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Abstract—In remote rural areas, it is not possible to employ
massive multiple-input multiple-output (MIMO), small cells,
and ultra-dense networks (UDNs) with the aim of increasing
throughput. A solution is to improve the waveform spectral
efficiency, integrating faster than Nyquist (FTN) signaling with
generalized frequency division multiplexing (GFDM). However,
this presents high self-interference in the time and frequency
domains, requiring dedicated detectors for performance loss
mitigation. Hard decision detection schemes primarily designed
for MIMO have been adapted to detect FTN-GFDM signals
without degradation of the uncoded bit error rate (BER), but
these schemes are suboptimal in terms of capacity as they
do not provide all the information contained in log-likelihood
ratios (LLRs). We design and evaluate in this paper a soft sphere
detector (SD) algorithm for FTN-GFDM that can be integrated
with state-of-the-art forward error control (FEC) decoders for
good BER performance over mobile channels. The SD detector
is combined with polar codes, and the BER and complexity are
evaluated for different channel models. The results show that
FTN-GFDM can provide high spectrum efficiency gains without
significant coded BER losses and with affordable complexity
on the receiver side, which makes this waveform an interesting
candidate for mobile networks in remote areas.

Index Terms—Faster than Nyquist, generalized frequency di-
vision multiplexing, polar coding, single tree search algorithm,
soft sphere decoder.

I. INTRODUCTION

THE spectral efficiency of beyond fifth generation (5G)
and sixth generation (6G) networks needs to increase
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significantly to enable the high volume of data traffic pre-
dicted for future applications. Several new applications sce-
narios are being proposed by researchers around the world
to provide global connectivity, invisible security, digital twins
and other high demanding use cases [1]. Massive multiple-
input multiple-output (MIMO) and ultra-dense network (UDN)
improve capacity in densely populated areas, but these tech-
nologies are not readily in remote and rural areas [2]. Since
enhanced remote area communications (eRAC) applications
are more likely to operate in bands below 1 GHz, it is
desirable to increase the spectral efficiency of the waveform
to achieve higher data rates. By using non-orthogonal wave-
forms compressed in time and frequency domains beyond
the Nyquist limit for interference-free communication, it is
possible to increase the number of transmitted bits per sample
of the waveform, achieving higher data rates and overall better
quality of experience (QoE). This requires a dedicated detector
because linear receivers designed for orthogonal waveforms
cannot mitigate the interference, leading to a poor bit error
rate (BER) performance.

In principle, faster than Nyquist (FTN) can be applied to
any waveform, but generalized frequency division multiplex-
ing (GFDM) [3] stands out among possible waveforms for
6G networks because of its flexibility to address different
requirements, such as low adjacent channel leakage ratio
(ACLR), low peak-to-average power ratio (PAPR) or high
cyclic prefix (CP) efficiency [4]. Also, GFDM has Orthogonal
frequency division multiplexing (OFDM), discrete Fourier
transform spread orthogonal frequency division multiplexing
(DFT-s-OFDM), orthogonal time frequency space (OTFS) and
other waveforms as corner cases [5], [6], making it compatible
with legacy networks or other wireless standards.

Due to its flexibility, FTN can be easily applied to GFDM
simultaneously in time and frequency domains, increasing the
overall spectrum efficiency gains if the Mazo limit [7], [8] in
each dimension is respected. This approach leads to a new
waveform, defined as FTN-GFDM, which has been shown
to provide higher spectrum efficiency without uncoded BER
performance loss [9].

However, in order to achieve the desirable performance,
the receiver must resolve the interference introduced by the
FTN signaling. It has been shown that non-linear MIMO
detectors can be redesigned to address the self-interference
in FTN-GFDM waveform [10]. From the available detectors
sphere decoder (SD) has shown to achieve the best uncoded
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BER performance with an affordable complexity. Although,
the SD detector available in the literature delivers hard deci-
sions for the forward error correction (FEC) decoder, which
means that the error correction algorithm cannot provide its
best performance. In order to achieve the optimal performance,
the FEC decoder needs the log-likelihood ratios (LLRs) from
the waveform detector, which means that the SD must provide
a soft output.

The main aim of this paper is to design a soft SD detector
for FTN-GFDM system and evaluate its performance in terms
of complexity and coded BER when integrated with a state-
of-the-art FEC scheme. Polar codes have been selected to
be integrated with the FTN-GFDM because of its high error
correction capability and flexibility in terms of code rates
and codeword length [11], [12]. Polar codes have also been
shown to achieve the channel capacity for both discrete and
continuous memoryless channels [11]. Polar codes also can be
designed to be systematic, reducing the encoder and decoder
complexities. These characteristics are beneficial for eRAC
applications in remote and rural areas, since the trade-off
between complexity, robustness and data rate can be tailored
for different situations. Furthermore, polar codes have attracted
interest from the academic community, having been chosen
by the 3rd Generation Partnership Project (3GPP) as the FEC
scheme for the control channel in 5G networks [13]. The key
contributions of this paper, when compared to the existing
literature, are as follows:

• Design of a soft-output detector based on SD for the
FTN-GFDM waveform;

• Integration with a coding scheme to evaluate the perfor-
mance gain achieved from using a soft-output detector
for FTN-GFDM;

• Performance analysis under different channel models; and
• Complexity analysis and comparison between soft and

hard decision detectors.

It is important to highlight that the aim of this paper is not an
exhaustive exploration of all state-of-the-art FEC schemes in
order to define the scheme that achieves the best performance.
Instead, the contributions presented are closely related to
the design, implementation, and evaluation of a soft-output
detection scheme for the FTN-GFDM waveform, which will
benefit the performance of any FEC scheme that can take
advantage of the extra information provided by such detector.
This paper shows that simple FEC schemes can also benefit
from a soft-output detector, achieving better BER performance
even when low complexity FEC decoders are employed.

The remainder of this paper has the following structure.
Section II presents the proposed system model. Section III
describes the design of the soft SD detector, in particular
the use of tree search algorithms to find symbols that min-
imize the distance to the discrete filtered received signal.
The detector’s complexity analysis is also presented in this
section. Section IV presents the coded BER performance
of the proposed detector in comparison with hard decision
SD assuming different channel models. Also, the complexity
of the proposed detector is compared with the hard SD in
terms of floating-point operations (FLOPs). Finally, Section V

concludes this paper and presents future research directions.

