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Short-Packet Communications in Wireless Energy
Transfer Full-Duplex IoT Networks with Deep

Learning Design
Toan-Van Nguyen, Thien Huynh-The, and Vo-Nguyen Quoc Bao

Abstract—In this paper, we study wireless energy transfer full-
duplex (FD) Internet-of-things (IoT) networks, where multiple FD
IoT relays are deployed to assist short-packet communications be-
tween a source and a robot destination with multiple antennas in
automation factories. Considering two residual interference (RSI)
models for FD relays, we propose a full relay selection (FRS)
scheme to maximize the e2e signal-to-noise ratio of packet trans-
missions. We derive the closed-form expressions for the average
block error rate (BLER) and throughput of the considered
system, based on which the approximation analysis is also carried
out. Towards real-time configurations, we design a deep learning
framework based on the FRS scheme to accurately predict the
average BLER and system throughput via a short inference
process. Simulation results reveal the significant effects of RSI
models on the performance of FD IoT networks. Furthermore,
the CNN design achieves the lowest root-mean-squared error
among other schemes such as the conventional CNN and deep
neural network. Furthermore, the DL framework can estimate
similar BLER and throughput values as the FRS scheme, but with
significantly reduced complexity and execution time, showing
the potential of DL design in dealing with complex scenarios
of heterogeneous IoT networks.

Index Terms—Deep neural network, residual self-interference,
short-packet communication, wireless power transfer.

I. INTRODUCTION

SHORT-packet communication (SPC) has gained signif-
icant attention due to its potential applications in crit-

ical scenarios with stringent latency requirements such as
autonomous driving, remote surgery, and factory automation
[2], [3]. For the Internet-of-things (IoT) systems and wire-
less networks, SPC was considered to achieve low transmis-
sion latency, and high reliability with a small block error
rate (BLER) [4], [5]. Recent studies in SPC with finite
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blocklength codes have primarily focused on the analysis of
IoT systems with half-duplex (HD) transmissions, where strict
requirements of 99.999% reliability and 1 ms latency demand
utmost consideration [6].

Deep learning (DL) has recently emerged as a powerful
solution to tackle a variety of practical problems in contem-
porary wireless IoT systems, including resource allocation,
queue management, and congestion control [7]. By precisely
estimating functions with high nonlinearity at a minimum
of complexity, DL has been increasingly applied in wireless
networks to improve various aspects of systems including
resource allocation, throughput prediction, and channel esti-
mation [8]–[10]. Furthermore, employing deep learning for
performance prediction in IoT networks can expedite real-
time configurations. DL-based models have the capability
to precisely predict desired performance measurements from
intricate datasets with high dimensionality, even in complex
network scenarios and highly dynamic environments where
mathematical derivations may not be practical.

A. Literature Survey

Recently, the studies of SPCs have been explored in non-
orthogonal multiple access (NOMA) systems incorporating si-
multaneous transmitting and reflecting (STAR) reconfigurable
intelligent surfaces (RIS) [11]. The average BLER, throughput,
goodput, latency, reliability, and age of information of SPC-
based unmanned aerial vehicle (UAV)-based NOMA systems
were analyzed in [12], taking into account imperfect channel
state information and successive interference cancellation. In
order to achieve a good balance performance between cell-
center users and cell-edge users while satisfying quality-of-
service requirements, a hybrid long-and short-packet commu-
nication approach was investigated in [13]. In [14], the partial
relay selection was proposed for dual-hop cooperative relay-
ing networks with short packet communications. However,
most of these recent works have just focused on half-duplex
transmission in SPC environments. To improve the BLER and
throughput of full-duplex IoT networks, the energy harvesting
with hybrid power-time splitting protocol was designed for
IoT devices with infinite and finite blocklength codes condi-
tions [15]. A hybrid power-time splitting strategy with a non-
linear energy harvesting model was also investigated in full-
duplex cooperative IoT networks [16], where the reliability,
goodput, and energy efficiency performances were analyzed.
In [17], a performance analysis was conducted to compare
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full-duplex relaying (FDR) and half-duplex relaying under
SPC constraints. The finding results indicated that FDR was a
favorable option for systems with lower transmit power, less
strict block-error rate requirements, and effective mitigation
of loop interference. However, different residual interference
models have not yet been fully explored in these works.

The application of deep learning techniques to address
complex optimization problems has been explored in the
studies [8], [18]. Particularly, Hendra et al. in [18] proposed
a deep learning approach to maximize spectral efficiency
in multiple-input multiple-output (MIMO)-NOMA systems.
On the other hand, Nguyen et al. [8] designed a new deep
convolutional neural network (CNN) architecture to obtain the
optimal solution for maximizing the achievable rate in multi-
hop IoT systems. In [2], a DNN design for a relay selection
scheme was shown to be more effective than the state-of-
the-art machine learning models in predicting the through-
put of cognitive IoT networks with a non-linear EH model.
In [10], a novel CNN architecture was designed with feature
enhancement-collection blocks to simultaneously predict the
BLER and throughput of multi-hop SPC IoT systems with high
accuracy and low execution time as compared to conventional
CNN. In [19], the CNN was used for achieving solutions
of downlink beamforming design of multiple-input single-
output under the per-antenna power constraints. The practical
testbed experiments of deep learning using software-defined
radio were also built to demonstrate the effectiveness of the
proposed system. However, these aforementioned works have
not considered full-duplex transmission in conjunction with
SPCs and deep learning designs in these IoT systems.

