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Asymptotically Optimal Delay-aware Scheduling in

Queueing

Systems
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Abstract—In this paper, we investigate a delay-aware channel
allocation problem where the number of channels is less than that
of users. Due to the proliferation of delay sensitive applications,
the objective of our problem is chosen to be the minimization
of the total average queuing delay of the network in question.
First, we show that our problem falls in the framework of
restless bandit problems (RBP), for which obtaining the optimal
solution is known to be out of reach. To circumvent this
difficulty, we tackle the problem by adopting a Whittle index
approach. To that extent, we employ a Lagrangian relaxation
for the original problem and prove it to be decomposable into
multiple one-dimensional independent subproblems. Afterwards,
we provide structural results on the optimal policy of each of the
subproblems. More specifically, we prove that a threshold policy
is able to achieve the optimal operating point of the considered
subproblem. Armed with that, we show the indexability of the
subproblems and characterize the Whittle’s indices which are
the basis of our proposed heuristic. We then provide a rigorous
mathematical proof that our policy is optimal in the infinitely
many users regime. Finally, we provide numerical results that
showcase the remarkable good performance of our proposed
policy and that corroborate the theoretical findings.

I. INTRODUCTION

HIS paper deals with user and channel scheduling, which

has been widely recognized as a means to improve the
network performance and to meet the service demands of the
users. This problem has been widely studied in the past and
several allocation policies have been developed for various
contexts (e.g., see [2]-[8] and the references therein). In 5G
networks, the problem of channel and user scheduling will
be receiving particular interest due to the increase in the
number of devices and users. Furthermore, the applications
nowadays do not need high data rates only but are also more
delay-sensitive, which implies that minimizing the delay is
considered as a main design metric in future networks.

In this paper, we consider the problem of scheduling and
channel allocation in a discrete time system composed of
one central scheduler serving multiple users or queues. We
consider that the traffic arriving to each queue is time varying,
and that the number of users is higher than the number of
channels, which is a quite realistic assumption especially with
the growth in density of users in today’s networks. At each
time slot, the central scheduler decides to allocate the channels
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to users, where a channel can be seen as a server in wired
networks or a frequency bandwidth in wireless networks.
Throughout this paper, we will use the terms “channel” and
“server” interchangeably to designate a resource to allocate to
users. Furthermore, we assume that the number of channels
is limited and each channel can only allocate to one user
at each time slot. The objective in this case is to find an
allocation policy that minimizes the long-run average queuing
delay of the users, as a mean to minimize the average delay
in the network. Although it is a quite standard scheduling, we
provide in this paper a rigorous mathematical analysis, leading
to a novel scheduling algorithm of which we prove optimality
in the many users regime. In fact, we show in this paper that
the considered scheduling problem can be cast as a restless
bandit problem (RBP), which is a particular Markov decision
process (MDP). However, RBPs are PSPACE-Hard (see Pa-
padimitriou et al. [9]), and hence their optimal solution is out
of reach. One should therefore propose sub-optimal policies
when dealing with such problems. In this paper, we approach
the considered RBP problem using the Lagrangian relaxation
technique, which consists of relaxing the constraint on the
available resources. In other words, instead of having the con-
straint on the number of available channels satisfied in every
time slot, we consider that it has to be satisfied on average.
This allows us to decompose the large relaxed optimization
problem into much simpler one-dimensional problems. Based
on the optimal solution of the individual relaxed problems,
we develop a heuristic for the original (i.e., non-relaxed)
optimization problem. This heuristic is known as the Whittle’s
index policy (WIP) and we will show that for our particular
model, an explicit expression of the Whittle’s index can be
found. WIP has been proposed as a suboptimal policy for many
problems in the literature, see for instance [10], [11]. It has
also been shown to perform near optimally in many scenarios
and in the particular case of multiclass M/M/1 queues, WIP
which simplifies to the cu-rule is optimal, see Buyukkoc et
al. [12], and Larranaga [13]. In this paper, we will prove that
the developed WIP is asymptotically optimal in the many users
regime. To that extent, we summarize in the following the key
contributions of this paper:

o We provide an analysis of the relaxed optimization prob-
lem, which let us obtain the structure of the optimal
solution of its dual problem. The optimal solution is
shown to be a threshold-based policy by proving that the
value function of the Bellman equation that resolves each
individual dual problem satisfies the increasing property.

o We resolve the full balance equations verified by the
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stationary distribution of the Markov chain representing
the evolution of the queue state under a general threshold
policy n. This step is very crucial to derive the Whittle’s
indices expressions.

o We reformulate the individual dual problem of the relaxed
problem using the steady state distribution. Afterwards,
we provide a general algorithm that allows us to obtain
the Whittle’s index. To reduce even further the complex-
ity, we provide a rigorous proof of the indexability of the
classes, along with lemmas that allow us to derive simple
expressions of the Whittle’s index.

e« We provide further characterization of the threshold-
based optimal solution of the relaxed optimization prob-
lem. The structure of this solution helps us to prove the
local asymptotic optimality of our proposed policy as we
just need to compare the average cost under the Whittle’s
index policy with the optimal cost of the relaxed problem.
The reason behind that is the fact that the latter is always
less than the optimal cost of the original problem.

o We show that the Whittle’s index policy is asymptotically
optimal in the infinitely many users regime, that is, when
the number of users in the system as well as the available
channels grow large.