II. SYSTEM MODEL

The block diagram of the proposed FTN-GFDM transceiver
is shown in Fig. 1. Each subsystem is described in the
following subsections.

A. Polar Encoding and Decoding

Polar coding is a channel coding technique that uses polar-
ized bits to improve the reliability of transmission over noisy
channels [11]. Polar codes were first introduced in [11] and
gained considerable attention due to their excellent error cor-
rection performance, scalability, and low decoding complexity.
The idea of polar codes is to take a channel with a high error
probability and transform it into two channels, one with a low
error probability and one with a high error probability. The
information is transmitted on the low error probability channel,
while the high error probability channel is used for error
correction [12]. Therefore, polar coding is integrated before
FTN-GFDM modulation and after FTN-GFDM detection to
ensure the reliability of the communication system.

1) Encoding: The polar encoder block, shown in Fig. 1,
converts a block of information bits bi ∈ RNi×1 into a
sequence of coded bits bc ∈ RNc×1. The systematic encoding
is performed by two non-systematic encoders interleaved with
the insertion of frozen bits between them. The non-systematic
encoding process can be defined as

bc = buBnF
(⊕n), (1)

where bu ∈ RNc×1 is formed by concatenating the informa-
tion bits bi with Nc −Ni frozen bits, and F(⊕n) ∈ RNc×Nc

is the nth power Kronecker matrix, which its first power is
given by

F =

[
1 0
1 1

]
. (2)

The permutation matrix Bn ∈ RNc×Nc is called bit-reversal
matrix and it reverses the row positions of F(⊕n). The coding
rate can be expressed as Rc = Ni/Nc, where Ni is the number
of information bits and Nc is the number of coded bits, with
Nc being a power of 2.

The code was constructed as proposed in [14], where an
exhaustive search for the set of frozen bits was performed.
Firstly, a range of signal-to-noise ratio (SNR) of interest
was considered. Then, X polar codes were designed using
the Bhattacharyya parameter [11], where X represents the
SNR set of interest. The BER and frame error rate (FER)
were evaluated and, based on the results, the code with the
best performance was selected. As demonstrated in [14], the
performance is independent of the method when the code is
optimized for the best performance considering BER and FER
parameters.
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Fig. 1. FTN-GFDM transceiver block diagram.

2) Puncturing: To integrate the polar code into the
FTN-GFDM system, the number of coded bits Nc must be
divisible by N = KM , where K and M are the number of
FTN-GFDM subcarriers and subsymbols, respectively. Other-
wise, some bits must be punctured. The number of punctured
bits is equal to the remainder of the division. As shown
in [11], the code performance increases with Nc and, hence,
this parameter shall be chosen to result in the lowest number
of punctured bits possible.

The punctured bits are initially inserted in the last positions
of bu. The initial puncturing pattern is derived from the
column weight of F(⊕n) based on the non-systematic polar
encoding structure. A bit reversal permutation Bn is applied
to generate the puncturing pattern Ip. Once this is done, the
punctured bits are considered part of the information bits, and
only the frozen bits are re-inserted after the first encoding
process. Finally, using the knowledge of Ip, the punctured
bits are removed from bc and they are not transmitted.

At the receiver side, before decoding, the punctured bits
must be re-inserted. Assuming that the punctured bit positions
at the receiver can be filled with “0”, then the LLRs at these
positions can be set to infinity [15].

3) Decoding: The polar decoder uses a decoding algorithm
called successive cancellation (SC), which operates by itera-
tively canceling the effect of unreliable bits in the code [11].

In the SC algorithm, b̂u is estimated by a recursive com-
putation of likelihood ratios (LRs) of b̂c. The ιth decoded bit,
b̂ιu, is defined by

b̂ιu = H(LR[b̂c, b̂
(0:ι−1)
u ]). (3)

Here, b̂
(0:ι−1)
u = {b̂0u, b̂1u, · · ·, b̂

(ι−1)
u } ∈ Rι×1 and H (·) is

decision function given by

H(LR[b̂c, b̂
(0:ι−1)
u ]) =

{
0 if LR[b̂c, b̂

(0:ι−1)
u ] ≤ 1 or ι ∈ If ,

1 otherwise,
(4)

where If is the subset of frozen bits index and

LR[b̂c, b̂
(0:ι−1)
u ] =

Pr
[
(b̂c, b̂

(0:ι−1)
u )|b̂ιu = 0

]
Pr
[
(b̂c, b̂

(0:ι−1)
u )|b̂ιu = 1

] . (5)

Here, Pr
[
(b̂c, b̂

(0:ι−1)
u )|b̂ιu = s

]
represents the conditional

probability of the received codeword being b̂c and the previ-
ously decoded bits being b̂

(0:ι−1)
u , given that b̂ιu = s ∈ {0, 1}.

LRs in (5) can be computed recursively using a graph defined
by the functions f and q, each given by

f(a, b) =
1 + ab

a+ b
, (6)

and
q(a, b, b̂(sum)

u ) = a1−2b̂(sum)
u b, (7)

where b̂
(sum)
u is the partial sum of the elements of b̂

(0:ι−1)
u .

Thus, the LR can be computed as

Lℓ,ι =

{
f(Lℓ+1,ι, Lℓ+1,ι+2ℓ) if

〈
ι
2ℓ

〉
2
= 0,

q(b̂u
(sum)

ℓ,ι−2ℓ , Lℓ+1,ι−2ℓ , Lℓ+1,ι) otherwise,
(8)

where 0 ≤ ℓ < log2 Nc is the graph stage, ι is the index of
the current decoded bit.

In the FTN-GFDM transceiver of Fig. 1, estimates of the
coded bits, b̂c ∈ RNs×1, or the LLR values, L ∈ RNc×1,
can be supplied to the polar decoder when the switch is
in position 1 or 2, respectively. The vector containing the
estimated information bits, b̂i ∈ RNs×1, is delivered at the
output of the polar decoder.