B. Motivation and Contributions

DL-based performance prediction in wireless energy trans-
fer (WET) full-duplex IoT networks (WFINs) with differ-
ent residual self-interference (RSI) models considering short-
packet transmissions over Nakagami-m channels, which in-
duces the intricacy of theoretical analysis, has not investi-
gated in these previous works. This hinders a comprehensive
investigation of the effects of RSI and finite block length
under SPC studies. Moreover, when IoT networks are on
a large-scale deployment, where the number of relays, and
the number of antennas at the power beacon and destination
are increasing exponentially with complex distributions. The
traditional mathematical analysis of these systems may be
intricate and these methods are not suitable for real-time
applications in modern wireless communications systems. If
we analyze the average BLER of the system with the RSI-II
model, the resulting expression will have integral forms with
several special functions (e.g., exponential integral function,
gamma function, and Bessel functions), which cannot be
further analyzed since they involved many complex functions.
This motivates us to build a new framework relying on CNN
design for performance evaluation. The DL framework allows
us to estimate quickly the system performance, such as average
BLER and throughput, whenever any changes in the network
settings. The training process will be performed offline to
obtain the trained model for online prediction, which helps to

reduce the deployment time for network designing, planning,
and monitoring in practice. We fill this gap by investigating
full-duplex IoT networks consisting of multiple FD relays
powered by a multi-antenna power beacon (PB) with different
RSI models and evaluated by a new deep CNN architecture
design. This work also emphasizes demonstrating the feasi-
bility of a DL framework for efficiently evaluating WFINs
wireless networks in which conventional mathematical model-
based approaches become unfeasible. The main contributions
of this paper can be summarized as follows:

• We propose a full relay selection (FRS) scheme in
WFINs, where two RSI models are considered at the
IoT devices under SPC constraints. We also derive
new closed-form expressions for the average BLER and
throughput of the FRS scheme over Nakagami-m fading
channels with the RSI-I model under the considered
system setup.

• We perform the approximation analysis of the average
BLER and throughput of FRS scheme with the RSI-I
model to show the effects of fading severity and locations
of relay and power beacon on the system performance.
The approximation approach has not been studied in
recent works since the complexity of Nakagami-m fading
channels.

• We develop a new deep convolutional neural network
architecture to estimate the BLER and throughput of
the FRS scheme with the RSI-II model, where a multi-
output regression problem is designed to train network
parameters for high-accuracy performance prediction.

• Simulation results reveal that the new CNN design
provides the smallest root-mean-square error (RMSE)
among the traditional designs such as the deep neu-
ral network (DNN) and conventional CNN approaches,
emerging as an outstanding performance estimator in IoT
networks.

• It is also revealed that the CNN-based scheme attains
the same BLER and throughput as the FRS one, but
with significantly reduced complexity. Additionally, the
FRS scheme with RSI-I outperforms HD one in terms of
BLER and throughput, which corroborates the efficiency
of FD transmission.

The paper is organized as follows. Section II introduces the
system model with two RSI scenarios and the relay selection
strategy. The system performance analysis is provided in Sec-
tion III focusing on average BLER and throughput. Section IV
provides the new CNN design for BLER and throughput
prediction of the FRS scheme. Section V provides simulations
to confirm the theoretic results of Sections III and CNN design
in IV. Section VI concludes the paper. The appendix provides
proof of Lemma 1 with derivations of the theoretical results.

Mathematical Notations: Boldface represents vector and
E{·} are the expectation operator.

II. SYSTEM MODEL

It is considered a wireless energy transfer full-duplex IoT
system, where an IoT source (S) equipped with a single-
antenna transmits short packets to a robot destination (D) with
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Fig. 1. A WET full-duplex IoT network.

M -antennas through SPC channels with the assistance of K
FD relays R = {Rk}Kk=1. At each relay, two isolated antennas
are installed for transmission and reception, employing self-
interference cancellation (SIC) to mitigate loop interference.
However, RF impairments can prevent the complete elimi-
nation of residual self-interference [20], [21]. Being energy-
constrained IoT devices, the source and relays use the har-
vested energy from an N -antenna power beacon to send their
packets under the assumption of perfect CSI.