« Finally, we provide numerical performance results of the
Whittle’s index policy that corroborate our claims.

A. Related Work

The problem of resource allocation and scheduling in
wireless networks has been widely studied in the literature.
In [2]-[6], throughput optimal schedulers have been derived
for single channel, multi-channel and multi-user MIMO con-
texts. The aforementioned set of work focuses on developing
strategies that stabilize the queues of the users using the max
weight rule. The classical max weight rule is however known
to be not delay optimal. To overcome this issue, many works
have been developed in the past to take into account the
average delay of the traffic of the users (e.g., see [14] and
the references therein). Most of the existing works use MDP
frameworks and develop allocation strategies using Bellman
equation (e.g., by using value iteration, policy iteration, etc.).
However, MDP frameworks and Bellman equation suffer from
the curse of dimensionality, which leads to complex resource
allocation strategies. In [15], [16], the authors try to minimize
the average delay of the users’ queues using MDP and
stochastic learning tools. The complexity of the developed
solutions is however much higher than the Whittle’s index
policy. Stochastic learning is also used in [17] to deal with
the problem of power allocation in an OFDM (Orthgonal
Frequency Division Multiplexing) system with the goal being
to minimize the average delay of the users’ packets in the
queues. The developed solution requires high memory and
computational complexity as compared to the Whittle’s index
policy.

On the other hands, [18]-[20] study a flow-level scheduling
problem with time-variant Markovian channels. They propose
well-performing policies, but they don’t tackle their optimality.
For instance, in [18], the authors derive a well-performing
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policy called “potential improvement rule” in the case where
there is no arrivals and provide results regarding its optimality
without giving analytical proofs and under several conditions
specifically, when only one user can be served.

Whittle’s index based policies have been used/developed in
wireless networks to deal with the problem of pilot allocation
over Markovian channel models. If a pilot is allocated to a
user, its CSI can be estimated correctly and the user can hence
transmit at a given rate. In [10], [21], a Gilbert-Elliot channel
model is considered and the Whittle’s index is derived. It has
been shown in [21], [22] that a policy based on Whittle’s
index is asymptotically optimal for their specific problem. The
authors in [23] extended the problem of pilot allocation to
the case where the channel evolves according to a Markovian
process between K states instead of two states as in the Gilbert-
Elliot model. In the aforementioned papers, the queues of
the users were not considered. In fact, the focus was on the
channel allocation such that the long term total throughput
(or equivalent objective function) is maximized without taking
into account the dynamic traffic of the users. In this paper, the
objective of the user/channel allocation is to minimize the long
term average queuing delay of the users.

In [11], a derivation of the Whittle’s index values for a
simple multiclass M/M/1 model has been considered (where
only one user can be served). However, the optimality of the
obtained Whittle’s index policy has not been proved in [11]
and the time was assumed to be continuous in their model.
The authors in [24] considered the problem of project/job
scheduling in which an effort is allocated to a fixed number of
projects. The performance of a Whittle’s index based policy
was analyzed under a continuous time model. In contrast to
these two papers, we consider that the time is slotted and that
several users can be scheduled at a given time slot and not
only one user. We provide an explicit characterization of the
Whittle’s indices, develop a Whittle’s index channel allocation
policy for our problem. On the other hand, in contrast to
previous work in [1], in this paper, we consider that the
buffer size is very tight. The motivation behind that is that
in the framework of IoT (Internet of things), the resources of
the connected devices are very limited, especially the energy
available and the backlog queue. To that extent, we suppose
that the queue length of a given node does not exceed a
certain constant denoted by L, which is in its turn less than the
departure rate. Besides that, unlike our work in [1], we further
prove the asymptotic optimality of our developed policy in the
many user’s regime.

The remainder of the paper is organized as follows: In
Section II, we formulate the problem under investigation and
we introduce the Lagrangian relaxation. In Section III, we
prove the optimality of threshold/monotone policies for the
relaxed problem. In Section IV, we compute the steady-state
distribution of the system under a general threshold policy.
In Section V, we characterize the Whittle’s indices explicitly
and we lay out our proposed Whittle’s index based policy.
Section VI provides further characterization of the optimal
solution of the relaxed problem. In Sections VII and VIII,
we prove the local and global asymptotic optimality of our
proposed scheme respectively. In Section IX, we evaluate the
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performance of the Whittle’s index policy numerically. Lastly,
the mathematical proofs are provided in the appendices.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model Description