The SC polar decoder with LLR has been shown to provide
a good trade-off between decoding performance and compu-
tational complexity. It can achieve near-optimal performance
with moderate computational complexity, making it suitable
for practical applications [16]. Despite its effectiveness, when
compared to more sophisticated decoding techniques, such as
SC-list [17] and SC-flip [18], the SC algorithm is considered a
baseline with inferior performance. Nonetheless, the purpose
of this article is to demonstrate that even the simplest decoder
can benefit from LLRs and improve BER compared to the
hard output detectors.

B. Symbol Mapping and Demapping

In the block diagram of Fig. 1, the mapper converts the
coded bits bc into J-quadrature amplitude modulation (QAM)
symbols and allocates the symbols into the FTN-GFDM data
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matrix, S ∈ CK×M . As a result, S contains the N QAM
symbols to be transmitted in an FTN-GFDM block, such that

S =


s0,0 s0,1 · · · s0,M−1

s1,0 s1,1 · · · s1,M−1

...
...

. . .
...

sK−1,0 sK−1,1 · · · sK−1,M−1

 . (9)

On the receiver side, the demapper is responsible for
converting each QAM symbol provided by the hard output
detector into its sequence of log2 J bits. Thus, the demapper
outputs N log2 J bits for each received FTN-GFDM block.

C. FTN-GFDM Modulation

Slight modifications in the definition of the time-frequency
grid enable GFDM to include FTN signaling [9], [19]. Let the
prototype filter have N samples divided into P periods with
S samples each. Let also the the subsymbols be defined at
time intervals of K samples and the subcarriers at frequency
intervals of M samples. Using these definitions, the GFDM
signal is given by

x[n] =
K−1∑
k=0

M−1∑
m=0

sk,mg[⟨n−mK⟩N ] exp

(
j2π

kM
N

n

)
,

(10)
where n = 0, · · ·,N −1, sk,m is the QAM symbol for the kth
subcarrier and mth subsymbol, and g[n] is the prototype filter
impulse response.

There are three approaches to apply FTN signaling in
GFDM. The first one consists of decreasing the time delay
between the prototype filters for each subsymbol (K < S),
increasing the time overlap among the subsymbols. The second
approach consists of reducing the frequency spacing among
the subcarriers (M < P), increasing the overlapping in the
frequency domain. The third approach is the combination of
the first two.

The spectral efficiency gain can be computed by the squeez-
ing factors in time and frequency, namely vt = K/S and
vf =M/P , respectively.

It is important to highlight that

K =
PS
M

=
S
vf

=

⌊
N
M

⌋
, (11)

M =
PS
K

=
P
vt

=

⌊
N
K

⌋
, (12)

and when N/M and N/K are not integers, the squeezing
factors must be adjusted by v̄t = P/M and v̄f = S/K,
respectively, and the GFDM signal must be adjusted to

x̄[n] =
√

v̄tv̄f

K−1∑
k=0

M−1∑
m=0

sk,mg[⟨n−mvtS⟩N ] exp

(
j2π

kvf
S n

)
,

(13)
where

√
v̄tv̄f normalizes the transmit power. Fig. 2

shows the block diagram of the FTN-GFDM trans-
mitter, where s = vec(S) ∈ CN×1 is the
symbol vector obtained by stacking the columns of
S, i.e., s = (s0,0, s1,0, · · ·, sK−1,0, s0,1, · · ·, sK−1,M−1)

T.
This vector is parallelized and the element sm,k is carried

Fig. 2. FTN-GFDM modulator block diagram.

by the mth subsymbol, denoted by g[⟨n−mvtS⟩N ], of the
kth subcarrier, denoted by exp

(
j2π

kvf

S n
)

. The FTN-GFDM
signal, x[n], is obtained by adding the subsymbols from all
subcarriers. As described in (13), power normalization is used
to generate x̄[n].

In matrix notation, vector x̄ = (x̄[0], x̄[1], · · ·, x̄[N −1])T ∈
CN×1 can be computed as

x̄ = As, (14)

where A ∈ CN×N is the transmission matrix containing
N = KM versions of the prototype filter g ∈ CN×1

circularly shifted in time and frequency, i.e.,

A = [g0,0 g1,0 · · · gK−1,0 g0,1 · · · gK−1,M−1]. (15)

The column vector

gk,m =
√
v̄tv̄fg[⟨n−mvtS⟩N ] exp (j2πkvfn/S) , (16)

contains the prototype filter samples shifted to the kth sub-
carrier and the mth subsymbol. Before transmitting the signal
x̄ ∈ CN×1, a CP can be added to the FTN-GFDM vector by
copying the last NCP samples from x̄ to the beginning, thus
creating the transmission vector x̃ ∈ C(N+NCP)×1.

D. Channel and Equalization

The received vector ỹ ∈ CN×1 after removing CP is given
by

ỹ = Hx̄+w, (17)

where w ∈ CN×1 is the additive white Gaussian
noise (AWGN) vector and H ∈ CN×N contains circularly
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shifted versions of the channel impulse response h ∈ CL×1,
such that

H =



h0 0 · · · hL−1 · · · h1

... h0
. . . 0

. . .
...

hL−1

...
. . .

...
. . . hL−1

0 hL−1
. . . h0

. . . 0
...

...
. . .

...
. . .

...
0 0 · · · hL−2 · · · h0


. (18)

In this paper, three channel models are considered: the
additive white Gaussian noise (AWGN) channel, the time-
invariant frequency-selective (TIFS) channel, and the block
time-variant flat (TVF) channel. In particular, a TVF channel
with a Rayleigh tap changes with each FTN-GFDM block,
and a flat frequency response is assumed, i.e., the channel
response varies with each transmitted FTN-GFDM block, but
it is constant over the block interval.

The received signal can be represented in the frequency
domain as

Ỹ = FNHx̄+ FNw = FNHFH
N X̄+W, (19)

where FN ∈ CN×N is the Fourier matrix, X̄ ∈ CN×1 is the
transmit vector x̄ in the frequency domain, W ∈ CN×1 is the
AWGN vector w in the frequency domain, and (·)H represents
the Hermitian operator. Additionally, FNHFH

N is a diagonal
matrix containing the channel frequency response. Assuming
knowledge of the channel impulse response, the equalization
in the frequency domain is given by

Ȳ = (FNHFH
N )−1Ỹ = X̄+ FNH−1FH

NW, (20)

where Ȳ ∈ CN×1 is the equalized received vector in the
frequency domain. Alternatively, Ȳ can be represented in the
time domain by

ȳ = FH
N Ȳ = FH

N X̄+FH
NFNH−1FH

NW = x̄+H−1w, (21)

where ȳ ∈ CN×1 is the equalized received vector in the time
domain.