We denote by gn,S, gn,Rk
, with n ∈ {1, · · ·, N}, hS,Rk

,
and hRk,Dm , with m ∈ {1, · · ·,M}, the channel coefficients
in the system from the n-antenna at power beacon to S
and Rk, from S to Rk, and from Rk to Dm, respectively.
Each channel coefficient is modeled as f =

√
Gf f̃ with

f̃ ∈ {gn,S, gn,Rk
, hS,Rk

, hRk,Dm}, where Gf represents the
large-scale path loss and f̃ represents the small-scale fading
following Nakagami-m fading model. Thus, the channel gain
|f |2 follows the gamma distribution with parameter λf . The
large-scale path loss can be presented as Gf = σPL(d/d0)

−PL,
where d, PL, d0, and σA are the distance between two nodes,
the path loss exponent, the reference distance, and the power
attenuation at d0, respectively.

Different from long packet communications, which are
usually based on the asymptotic Shannon theory, short packets
with new coding rates require a different performance analysis
approach. Short packets are subject to finite-blocklength ef-
fects, which means that the capacity rate and error probability
depend on the blocklength and the channel conditions. In
particular, the capacity rate expression using SPCs is a very
complicated function of the transmission power and channel
uses [8], making the design and evaluation of SPCs under the
full-duplex scenarios with WET much more computationally
challenging [22].

The system operation is divided into the WET and packet
transmission (PT) phases. The period for the WET is cET
while that for PT is (cT − cE)T , where cE , cT , and T denote
the number of channel uses (CUs) for the WET phase, the
total number of CUs, and duration of each CU, respectively.
In the WET phase, each IoT device will wirelessly harvest
energy from the power beacon for the data transmission. We
denote by η ∈ (0, 1) and P , the energy conversion efficiency
and the transmit power of each antenna at the PB, respectively.
The energy harvested at each IoT device X, with X ∈ {S,Rk},

from PB can be expressed as

EX = ηcETP

N∑
n=1

|gn,X|2, (1)

where gn,X is the channel coefficient between PB and X. After
performing WET as in (1) during the period of cET , the
transmit power of Rk over the PT period of (cT − cE)T can
be calculated as PX = EX

(cT−cE)T , which yields

PX =
ηcEP

cT − cE

N∑
n=1

|gn,X|2. (2)

By using the FD transmission, the self-interference at Rk will
include not only the additive white Gaussian noise, denoted
by nRk

, but also the RSI signal caused by the incomplete
cancellation of the undesired interference, denoted by uRSI,
which can be written as follows:

yRRk
=

√
PShSRk

xS + uRSIxRk
+ nRk

, (3)

where uRSI is the RSI signal at Rk, xS and xRk
denote the

signals at the S and Rk, respectively.
The RSI in (3) can affect the quality and reliability of the

desired signal and thus needs to be modeled and mitigated
properly. Therefore, we consider uRSI with two models such
as RSI-I and RSI-II as follows:

• (I) RSI-I model: uRSI in (3) is zero-mean, additive and
Gaussian following CN (0, lσ2

k), where l reflects the qual-
ity of the SIC technique and σ2

k is the RSI variance [20],
[23]. The smaller value of l indicates a better self-
interference cancellation quality. The RSI-I model has
zero-mean, which implies that there is no bias or offset
in the RSI model since its average value is zero. It
is Gaussian means that the RSI-I model has a normal
distribution with zero-mean and variance of lσ2

k. If the in-
terference is not Gaussian, the RSI-I model can be seen as
the worst-case scenario in terms of achievable rate [24].
The Gaussian assumption might hold in reality due to
the various sources of imperfections in the cancellation
process (i.e., due to the central limit theorem). Moreover,
it is additive indicating that it is added to the desired
signal as the external noise at the receiver. This implies
that the RSI can be treated as an independent noise source
and its effect can be analyzed using standard techniques
such as signal-to-interference-plus-noise ratio (SINR) or
error probability [25].

• (II) RSI-II model: uRSI is an independent Nakagami-
m random variable and can be presented as
uRSI =

√
PRhRRk

, where hRRk
is the SI channel at

Rk. Thus, |hRRk
|2 follows gamma distribution with

spread parameter λR and shape parameter m3. The
shape parameter influences the shape of the distribution,
while the spread parameter controls the scale of the
distribution. Modeling RSI as a Nakagami-m fading
channel can capture various fading scenarios, but it
also introduces high mathematical complexity due to
the involvement of Gamma functions and incomplete
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Gamma functions. Therefore, several existing works
used approximations or bounds to simplify the analysis,
but these approaches may lose accuracy [26].

From (3), the instantaneous SNR at relays is expressed as

γSRk
=
κψ

∑N
n=1 |gn,S|2|hS,Rk

|2

zRSI + 1
, (4)

where κ ≜ ηcE/(cT − cE), ψ = P/σ2
n, zRSI = σ2

k/σ
2
n for

RSI-I model, and zRSI = PR|hRRk
|2/σ2

n for RSI-II model. The
maximal ratio combining is used at the robot destination, and
the instantaneous SNR at Dm can be expressed as

γRkDm
= κψ

N∑
n=1

|gn,Rk
|2

M∑
m=1

|hRk,Dm
|2. (5)

By using the decode-and-forward protocol, an FD relay is
chosen to achieve the highest end-to-end (e2e) SNR, i.e.,

Rk∗ = arg max
k=1,···,K

min{γSRk
, γRkDm

}. (6)

The criterion (6) will improve reliable packet communication
in WFINs under short blocklength transmission and imper-
fection of the SI channels. The e2e SNR of the considered
network can be expressed as

γe2e = max
k=1,···,K

min{γSRk
, γRkDm

}. (7)

Based on the e2e SNR, the average BLER, throughput, reli-
ability, and latency will be analyzed in the following section.

