Since this
elimination is done after the substrate is created, the technique
removes additional elements after all and this reduces the
total throughput. The DLM method with arithmetic (DLM-A),
harmonic (DLM-H), and product (DLM-P) features show the
speedup with a loss of data according to the loss calculation.
Although the DLM-P (and in some cases PES for node
removal) is the lower bound of the MCPR, it still has an
improvement against the single shortest path baseline. Note
that, in DLM, we add some additional processing delay harshly
which causes data loss for those flows going through the nodes
with fewer cores than the number of substrates running on
them. So, MCPR may give better results in real settings.

G. Effect of Failures

Failure analysis helps to determine the robustness of the
approach under dynamic network conditions. We also ana-
lyze MCPR’s performance when the network has changed
unexpectedly because of traffic spikes or sudden failures.
When network failures occur, multiple e2e paths should be
recalculated due to topology changes. Re-computation process
means extra overhead on both control-plane communication
and CPU usage. Also, most of these failures are short-term
and failed edge or node could be back online in a while. In
that case, all paths will be recalculated twice to determine
the paths between source and destination pairs. However, in
MCPR, shortest path calculation is enough to modify the paths
on each substrate when node or edge failures occur. To show
the robustness performance of MCPR, we calculate the total
throughput over the network when one node or edge is down,
and we compare the average throughput achieved. We compare
the average results to understand the single node failures and
single edge failures. We assume that the substrate graphs stay
still even though a node/edge fails. This allows us to see how
robust the substrate graphs are against single failures.

1

1.2

1.4

1.6

1.8

2

2.2

6% 16% 6% 16% 6% 16% 6% 6%

2 Cores 4 Cores 16 Cores 32 Cores8 Cores

EBC

Homogeneous 
DLM-A
DLM-H
PES
DLM-P

16% 16%

Th
ro

ug
hp

ut
 S

pe
ed

up
Th

ro
ug

hp
ut

 S
pe

ed
up

1

1.2

1.4

1.6

1.8

2

2.2

6% 16% 6% 16% 6% 16% 6% 6%

2 Cores 4 Cores 16 Cores 32 Cores8 Cores

NBC

16% 16%

Fig. 6. MCPR performance with EBC (top) and NBC (bottom) under the
heterogeneous core distribution for independent substrate generation.
x-axis indices: The first line shows the removal percentage of network
nodes/edges (6% and 16%). The second line shows the number of cores (i.e.,
2, 4, 8, 16, 32 cores).

Th
ro

ug
hp

ut
 R

ed
uc

tio
n 

(%
)

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

2 4 8 16 32 2 4 8 16 32

independent cumulative

NCC (edge failure)  
HF (edge failure) 
NCC (node failure)
HF (node failure)

Fig. 7. Performance of AboveNet with node/edge failures when 8% removal
is applied.
x-axis indices: The first line shows the number of cores (i.e., 2, 4, 8, 16, 32
cores). The second line indicates the substrate creation approach.

MCPR heuristics handle both edge and node failures quite
well. We consider the best and worst performing heuristics,
that are HF and NCC respectively. Fig. 7 shows the average
decrease in throughput when 6% and 8% removal rate is used
with NCC and HF approaches in the AboveNet topology.
Overall, we observe that performance of MCPR is reduced by
0.4% when a node or edge failure occurs. When considering
the node failure, both NCC and HF approaches loose 0.7%
and 0.6% throughput on average for 6% and 8% removal rates,
respectively. When considering the edge failures, NCC looses
0.2% throughput on average while HF looses 0.1% throughput
with 6% removal rate. Similarly, with 8% removal rate, the
average throughput loss is 0.1%. Note that HF even improves
the throughput with edge failures under independent substrate
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graph generation with 8, 16 and 32 cores. This is due to the
fact that HF adjusts to the network condition and, with failure
of an edge, it was able to find alternative paths that slightly
improved the overall throughput.

VII. SUMMARY AND FUTURE WORK

We presented a new multi-path routing framework, MCPR,
that uses graph abstraction of the network topology and em-
ploys network centrality calculations to generate subgraphs for
multi-core routers. The basic idea is to virtually slice the router
topology into different subgraphs and assign each to a separate
router core, which calculates the classical shortest paths on the
assigned subgraph. This eases the computational complexity
of multi-path routing by dividing the overall problem into
smaller ones and lending each subgraph to a separate CPU
core with traditional shortest path algorithms. We analyzed
MCPR’s theoretical background, and showed that MCPR is
an NP-hard problem.

Experimental results show that centrality based heuristics
are able to increase overall throughput in the network more
than twice with 8-core routers compared to the current single
shortest path approach. The throughput speedup attained by
MCPR heuristics range from 1.3 with 2-core routers to 2.6
with 32-core routers, all while incurring polynomial control
overhead. In general, the results showed that the throughput
speedup is in strong correlation with the size (node/edge count)
and connectivity (average node degree) of the underlying
network. MCPR framework solves the multi-path calculation
problem with well-known techniques that easily adapts to
the current systems. Normally, multi-path routing algorithms
need to calculate e2e paths when topology changes. However,
in MCPR, we solely calculate shortest paths, which is a
well-known algorithm already built in the routers. We also
analyzed the effects of various selection methods after finding
the central nodes to remove in substrates. We showed the
performance of MCPR when routers have different number
of cores considering delay-tolerant and loss-tolerant applica-
tions. MCPR attains higher throughput against the shortest
path baseline under heterogeneous distribution of cores across
network routers. When compared to homogeneous distribution
of cores across routers, MCPR heuristics experienced small
reductions in the throughput speedup, e.g., from ≈1.6 to ≈1.4
when the average core count is 8. The MCPR framework is
robust to network failures because of its divide and conquer
design. The experiments showed that MCPR heuristics suffer
from less than 1% reduction in throughput when they face
with edge/node failures.

Possible future work includes to create subgraphs with other
search algorithms such as genetic algorithms, and improving
heuristics with dynamic and static solutions. MCPR can also
be run on a test-bed or real environment to show easy
adaptation and real performance. MCPR heuristics might be
enhanced and kernel level implementation can be done as a
new protocol. MCPR’s control overhead can be studied by uti-
lizing legacy multi-topology routing standards. Understanding
the trade-off between control messaging overhead and efficacy
of MCPR in attaining better throughput would be revealing.

Optimizing the messaging formats for multi-core routers while
compatibility with existing shortest-path routing protocols is a
worthy effort to pursue. MCPR framework can be analyzed
with different aspects of networking such as by exploring
its SDN implementations and the performance of MCPR
on centralized and de-centralized systems. The comparison
between MCPR and other multi-path routing algorithms can be
investigated. Finally, MCPR attempts to solve both multi-path
routing and parallelization of multi-path routing algorithms
on multi-core routers at the same time. Studying the latter
problem on a suite of multi-path routing algorithms on multi-
core routers is a worthy future direction.
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