E. FTN-GFDM Demodulation

The matched filter (MF) is used to decouple the
FTN-GFDM subcarriers and subsymbols in ȳ to allow proper
detection of the symbols vector. Furthermore, MF maximizes
the signal-to-interference-plus-noise ratio (SINR) of ȳ. The
received discrete signal at the MF output r ∈ CN×1 is given
by

r = AHȳ = AHx̄+AHH−1w = Gs+ w̄, (22)

where G = AHA ∈ CN×N is the correlation coefficient
matrix, w̄ = AHH−1w ∈ CN×1. Since the linear operation
AHH−1 correlates the samples of w, the filtered samples in
w̄ are colored.

The MF block diagram is shown in Fig. 3, where ȳ[n]
denotes the nth sample in the equalizer output and the index
n = 0, · · ·,N − 1 is reset with each new FTN-GFDM block
received.

Fig. 3. Matched filter block diagram.

F. Soft FTN-GFDM Detection
Given that the νth J-QAM symbol, with ν = 1, · · ·, N ,

represents a set of log2 J bits, i.e., {bν,1, · · ·, bν,log2 J}, the
soft-output FTN-GFDM detection is calculated as follows

Lν,µ = log

(
(Pr[b̂ν,µ = 1|r])
(Pr[b̂ν,µ = 0|r])

)
, (23)

where Lν,µ is the LLR of the µth bit in the νth symbol of the
estimated QAM symbol sequence vector ŝ ∈ CN×1, whose
binary representation b̂ ∈ R(N log2 J)×1 is given by

b̂ =
(
b̂1,1, · · ·, b̂1,log2 J , b̂2,1, · · ·, b̂ν,µ, · · ·, b̂N,log2 J

)
. (24)

The direct computation of the LLRs in (23) results in
prohibitive computational complexity. The max-log approx-
imation can be employed to reduce the complexity. Hence,
equation (23) can be approximated as

Lν,µ ≈ min
ŝ∈M(0)

ν,µ

∥r−Gŝ∥2 − min
ŝ∈M(1)

ν,µ

∥r−Gŝ∥2 , (25)

where M(0)
ν,µ and M(1)

ν,µ represent the FTN-GFDM sequences
that have b̂ν,µ = 0 and b̂ν,µ = 1, respectively. For each bit
b̂ν,µ, one of the minima in (25) will be the Euclidean distance
of the maximum likelihood (ML) solution, while the other
will be the minimum Euclidean distance of the ML antipodal
solution [20].

The ML solution ŝML ∈ CN×1 is given by

ŝML = argmin
ŝ∈M

∥r−Gŝ∥2 , (26)

where M is the set of all possible J-QAM symbol sequences.
The distance dML is the Euclidean distance of the ML solution
ŝML, given by

dML =
∥∥r−GŝML

∥∥2 , (27)

and dML
ν,µ is the minimum Euclidean distance of the ML

antipodal solution, given by

dML
ν,µ = min

ŝ∈Mb̂ML
ν,µ

∥r−Gŝ∥2 , (28)
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where b̂ML
ν,µ is the µth bit of the νth symbol of the ML solution

ŝML and b̂ML
ν,µ is its binary complement. Then, Mb̂ML

ν,µ are the
FTN-GFDM sequences that have b̂ML

ν,µ for the (ν, µ) element.
With the aid of (26), (27), and (28), equation (25) can be

rewritten as

Lν,µ =

{
dML − dML

ν,µ , if b̂ML
ν,µ = 0,

dML
ν,µ − dML, if b̂ML

ν,µ = 1.
(29)

To calculate the LLRs in (29), it is necessary to find the
Euclidean distance of the ML antipodal solution, dML

ν,µ , for each
bit of each symbol of the FTN-GFDM signal [20]. Since soft-
output detection uses the minimum Euclidean distances of all
antipodal ML solutions, soft-output detection results in higher
computational complexity than hard-output detection [20],
[21].

The maximum likelihood sequence estimation (MLSE) de-
tector can find dML and dML ∈ R(N log2 J)×1 in (29). Since
the Mazo limit is respected, the MLSE detector can effectively
handle the interference caused by FTN-GFDM and reduce
the BER. The search for the ML solution is performed as
in (27). As a result, all possible combinations of transmitted
QAM symbols are exhaustively scanned to find the one that
gives the minimum Euclidean distance for r. Then, the MLSE
detector must find the ML antipodal solution for each bit
of b̂ML ∈ R(N log2 J)×1 as in (28). The set of possible
ML antipodal solutions for each bit Mb̂ML

ν,µ consists of JN/2
combinations of QAM symbols.

A FLOP [22] can be defined as an addition, subtraction,
division, or multiplication operation in the real domain. Thus,
the computational complexity of MLSE detection as a function
of FLOPs can be expressed in two steps. The first step is to find
ŝML. This step requires (16N2+8N−2)JN FLOPs [10]. The
second step is to search for N log2 J ML antipodal solutions.
Since the number of possible ML antipodal solutions for each
bit is JN/2, the computational complexity to find all dML

ν,µ

is (16N2 + 8N − 2)J
N

2 N log2 J FLOPs. Therefore, the total
MLSE complexity is given by

OMLSE = JN

(
N log2 J

2
+ 1

)
(16N2 + 8N − 2). (30)

MLSE detection complexity is constant among all SNR
values and grows exponentially with transmission matrix size
and modulation order. Although the nonlinear MLSE detector
can find the LLRs and minimize the error probability, its
computational complexity is prohibitive, making this detector
unfeasible. Therefore, lower computational complexity detec-
tors must be used to find dML and dML.

III. SOFT SPHERE DECODING

The design of a soft SD for recovering the LLRs from the
received FTN-GFDM signal after the MF is the main contri-
bution of this paper. This detector improves the overall BER
performance of the system, as it provides more information
for the FEC decoder. The following subsections describe the
sphere decoding principles, the proposed algorithm, and the
complexity analysis of our solution as compared with other
detectors.