III. PERFORMANCE ANALYSIS

1) BLER Analysis: Assuming finite blocklength transmis-
sion through channel i ∈ {SRk,RkDm}, the S transmits τ
information bits (message size) encoded into a packet over
the blocklength t > 100. The received SNR and the channel
coding rate are denoted as γi and ri ≜ τ/t, respectively, the
average BLER can be calculated as

εi ≈
∫ ∞

0

[
Q

(
C(γi)− ri√
V (γi)/t

)]
fγi

(x)dx, (8)

where Q−1(.) denotes the inverse Gaussian Q-function,
V (x)≜ (1− (1 + x)−2)(log2 e)

2 is the channel dispersion,
and C(x)≜ log2(1 + x) is the Shannon capacity. The involve-
ment of a complex Gaussian Q-function in (8) makes the exact
closed-form expression for the system BLER quite complex.
A tight approximation method for Q-function will be used to
solve integral in (8), where the Q-function is approximated

as Q
(

C(γi)−ri√
V (γi)/t

)
≈Ξ(γi), with Ξ(γi) being expressed as [8],

[16], [17]

Ξ(γi)=


1,

0.5− δi
√
t(γi − ζi),

0,

γi ≤ vi,
vi ≤ γi ≤ ui,
γi ≥ ui,

(9)

where δi = [2π(22ri − 1)]−1/2, vi = ζi − 1/(2δi
√
t),

ζi ≜ 2ri − 1, and ui = ζi + 1/(2δi
√
t). Using this feasible

approximation, εi can be calculated as

εi=

∫ ∞

0

Ξ(γi)fγi(x)dx
(a)
= δi

√
t

∫ ui

vi

Fγi(x)dx, (10)

where Fγi(.) is the cumulative distribution function (CDF) of
γi and step (a) is due to the integration by parts. Making
use of the first order Riemann integral approximation, i.e.,∫ y

x
f(z)dz=(y − x)f(x+y

2 ), for (10), which yields

εi(ζi) = Fγi
(ζi). (11)

Next, we find the CDF of γi of the considered FD system
based on the criterion (6).

Theorem 1. The CDFs of γSRk
and γRkDm over Nakagami-m

fading channels with RSI-I model are expressed, respectively,
as

FγSRk
(x)=1−

m1N−1∑
t=0

2

t!Γ(m2)

(
m1λE,1m2λD,1x

(zRSI + 1)−1κψ

)m2M+t
2

×Km2−t

(
2

√
m1λE,1m2λD,1x

(zRSI + 1)−1κψ

)
, (12)

FγRkDm
(x)=1−

m1N−1∑
t=0

2

t!Γ(m2M)

(
m1λE,2m2λD,2x

κψ

)m2M+t
2

×Km2M−t

(
2

√
m1λE,2m2λD,2x

κψ

)
. (13)

Proof: Please see Appendix A.
From (11), (12), and (13), the e2e BLER of the considered

system can be expressed as

εe2e =

K∏
k=1

[εSRk
(ζSRk

) + εRkDm
(ζRkDm

)

− εSRk
(ζSRk

)εRkDm(ζRkDm)]. (14)

Based on Theorem 1, when the fading severity parameters of
EH links and the number of antennas at the PB increase, their
product inside the Bessel function is large, making the CDFs
of γSRk

and γRkDm
become small. However, these expressions

are still in the Bessel function, and difficult to draw some
insights into the system behavior directly. Therefore, we will
perform the approximation analysis for the average BLER in
the following Theorem.

Theorem 2. The approximated CDFs of γSRk
and γRkDm

over
Nakagami-m fading channels with RSI-I model are expressed,
respectively, as

F ap
γSRk

(x)=1−
m1N−1∑
t=0

I∑
n=0

n∑
i=0

exp(−2
√
∆1x)

t!Γ(m2)

×Υ(∆1x,m2, t, n, i), (15)

F ap
γRkDm

(x)=1−
m1N−1∑
t=0

I∑
n=0

n∑
i=0

exp(−2
√
∆2x)

t!Γ(m2M)

×Υ(∆2x,m2M, t, n, i), (16)
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where

∆1 =
m1λE,1m2λD,1

(zRSI + 1)−1κψ
, ∆2 =

m1λE,2m2λD,2

κψ
, (17)

Υ(a, b, c, n, i)=


21+i−|b−c|(

√
a)i+2min(b,c)Λ(|b− c|, n, i),

when b− c ̸= 0,

2i−1(
√
a)b+c+i−2[Λ(2, n, i)− 2Λ(1, n, i)],

when b− c = 0,

(18)

Λ(Q,n, i) =
(−1)i

√
πΓ(2Q)Γ(0.5 + n−Q)L(n, i)

2M−iΓ(0.5−Q)Γ(0.5 + n+Q)n!
, (19)

L(n, i) =

(
n− 1

i− 1

)
n!

i!
, L(0, 0) = 1, L(n, 0) = 0, L(n, 1) = n!.