A. Sphere Decoding Principles

Traditional ML detectors search for the best candidate
sequence from the entire sample space of the modulation
scheme, which means comparing the Euclidean distance be-
tween the received sequence and all possible transmit se-
quences. This search mechanism has a prohibitive high com-
plexity when the modulation order, number of subsymbols
and number of subcarriers take on standard operation values.
One approach to deal with this problem is to exploit sub-
optimal detectors. Sphere decoding consists of limiting the
search space to a multidimensional sphere with a radius
of ρ and searching only for lattice points that are inside
the sphere [23]. In order to find the ML and its antipodal
solution with affordable complexity, the SD can be employed
to solve (29) efficiently. The closest lattice point to the vector
received inside the sphere is also the closest lattice point of the
entire search space. Thus, the SD can achieve ML optimal1

performance with lower computational cost than exhaustive
search algorithms [24].

The search radius must be large enough to contain the ML
solution and to have few lattice points inside it [25]. The search
within the sphere can be transformed into a tree search, where
a node and its sub-tree are pruned when they can no longer
lead to an ML solution update. Every time a leaf node is found,
i.e., the first level of the tree search is reached, a lattice point
is found inside the sphere, and the ML solution is updated.

The sphere radius in SD is defined according to the AWGN
variance. Since the problem in (29) has noise samples colored
by MF, a whitening filter is used, resulting in

argmin
ŝ∈M

∥∥(AH)−1(r−Gŝ)
∥∥2 ≤ ρ2. (31)

Considering ζ = (AHA)−1AHr, the SD radius can be ex-
pressed by

(ζ−ŝ)HGHA−1(A−1)HAHA(ζ − ŝ)=(ζ−ŝ)HGH(ζ−ŝ)=ρ.
(32)

To simplify the evaluation of the Euclidean norm in (31), the
interference matrix G must be decomposed by the Cholesky
factorization [26] given by

chol{GH} = RHR, (33)

where R ∈ CN×N is an upper triangular matrix. Therefore,
the condition in (31) can be expressed as

argmin
ŝ∈M

∥R(ζ − ŝ)∥2 ≤ ρ2. (34)

As a result of the structure of R, the inequality (34) can be
rewritten as [27]

ρ2 ≥
N∑
ℓ=1

∣∣∣∣∣
N∑
i=ℓ

Rℓ,i (ζi − ŝi)

∣∣∣∣∣
2

. (35)

Note that, because of the triangular structure of R, the N th
element of (35) depends only on ŝN , the (N − 1)th element
depends only on {ŝN , ŝN−1}, and so on [23], [27]. Thus,

1In fact, the performance is max-log optimal, since the smallest-vector
algorithm operates on the approximated problem of equation (29).
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(a) Search tree to find dML. The ML solution found
after traversing the tree is ŝML = [1 1 0]T, which
path is indicated by the dashed lines.

(b) Search tree to find dML
3,1 .

(c) Search tree to find dML
2,1 . (d) Search tree to find dML

1,1 .

Fig. 4. Search trees considering N = 3, BPSK and ŝML = [1 1 0]T.

the search for lattice points within the sphere becomes a tree
search.

Since the ML solution can be approximated by (34) in SD,
dML and dML

ν,µ can be rewritten as

dML =
∥∥R(ζ − ŝML)

∥∥2 , (36)

and
dML
ν,µ = min

ŝ∈Mb̂ML
ν,µ

∥R(ζ − ŝ)∥2 , (37)

respectively.
As with the MLSE detector, to compute the LLRs in (29),

the SD approach must first find the ML solution and, then, the
minimum Euclidean distances of the ML antipodal solutions.
To find dML, the SD algorithm must explore a search tree with
a depth of N +1 levels and JN nodes at level ℓ = 1. To find
all ML antipodal solutions, N log2 J search trees with N + 1
levels and JN/2 nodes on level ℓ = 1 must be examined.
Nevertheless, the number of nodes in each tree depends on
the searched bit position in b̂ML

ν,µ . Fig. 4 shows the search trees
for N = 3 and binary phase-shift keying (BPSK) symbols.
The search tree used to determine the ML solution, ŝML, is
shown in Fig. 4a. Since b̂ML = [1 1 0]T in this example,
Figs. 4b, 4c, and 4d show the search tree for each bit of the
ML antipodal solution. However, the SD complexity depends
on the number of nodes scanned. In the worst case, the SD
algorithm must search the entire search tree, and its complexity
becomes exponential, approaching that of MLSE. Although
the SD algorithm is less complex than the MLSE detector,
its computational complexity can be high for some practical
applications where the devices are limited in computing power.

B. The Single Tree Search Algorithm

The soft-output single tree search (STS)-SD algorithm pro-
posed in [20] ensures complexity minimization by jointly

searching for the ML solution and the Euclidean distances of
the ML antipodal solution. Partial distances are the intermedi-
ate distances when traversing levels in the search tree. In this
strategy, the underlying branch of a node is only traversed
if the partial Euclidean distance d(ŝ) of this node leads to:
i) An update of the ML solution, i.e., if d(ŝ) < dML or; ii) An
update of the Euclidean distance of at least one ML antipodal
solution, i.e., if d(ŝ) < dML

ν,µ . Thus, STS-SD can be employed
to reduce complexity, ensuring that the search tree nodes are
visited at most once.

The STS-SD algorithm can be divided into two steps: i) List
administration and; ii) Tree pruning [20]. The list administra-
tion step happens whenever the first level is reached, i.e., a
leaf node of the search tree is reached (Algorithm 1 lines 26
to 40). If the Euclidean distance of s at a leaf node is smaller
than the Euclidean distance of the current ML solution, i.e.,
d(ŝ) < dML, a new ML solution has been found (Algorithm 1
line 28). Before updating the ML solution with the newly
found s, all dML

ν,µ for which b̂ν,µ = b̂ML
ν,µ are updated with

the previous dML (Algorithm 1 line 29). This guarantees that
for each bit in the ML solution that is changed in the update
process, the Euclidean distance of the previous ML solution
becomes the Euclidean distance of the new ML antipodal
solution. Then, the symbol vector ŝML is assigned the new
distance-minimizing vector ŝ. Correspondingly, the Euclidean
distance dML is updated to d(ŝ) (Algorithm 1 line 30).