(20)

Proof: Please see Appendix B.
In Theorem 2, the CDFs of γSRk

and γRkDm
are shown

as exponential functions of fading severity parameters m1,
m2, and the channel uses for EH through parameters ∆1 and
∆2. The number of antennas at D and PB is proportional
to the CDFs of γSRk

and γRkDm
. The positions of PB and

FD relays expressed through parameters λE,1 and λE,2 also
considerably influence the CDFs of γSRk

and γRkDm , which
will be extensively evaluated in the numerical results Section.
Similar to (11), the approximation of BLER is expressed as

εapi (ζi) = F ap
γi
(ζi). (21)

The e2e BLER approximation of the considered system can
be expressed as

ε
ap
e2e ≈

K∏
k=1

[εapSRk
(ζSRk

) + εapRkDm
(ζRkDm

)]. (22)

Compared to the e2e BLER in (14), the product of two error
probabilities, εapSRk

(ζSRk
) and εapRkDm

(ζRkDm
), is very small,

approximating 10−4 − 10−6, when ψ → ∞ in (22); thus, this
product can be ignored.

2) Throughput Analysis: The system throughput Rth can be
formulated by considering the delay-limited transmission with
a fixed data transmission rate in bits per channel use (BPCU)
as

τe2e = Rth(1− ε)(cT − cE)/cT , (23)

where ε ∈ {εe2e, εape2e}, and (cT −cE)/cT presents the fraction
of effective communication time and total transmission time.

Regarding the RSI-II model, the analysis of average BLER
is quite intricate since it involves four random variables leading
to the integral of the product of two Bessel functions. This
challenge motivates us to build a new framework relying on
deep learning design for performance evaluation. The new DL
framework is projected to estimate the average BLER and
throughput of the FRS scheme with the RSI-II model via a
short-time inference process, which contributes to reducing
the deployment time for network designing, planning, and
monitoring in practice. The proposed DL framework will be
presented in the next section.

TABLE I
TRAINING INPUT VARIABLES AND RESPECTIVE VALUES FOR CNN.

Variable Value Variable Value
K [2, 6] yPB [2, 6]

N [2, 5] PPB [5, 30]

M [2, 6] cE [350, 400]

xR [8, 13] Rth [0.5, 1.5]

yR [0, 4] τ [500, 600]

xPB [8, 12]

IV. PROPOSED CNN DESIGN FOR BLER AND
THROUGHPUT PREDICTION

We propose a deep CNN design to predict the average
BLER and throughput of the considered system with the
RSI-II scenario. The proposed CNN includes an input layer
with a size of 1 × 11 for processing network parameters.
The input variables consist of the number of relays (K), the
number of antennas at PB (N ), the number of antennas at
D (M ), the positions of relay (xR and yR), the position of
PB (xPB and yPB), the transmit power of PB (PPB), the
channel uses for EH (cE), the information bits τ , and the target
data rate (Rth). We have chosen the above system parameters
because they influence significantly the performance of the
proposed WFINs. Over 160, 000 samples are generated for
training and testing based on input variables in Table I.

An input sample to the deep network for BLER and
throughput estimation can be expressed as follows:

x ≜ [K,N,M, xR, yR, xPB, yPB, PPB, cE , τ, Rth]. (24)

The proposed CNN architecture is illustrated in Fig. 2, where
the input size is specified as 1× 11, representing the wireless
system variables outlined in Table I. Following this, a convo-
lutional (conv) layer with a kernel size of 1× 1 is employed,
succeeded by a batch normalization (bn) layer and a swish
activation (swish) layer to aggregate features across three color
channels. To capture more diversified features, we design an
MRF block with three parallel connections, each of which is
specified by a conv layer with the kernel size of 1×1, followed
by a conv layer with different one-dimensional asymmetric
kernels of sizes such as 1 × 3, 1 × 2, and 1 × 1. The bn
and swish layers are used in each connection, where their
outputs are subsequently collected along the depth dimension
using a depth-wise concatenation (concat) layer to merge the
outputs. To reduce computational expenses when the network
goes deeper, a max-pooling layer (maxpool) with a stride of
(1, 2) and a pool size of 1 × 2 is employed. This operation
effectively reduces the spatial dimensions of the feature maps
by half [27].