However, if the Euclidean distance found in the leaf node
is greater than the Euclidean distance of the ML solution, i.e.,
d(ŝ) > dML, only the ML antipodal solution is checked. For
all ν and µ simultaneously satisfying the bit sequence b̂ML

ν,µ and
d(ŝ) < dML

ν,µ , the Euclidean distances dML
ν,µ must be updated to

d(ŝ) (Algorithm 1 line 32).
Tree pruning can happen while scanning a node at level

ℓ, for ℓ > 1 (Algorithm 1 lines 8 to 25). The partial vector
ŝℓ ∈ C(N−ℓ+1)×1 at level ℓ (corresponding to the sequence of
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symbols (ŝ1, · · ·, ŝℓ−1) of a sub-tree at level ℓ) is defined by
the sequence of symbols (ŝℓ, · · ·, ŝN ).

The pruning criterion for ŝℓ takes into account all Eu-
clidean distances of the ML antipodal solution that can be
updated. First, the corresponding bits of the partial vector,
b̂ℓ ∈ R((N−ℓ+1) log2 J)×1, are compared to the corresponding
bits of the current ML solution, i.e., b̂ML.

All Euclidean distances dML
ν,µ that correspond to b̂ν,µ = b̂ML

ν,µ ,
ν = ℓ, · · ·, N , can be updated by searching the sub-tree of
sℓ. Similarly, the Euclidean distances dML

ν,µ , ν = 1, · · ·, ℓ− 1,
corresponding to the bits of node ŝℓ can also be updated.
Therefore, the set of Euclidean distances that may be updated
during the search in the sub-tree underlying the node ŝℓ is
given by

A(ŝℓ) =
{
dML
ν,µ |(ν ≥ ℓ) ∧ (bν,µ = bML

ν,µ )
}
∪
{
dML
ν,µ |ν < ℓ

}
.

(38)
The node ŝℓ and its sub-tree is pruned if the partial Euclidean
distance, d(ŝℓ), satisfies

d(ŝℓ) > max
a∈A(ŝℓ)

a. (39)

If the condition in (39) is not met, the search must continue
at level (ℓ− 1).

The steps to implement the soft-output STS-SD detector
can be seen in Algorithm 1. In order to avoid choosing an
initial radius and still lead to an efficient tree pruning, the
STS algorithm employs the radius reduction strategy, the main
idea of which is to initiate the algorithm with dML ←∞ and
update the radius according to dML ← d(ŝ) whenever a leaf ŝ
has been reached.

The STS-SD pruning criterion ensures that a node and its
sub-tree are only scanned if this can result in: i) an update of
the ML solution or; ii) at least an update of one of dML

ν,µ .
This approach reduces the computational complexity when
compared to other soft-output detection algorithms based on
tree search [20], [21].

C. Computational Complexity

The complexity of tree search algorithms is dictated mainly
by the number of nodes visited and the operational cost at
each node. In SD, the number of nodes visited depends on
search radius reduction and, consequently, on the SNR and
the conditioning of G. The operational costs of each node
depend on the algorithm. Hence, finding an exact expression
for the SD complexity is not a trivial task. For G with poorly
conditioning or low SNR, the complexity of the SD can be
exponential and, in the worst-case scenario, can be as high as
the complexity of the ML detector.

The complexity of the proposed STS-SD is obtained by
evaluating the partial Euclidean distance dℓ in line 7 of
Algorithm 1. Because R is an upper triangular matrix, the
number of operations required to compute dℓ increases as ℓ
decreases. Therefore, it is necessary to count the number of
visited nodes at the ℓth level and weight them by the number
of operations required to compute dℓ. Assuming the worst-

Algorithm 1 Soft-output STS-SD detector
1: Input: Upper triangular matrix R, unconstrained ML

estimate ζ, search tree depth N , and number of QAM
symbols J

2: dML ←∞; ŝML
1:N ← 0; bML

1:NJ ← 0 and dML
1:N ←∞;

3: ςN ← 1; (number of nodes visited at N th level)
4: ℓ← N ;
5: dN+1 ← 0;
6: while ςN ≤ J (top level not exhausted) do
7: dℓ ← dℓ+1 +

∣∣∣∑N
i=ℓ Rℓ,i (ζi − ŝi)

∣∣∣2 (compute partial
Euclidean distance);

8: if ℓ > 1 (non-leaf node) then
9: if dℓ < dML then

10: ℓ← ℓ− 1 (go down a level)
11: ςℓ ← ςℓ + 1 (choose a symbol)
12: else
13: (Check if there is a smaller Euclidean distance

for the ML antipodal solution in the sub-tree; find
A(ŝℓ))

14: if dk > max
a∈A(ŝℓ)

a then

15: ℓ← ℓ− 1 (go down a level)
16: ςℓ ← ςℓ + 1 (choose a symbol)
17: else
18: (go right or up to next node)
19: if ςℓ > J (level already exhausted) then
20: ς1:ℓ ← 0; ℓ← ℓ+1; ςℓ ← ςℓ +1; (go back to

upper level and go right to next node)
21: else
22: ςℓ ← ςℓ + 1; (go right to next node)
23: end if
24: end if
25: end if
26: else
27: (A leaf node is reached, i.e., ℓ == 1)
28: if dℓ < dML (smaller distance is found; a new ML

solution is found) then
29: dML(b ̸= bML) ← dML; (update the ML antipo-

dal solution)
30: dML ← dℓ; ŝML ← ŝ; bML ← b; (update the ML

solution)
31: else
32: dML(b ̸= bML and dML > dℓ)← dℓ; (update the

ML antipodal solution)
33: end if
34: (move right or up to next node)
35: if ςℓ > J (level already exhausted) then
36: ς1:ℓ ← 0; ℓ ← ℓ + 1; ςℓ ← ςℓ + 1; (go back to

upper level and go right to next node)
37: else
38: ςℓ ← ςℓ + 1; (go right to next node)
39: end if
40: end if
41: end while
42: Output: ML solution ŝML and dML, and the Euclidean

distances vector of the ML antipodal solution dML
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TABLE I
POLAR CODE PARAMETERS.

Parameters Config. A Config. B
Coding rate (Rc) 1/2 1/2
Block size (Nc) 1024 2048
Punctured bits 24 8
Decoding algorithm SC SC

TABLE II
FTN-GFDM SYSTEM PARAMETERS. BPSK, P=4 AND S=5.