In order to highlight the significant features obtained from
the previous layers, multiple processing P−Blocks are linked
together in a serial manner to extract intrinsic features as the
correlations between system variables, which are interleaved
by a (maxpool) layer to decrease the dimension of feature
maps. Each P−Block has three conv layers and an element-
wise addition add layer. These layers are connected by fol-
lowing the structure of residual blocks of ResNet [28], which
has been broadly applied to address the vanishing gradient
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Fig. 2. The proposed CNN architecture for BLER and throughput prediction.

problem in numerous learning tasks of wireless communica-
tions [29]. To further collect meaningful features, the outputs
are then traveled to the next three P − Blocks, ended with a
global average pooling (gap) layer, and followed by two fully
connected (fc) layers to summarize spatial features in each
map and estimate continuous values of BLER and throughput.
The loss function of the regression problem measures the
discrepancy between the predicted value, denoted by y(t), and
true target value, denoted by ỹ(t), what can be presented as [9]

Loss =
1

St

St∑
t=1

(y(t) − ỹ(t))
2, (25)

where St is the number of samples for training. The weights
and biases of the CNN have been updated during the back-
propagation process using the Adam optimizer.

Once the offline training process is finished, the resulting
CNN model, comprising weights and biases, can be succinctly
represented as a concise mapping function denoted as F(.).
Typically, a well-trained CNN is capable of providing highly
precise and real-time predictions. Thus, the obtained CNN
model is used to predict the BLER and throughput values when
any new data becomes available at the input. Particularly, each
input sample, sorted into vector x, at the input of CNN, the
CNN will produce the respective output values of BLER and
throughput, also arranged into vector ỹ ≜ [ε̃e2e τ̃e2e], i.e.,

ỹ = F(x). (26)

Through this short-time inference procedure, the CNN model
can predict both the BLER and throughput within a short time.

V. NUMERICAL RESULTS AND CNN EVALUATION

In this section, we provide some illustrative examples for
system performance evaluation. Monte Carlo simulations and
CNN prediction results of the BLER and throughput are pre-
sented to verify our designed approach. The S, D, Rk, and PB
are located, respectively, at (0, 0), (15, 0), (10, 0), and (10, 3)
on the Euclidean plane. We set d0 = 1 m, σPL = −30 dB,
the shape parameters m1 = m2 = m3 = 2, PL = 3.6. Unless
otherwise specified, the remaining simulation parameters are
set as follows. K = 3, M = 3, N = 3, cT = 900, the number
of bits 600, cE = 400, η = 0.8, l = 0.01, I = 12, and
the normalized noise variance σ2 = 1. The whole dataset is
divided by 80% and 20% for training and testing, respectively.
The CNN is trained for 60 epochs with random weights
initialization, a gradient decay factor of 0.96, and the adaptive
moment estimation optimizer. At the beginning of the training
phase, the learning rate is initial with 10−3 and it is decreased
by 90 % after 20 epochs.

For the multiple output regression, the RMSE is used for the
performance evaluation of the CNN design in predicting the
BLER and throughput. RMSE measures the deviation between
the true target and predicted values across the whole test set.
By considering the samples in the test set, the RMSE can be
calculated as

RMSE =
√

E{(y − ỹ)2}. (27)

Fig. 3 illustrates the effects of the percentage of training data
on different deep models. The first model is a DNN with five
fully-connected layers, each of which consists of 256 neurons.
The second model is a traditional CNN with a straightforward
architecture involving six conv layers (utilizing 1× 3 with the
numbers of filters of 64, 64, 128, 128, 256, and 256), followed
by activation ReLU layers and interleaved by max-pooling
layers. As can be observed, the proposed CNN achieves the
lowest RMSE while the deep neural network gets the highest
RMSE when the percentage of training data increases. The
reason is that the DNN model with a simple structure is
not able to estimate a moderate-to-high-dimensional dataset,
leading to the lowest performance. Although the traditional
CNN performs BLER and throughput prediction more accu-
rately than DNN, it is limited by multiple input correlations
and vanishing gradients if compared with the proposed CNN
model. Furthermore, it is realized that the RMSE of the CNN
models decreases more significantly than that of the DNN
ones as the amount of training data increases. DNNs are
usually more prone to overfitting than CNNs, especially when
dealing with large amounts of data, because DNNs have more
parameters, thus leading to the model memorizing the training
data rather than learning generalizable patterns. Besides the
ability to capture local patterns, reduced dimensionality, and
parameter efficiency, the proposed CNN model can map the
original dataset into a higher dimensional space with complex
patterns, resulting in error reduction and estimation accuracy
improvement. Due to the lowest RMSE of the proposed CNN,
it will be used for predicting the average BLER and throughput
in the next simulations.

As shown in Fig. 4, the FD scheme with the RSI-I model
delivers the best performance compared to the half-duplex
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Fig. 3. Effects of the percentage of data samples for training on the RMSE.
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Fig. 4. Average BLER of different schemes.

scheme, highlighting the benefits of full-duplex transmission.
Furthermore, the FRS scheme, which involves multiple relays
in the relay selection process, achieves higher diversity and
reliable transmissions than the random relay selection (RS)
scheme, resulting in lower BLER. Furthermore, the Monte-
Carlo simulations of the FRS scheme with the RSI-I model
demonstrate excellent agreement with the analytical ones,
affirming the correctness of the developed analysis. The ap-
proximation results are also tightly matched to the analysis
one, validating our approximation approach. Moreover, the
CNN prediction results of the RSI-II model closely align with
the simulation ones, emphasizing the efficacy of CNN design
in Section IV.

Fig. 5 reveals the effects of the number of antennas at D on
the system BLER with different positions of FD relays. As can
be observed, the number of antennas at D significantly affects
the average BLER when the relay is closer to the source, but
it does not affect the system BLER when the relay is farther
from the source. The reason is that the e2e SNR is dominated
by the instantaneous SNR at the relay, γSRk

, in (6) when
the distance between S and Rk is large, and increasing M
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D
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0

Fig. 5. Effects of M on the average BLER of RSI-I model-based FRS scheme
with the position of PB being (11, 5) and N = 2.
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Fig. 6. Effects of N on the average BLER of RSI-I model-based FRS scheme
with ψ = 15 dB.

does not improve the e2e SNR. On the other hand, when the
distance from source to relay is small, leads to the domination
of instantaneous SNR at D, γRkDm

, in (6), and the e2e SNR
is now a function of M .

Fig. 6 shows the significant effect of the number of antennas
at the PB on the average BLER of FRS scheme with the RSI-I
model. When the position of PB is close to the network, or
when a greater number of antennas are deployed at the PB,
the source and FD relays have more opportunities to harvest
energy, which improves the average BLER. Moreover, when
N is large, more degrees of freedom are contributed to the
system. Thus, the improvement of the average BLER becomes
significant when the PB is located near the network.

Fig. 7 shows the increase of throughput of all schemes as ψ
is large. The S and Rk will have more chances of harvesting
sufficient energy from the PB when ψ is large, which results in
the improvement of throughput. Again, the FRS scheme with
the RSI-I model achieves the highest throughput, while the
HD scheme yields the lowest performance. Furthermore, the
CNN-based scheme achieves the same throughput as the FD
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RSI-II model, showing an exceptional CNN design approach.
Fig. 8 shows the effects of the number of FD relays and Rth

on the throughput of FRS scheme. When Rth is increased,
the average throughput of FRS scheme with RSI-I and RSI-II
models considerably improves. When K is large, the system
with the RSI-I model achieves almost the same throughput
as its counterpart with the RSI-II one. It also shows that
the CNN prediction of the RSI-II model is matched with the
simulation one. This shows the correctness of our CNN design
framework.

The reliability and latency of short-packet communications
[6], [8], [10] can be calculated as

Reliability = (1− εe2e)× 100%, (28)
Latency = (cT − cE)T/(1− εe2e), (29)

where T = 3µs [30].
In Fig. 9, it can be observed that the message containing

256 bytes demonstrates greater reliability and lower latency
compared to longer messages (i.e., those consisting of 512
or 1024 bytes). The message with the size of 512 byte
can be encoded into packets over 6000 CUs to increase the
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Fig. 9. The reliability and latency of FRS scheme with RSI-I.

TABLE II
COMPARISON OF EXECUTION TIME FOR THE BLER AND THROUGHPUT

EVALUATION OF FRS SCHEME WITH RSI-II SCENARIO BETWEEN
SIMULATION USING MONTE-CARLO (SIM-MC) AND PREDICTION USING

CNN (PREDICT-CNN) DESIGN, WITH ψ = 20 dB.

Scenarios {K,N,M, cE} Sim-MC Predict-CNN RMSE
{3, 2, 3, 350} 4.8132 s 0.003828 s 0.0012

{5, 4, 5, 370} 12.835 s 0.004978 s 0.0020

{7, 6, 7, 400} 24.754 s 0.005375 s 0.0054

reliability level to 90%, as shown in Fig. 9(b). However, its
latency amounts to approximately 20 seconds, as indicated
in Fig. 9(a), which surpasses the maximum allowed latency
for URLLC services and applications [4]. On the other hand,
the 1024-byte message exhibits a latency of 80 seconds and
a reliability of less than 40% with the utilization of 6000
channel uses, failing to meet the stringent requirements for
both latency and reliability. Consequently, it can be concluded
that longer messages are unsuitable for supporting URLLCs
in IoT networks and for facilitating low-delay communications
in factory automation.

Finally, the running time of the throughput prediction is
evaluated in Table II. To obtain the exact result at ψ = 20 dB,
each sample of Monte-Carlo is averaged over 3 × 106 trials.
In all scenarios, when parameters K,N , M , and cE of the
considered system increase, the CNN consistently predicts the
BLER and throughput with a short period of time less than
6ms. In contrast, the running time of the simulation method
grows rapidly with such parameters, taking over 24 s for the
last case. Numerical results show the outstanding capability
of the CNN-based scheme to effectively handle IoT networks
with large-scale configurations.