FTN-GFDM Parameters Time Frequency
Prototype filter Dirichlet rect
Subsymbol distance factor (vt) 0.8 1
Subcarrier distance factor (vf ) 1 0.8
Number of subsymbols (M ) 5 4
Number of subcarriers (K) 5 6

case scenario, where all nodes in the search tree are visited,
the complexity SD is given by

OSD =

N∑
ℓ=1

J (N+1−ℓ)Oℓ, (40)

where Oℓ is the number of operations required to compute dℓ
on a node at the ℓth level and M (N+1−ℓ) is the number of
nodes at the same level. Thus, Oℓ can be expressed in terms
of the number of FLOPs:

Oℓ = 10(N − ℓ) + 12. (41)

Substituting (41) into (40) and applying some sum identi-
ties [28], the upper bound for the SD complexity is given
by

OSD =
2J((5N + 1)JN+1 − (5N + 6)JN − J + 6)

(J − 1)2
. (42)

The difference in complexity between the the soft-output
and the hard-output SD relates to the number of nodes visited.
As the soft-output SD requires finding the Euclidean distances
of antipodal solutions, the number of nodes visited is higher
than in hard-output SD, in which it is only necessary to find
the minimum Euclidean distance of the ML solution.

IV. SIMULATION RESULTS

In this section, the simulation results are discussed. Subsec-
tion IV-A evaluates the performance in terms of BER, while
subsection IV-B analyzes the computational complexity of the
implemented algorithms.

The parameters of each block in the communication chain
used for performance evaluation are presented in Tables I,
II, and III. Table I presents polar code parameters. Two
possible configurations (A and B) have been defined. These
configurations are used in accordance with the data payload
of the FTN-GFDM block, which may change according to the
time or frequency compression.

Table II presents the FTN-GFDM system parameters used
for performance evaluation. Two different configurations are
defined, one being applied for time and the other for frequency
compression. The parameters have been chosen to make the
spectrum efficiency practically equal for both configurations.

TABLE III
CHANNEL MODELS.

Channel Impulse response
AWGN hAWGN = 1

Time-invariant
frequency-selective hTIFS = [1 0.4 0.2 0.08]T

Time-variant flat hTVF = h ∼ CN (0, 1)

TABLE IV
APPROXIMATE CODING GAINS FOR SOFT AND HARD OUTPUTS OBTAINED

IN FIG. 5.

Channel Soft Hard Gain (dB)
Eb/N0 @10−3 Eb/N0@10−3

AWGN 2.82 4.59 1.77
TIFS 3.47 5.29 1.82
TVF 14.35 17.58 3.23

TABLE V
APPROXIMATE CODING GAINS FOR SOFT AND HARD OUTPUTS OBTAINED

IN FIG. 6.

Channel Soft Hard Gain (dB)
Eb/N0 @10−3 Eb/N0@10−3

AWGN 2.47 4.61 2.12
TIFS 3.18 5.18 2
TVF 14.59 17.53 2.94

Table III shows parameters of the simulated channels. In
this paper, three channel models are considered. The first is
an AWGN channel, with a flat and time-invariant frequency
response. The second is a frequency-selective channel with a
time-invariant impulse response, while the third is a doubly-
dispersive channel, whose impulse response is randomly cho-
sen for each FTN-GFDM block, remaining time-invariant
during each block. Perfect channel state information (CSI) is
assumed on the receiver side for all channel models, since
our goal is to evaluate the performance of the proposed
FTN-GFDM detectors without taking into account the losses
resulting from channel estimation.

A. BER Performance Analysis

The BER performance of the soft-output SD detec-
tor is compared with the hard-output SD considering: i)
time-compressed FTN-GFDM and; ii) frequency-compressed
FTN-GFDM.

Fig. 5 shows BER versus Eb/N0 of hard and soft-output
SD detectors for time-compressed FTN-GFDM. The waveform
parameters are presented in Table II for time-compression
and the three channels described in Table III have been
considered. The time compression vt = 0.8 introduces inter-
symbol interference (ISI) and improves the spectrum efficiency
by 25%. The uncoded BER performance of the proposed
soft-output SD is equal to the theoretical optimum detector.
Fig. 5 also displays the polar coded BER performance for
soft and hard-output SD. The parametrization of the polar
code assumes the values described for Config. A in Table I,
because this configuration allows for the codeword to be split
in an integer number of FTN-GFDM blocks. Fig. 5 shows
that the polar decoder benefits from the soft information since
the proposed detector provides significant performance gains
when compared with the hard-output SD. Table IV presents
the Eb/N0 required by each detector to achieve the target BER
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Fig. 5. BER performance for time-compressed FTN-GFDM.
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Fig. 6. BER performance for frequency-compressed FTN-GFDM.

of 10−3. It also lists the performance gains of soft over hard
outputs.

Fig. 6 presents the BER performance for the frequency-
compressed FTN-GFDM. The waveform parameters are those
in Table II for frequency-compression. Once again, the chan-
nels proposed in Table III have been considered. The polar
code with Config. B (see Table I) is employed in this scenario.
Fig. 6 shows that the 20% improvement in spectrum efficiency
does not imply in any BER performance degradation when the
proposed soft-output SD algorithm is used. Also, the proposed
detector combined with the polar code is compared with the
the polar-coded hard-output SD detector. Again, the polar
decoder benefits from the soft output, providing significant
BER performance gains, as highlighted in Table V.

TABLE VI
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN HARD- AND

SOFT-OUTPUT SD.

Channel Output 0 dB 5 dB 10 dB

AWGN
Hard Nodes 1.65× 104 2.36× 103 1.04× 103

FLOPs 1.38× 106 2.16× 105 8.90× 104

Soft Nodes 1.76× 105 3.66× 104 1.57× 104

FLOPs 1.03× 107 2.37× 106 1.01× 106

TIFS
Hard Nodes 2.02× 104 2.71× 103 1.08× 103

FLOPs 1.67× 106 2.50× 105 9.35× 104

Soft Nodes 1.91× 105 4.11× 104 1.65× 104

FLOPs 1.16× 107 2.72× 106 1.07× 106

TVF
Hard Nodes 3.01× 105 8.75× 104 4.21× 104

FLOPs 1.22× 107 3.81× 106 1.64× 106

Soft Nodes 5.97× 105 2.18× 105 8.24× 104

FLOPs 2.52× 107 9.67× 106 3.81× 106
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Fig. 7. Number of nodes visited by the STS-SD algorithm versus TVF channel
gain, under an average SNR of 5 dB.

B. Computational Complexity Analysis

Table VI presents the mean computational complexity in
terms of FLOPs and the mean number of visited nodes for the
hard and soft-output SD algorithms for SNR values of 0, 5, and
10 dB. These results are obtained using the frequency com-
pression system parameters shown in Table II. The complexity
is analyzed for the three channels shown in Table III. Feeding
the system parameters into (42), the upper limit for the SD
complexity is 7, 784, 628, 240 FLOPs, and the total nodes in
the tree search is 33, 554, 430. Assuming an SNR of 10 dB,
the hard-output SD complexity represents 8.85% of the soft-
output SD complexity for the AWGN channel, 8.75% for the
TIFS channel, and 43.15% for the TVF channel. This shows
that the soft-output SD detector presents higher computational
complexity than the hard-output detector. In the worst case,
both can reach the upper bound. However, since the soft-output
SD visits more nodes, the probability of it reaching the upper
bound is higher.

Table VI shows that the number of visited nodes and the
computational complexity decrease with increasing SNR. A
90.19% mean complexity reduction can be observed when
comparing the SD soft-output detector for 10 and 0 dB in
the AWGN channel. For the TIFS channel, the reduction was
90.78%, and for the TVF channel it was 84.88%. These results
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Fig. 8. Histograms of number of nodes visited under different TVF channel gain ranges.

TABLE VII
COMPARISON OF THE MAXIMUM, MINIMUM, AND MEAN NUMBER OF

NODES VISITED BY THE STS-SD ALGORITHM UNDER DIFFERENT TVF
CHANNEL GAIN RANGES.

Channel Gain Samples Number of visited nodes
Maximum Minimum Mean

|hTVF|2 < 2 6, 399 33, 554, 430 3, 450 3.5278× 105

2 ≤ |hTVF|2 < 5 2, 816 76, 434 2, 466 1.6303× 104

|hTVF|2 ≥ 5 815 39, 064 2, 754 1.2997× 104

|hTVF|2 10, 030 33, 554, 430 2, 466 2.3070× 105

lead to the conclusion that the complexity of the SD soft-
output detector might become affordable if the SNR takes on
higher values.

Yet, since the soft-output SD detector requires finding the
minimum Euclidean distances of the antipodal solutions, the
number of visited nodes can be substantially higher than
that for the hard-output SD detector. For SNR = 0 dB, the
increase in the mean number of visited nodes is 966.85%
for the AWGN channel, 845.77% for the TIFS channel, and
98.38% for the TVF channel. The number of nodes visited also
increases with the deterioration of the system conditioning,
i.e., the increase in distortion caused by the channel. The
signal compression also increases the number of visited nodes
for the hard and soft-output SD detectors. Therefore, the
computational complexity is higher for the TIFS and TVF
channels than for the AWGN channel.

Fig. 7 shows the number of nodes visited by the STS-SD
algorithm as a function of the TVF channel gain, assuming an
average SNR of 5 dB and the system parameters for frequency
compression listed in Table II. As described in Table III,
the TVF channel follows a complex Gaussian distribution;
therefore, its power gain has an exponential distribution. Thus,
most channel gain values concentrate on low values, close to
zero. Additionally, histograms of visited nodes were generated
for different ranges of channel gain values, as shown in
Fig. 8. To improve the visualization of the visited nodes
distribution, the axis related to the number of visited nodes
in Fig. 8a is on a logarithmic scale. Table VII summarizes
the maximum, minimum, and mean values of visited nodes
obtained for each channel gain range. For gains less than
2, the maximum number of nodes in the tree was reached.
This indicates that the TVF channel, combined with noise,
compromised the FTN-GFDM signal to the extent that it
required the STS-SD algorithm to traverse the entire search

tree. The joint analysis of Figs. 7 and 8, and Table VII provides
a comprehensive understanding of the behavior of the STS-
SD algorithm concerning the TVF channel gain. In particular,
it can be observed that lower channel gains result in a more
extensive exploration of the search tree, indicating a significant
sensitivity to the channel conditions. It is important to note
that a TVF channel can lead to an outage state on the receiver
side. In this scenario, the STS-SD will traverse many nodes but
with a low probability of detecting the transmitted signal. In
a practical system, this situation can be avoided by declaring
an outage and dropping the content of the FTN-GFDM block,
thereby reducing complexity and energy consumption.

V. CONCLUSION

In scenarios where massive MIMO and UDN are not feasi-
ble, spectral efficiency can be increased by the choice of the
waveform. The FTN-GFDM waveform is flexible and capable
of improving spectral efficiency over conventional GFDM
and of increasing the data rate by compressing subsymbols
or subcarriers without BER performance loss. The results
obtained in this paper show that FTN-GFDM combined with
polar codes improves waveform spectrum efficiency without
introducing significant performance loss.

The SD detector can achieve BER performance similar to
that achieved by the optimal detector but with less complexity
and polar codes can be combined with FTN-GFDM to pro-
vide gains in BER performance with affordable complexity,
improving the overall system performance with both soft and
hard output SD detectors.

The soft-output SD outperforms the hard-output SD at
the cost of the visitation of more nodes during tree search
and, hence, higher computational complexity. Although more
complex, the soft-output SD detector can have an affordable
complexity mainly if the available SNR can assume high
values. Thus, soft-output SD can be an interesting solution
in scenarios that prioritize high spectral efficiency but the
conventional high efficient techniques cannot be exploited.
Also, when the complexity of soft-output cannot be supported,
hard-output SD can be a good compromise. Therefore, SD al-
lows implementations in practical systems with flexible trade-
offs between complexity and performance. In future work,
we intend to analyze the integration of the soft decision SD
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with other state-of-the-art FEC schemes, such as low density
parity check (LDPC), to achieve the best BER performance
over several channel conditions. We also aim to develop other
detectors that are sub-optimal and, therefore, cannot achieve
the same BER performance as STS-SD or MLSE but have a
very low complexity compared to these approaches.
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