VI. CONCLUSIONS

We studied the performance analysis of FEINs, where
different RSI models for full-duplex IoT devices were con-
sidered. The full relay selection was proposed to achieve the
highest e2e SNR of the system with the RSI-I model, based
on which the closed-form expression for the average BLER
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and throughput were derived. The respective approximation
analysis was also carried out to provide deeper insights into
the system behavior. Aimed real-time configurations, a CNN
architecture was designed for estimating the average BLER
and throughput when mathematical analyses of the system
with the RSI-II model became intricate. Simulation results
demonstrated that the CNN design-based estimation scheme
attained the exact average BLER and throughput values of
the FRS RSI-II model. Our future works will investigate
the FD-enabled multi-hop SPC incorporating new network
paradigms such as reflecting surface and edge computing to
enable distributed learning for future IoT systems.

APPENDIX A
PROOF OF THEOREM 1

We first consider (4) with RSI-I model, i.e., zRSI = σ2
k/σ

2
n,

let X =
∑N

n=1 |gn,S|2, the CDF of γSRk
can be calculated as

FγSRk
(x) = Pr

[
κψX|hS,Rk

|2

zRSI + 1
< x

]
=

∫ ∞

0

FX

(
x(zRSI + 1)

κψw

)
f|hS,Rk

|2(w)dw, (30)

where FX(.) and f|hS,Rk
|2(.) denote the CDF of X and PDF

of |hS,Rk
|2, respectively. Over Nakagami-m fading channels,

FX(.) and f|hS,Rk
|2(.) can be expressed, respectively, as

FX(x) = 1−exp(−m1λE,1x)

m1N−1∑
t=0

(m1λE,1x)
t

t!
, (31)

f|hS,Rk
|2(x) =

(m2λD,1)
m2xm2−1

Γ(m2)
exp(−m2λD,1x). (32)

Plugging (31) and (32) into (30) and after some manipulations,
we obtain as

FγSRk
(x) (33)

= 1−
m1N−1∑
t=0

(m2λD,1)
m2

t!Γ(m2)

(
m1λE,1x

(zRSI + 1)−1κψ

)t

(34)

×
∞∫
0

wm2−t−1exp

(
− m1λE,1x

(zRSI + 1)−1κψw
−m2λD,1w

)
dw.

By applying [31, Eq. (3.471.9)], the integral of (33), denoted
by T1, can be calculated as

T1=2

(
m1λE,1x(zRSI + 1)

κψm2λD,1

)m2−t
2

(35)

×Km2−t

(
2

√
m1λE,1m2λD,1x

κψ(zRSI + 1)−1

)
. (36)

By substituting (35) into (33) and after some manipulations,
we obtain the CDF of γSRk

as shown in (12).
Next, we consider (5), let Y =

∑M
m=1 |hRk,Dm |2 and Z =∑N

n=1 |gn,Rk
|2, the CDF of γRkDm

can be calculated as

FγRkDm
(x)= Pr[κψY Z < x]=

∞∫
0

FZ

(
x

κψy

)
fY (y)dy. (37)

The CDF of Z and PDF of Y in (37) can be expressed,
respectively, as

FZ(x) = 1−exp(−m1λE,2x)

m1N−1∑
t=0

(m1λE,2x)
t

t!
, (38)

fY (x) =
(m2λD,2)

m2Mxm2M−1

Γ(m2M)
exp(−m2λD,2x). (39)

Next, by plugging (38) and (39) into (37), we obtain as

FγRkDm
(x) (40)

= 1−
m1N−1∑
t=0

(m2λD,2)
m2M

t!Γ(m2M)

(
m1λE,2x

κψ

)t

(41)

×
∫ ∞

0

ym2M−t−1 exp

(
− m1λE,2x

κψy
−m2λD,2y

)
dy.

Similar to steps to calculate (33), the integral in (40), denoted
by T2, can be calculated by applying [31, Eq. (3.471.9)] as
follows:

T2= 2

(
m1λE,2x

κψm2λD,2

)m2M−t
2

Km2M−t

(
2

√
m1λE,2m2λD,2x

κψ

)
.

(42)

Plugging (42) into (40), and after some manipulations, the
CDF of γRkDm

can be obtained as (13). The proof is complete.

APPENDIX B
PROOF OF THEOREM 2

By applying Lemma 1 in [8], Kb−c(x) can be equivalently
approximated as

Kb−c(x) =



exp(−x)
I∑

n=0

n∑
i=0

Λ(|b− c|, n, i)xi−|b−c|,

if b ̸= c,

exp(−x)
I∑

n=0

n∑
i=0

Λ(2, n, i)− 2Λ(1, n, i)]xi−2,

if b = c,

(43)

where I presents the constrained upper limit of the summation,
and it can be appropriately configured to meet the desired
accuracy level. By applying (43), the CDFs in (12) and (13)
of Theorem 1 can be approximated in compact forms as in
(15) and (16) of Theorem 2, respectively.
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