We consider a time-slotted system with one central sched-
uler, IV users/queues and M uncorrelated channels (or servers)
with (N > M). The terms “server” and ‘“channel” will
be used interchangeably throughout this paper, as well as
the terms “user” and “queue”. A channel can be allocated
to at most one user, hence only M users will be able to
transmit (i.e., send packets) at time slot ¢. We consider K
different classes of users and we assume that for each user
4 in class-k, the number of arrival packet denoted by Af (t)
follows a uniform distribution in {0,---, Ry — 1} at each
time slot ¢. Moreover, we consider that the buffer size of
each user in the system is very tight. Accordingly, for each
user in any class, if scheduled, transmits all the packets in
its buffer. We denote by -y the proportion of class-k users
in the system. We also let ¢""?(t) denote the number of
packets in queue 7 in class k. Furthermore, sf’¢(q¢(t)) will
denote the transmission action under a decision policy ¢ for
user 7 in class k and g?(t) the vector of all queue lengths
(@ (), ans (8), - qr P (), - qu: (). For the sake
of clarity, we define sf’¢(t) = sf’¢(q¢(t)). If policy ¢
prescribes to schedule user ¢ in class k£ at time t, then
sf’(b(t) = 1, and sf’d)(t) = 0 otherwise. We denote by L
the buffer capacity, which is considered to be the same for all
queues and less than Ry, for all k. The general system model
is presented in Fig. 1. Based on our system model, the number
of packets in queue ¢ of class k evolves as follows:

¢; (¢ +1) = min{(q; *()(1 — 57 (1) + AF(1), L}, (1)

where ()1 = max{x,0}.

B. Penalty Function Dynamics

In this paper, we are interested in minimizing the average
delay incurred in the users’ queues of the system. To that
end, we should provide the expression of the queuing delay in
function of the queue length. Then, we give the average cost
function that we should minimize.
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1) Queuing Delay metric: Given a user ¢, and class k, the
average delay of each packet in this queue during the period
[0,T7] is the delay’s sum of all arrived packets between 0
and T which is, 3. ¢*(t) over the average number of the
arrived packet between 0 and 7. If there is no constraint on
the buffer size as considered in [1], the average number of
arrived packets between the time 0 and T is T(R, — 1)/2.
Therefore, in this case, the number of arrived packets per
time unit, or equivalently, the packet arrival rate is constant
over time. To that extent, in our paper, where we consider
that the buffer size is bounded by L, in order to have a fixed
rate of the packet arrival as in [1], we take into consideration
all the arrived packets, even those which are dropped due to
the buffer constraint to give a simple expression of the delay
metric. Since the surplus packets are immediately dropped,
then we associate for this type of packets a delay that equals
to 0. However, since the packets are dropped, which is an
undesired event, a penalty should be incurred in the cost
function that we will see later in the next section. As a
consequence, the average delay according to the Little’s Law
is 22?:0 q¥(t)/T(Ry, — 1). Denoting (2/(Rx — 1))B% by ax
where [; is a weight factor, then the metric of interest is
lim sup(l/T)ZZ;O argF(t)/T.

T—o0

2) Penalty function: As mentioned in the section above,
a penalty should be incurred when the packets are dropped.
More precisely, a penalty should be paid when the number
of arrived packets plus those in the queue exceeds L. To that
extent, we should find for which state of the queue, the queue
overflow will occur. Indeed, the only state that we can presume
that there is an overflow at time ¢ is when the queue state is
equal to L. Bearing that in mind, we define for a given user @
in class k, b(gF(t)) that equals to 0 if ¢¥(¢) < L (zero penalty
paid) and b(I¥(¢)) = Cy > 0 (penalty is being paid). To that
extent, we define the penalty function as follows:

q
7 : )

Consequently, the objective of the present work is to find
a scheduling policy ¢ that minimizes the average weighted
penalty function lim sup(l/T)Ztho ard(qk(t))/T.

T—o0

C. Problem Formulation

The cost incurred by user ¢ in class k, at time t is
equal to apd(¢™?(t)) for all i € {1,---,7N}. One can
see that the model described in Section II belongs to the
family of restless bandit problems (RBP). We consider the
broad class ® of scheduling policies in which a scheduling
decision depends on the history of observed queue states
and scheduling actions. Our user and channel allocation
problem therefore consists of identifying the policy ¢ € &
that minimizes the infinite horizon expected average cost
functions of different users, subject to the constraint on the
number of users selected at each time slot. Given the initial
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state q(O) = (Q%(O)v ) QJIV«/I (0)7 T Q{f(o)7 h qIIV(»yK (O))’
the problem can be formulated as follows:
1 —1 K v N
min limsup —E ard(gh? q(0
K veN
s.t. Z Z sP?(t) < aN, for all ¢ 3)
k=1 i=1

where v = M /N is the fraction of users that can be scheduled.

III. RELAXED PROBLEM AND THRESHOLD-BASED POLICY

As has been discussed in the introduction of this paper,
RBPs are PSPACE-Hard (see Papadimitriou et al. [9]) and
therefore one should develop well performing sub-optimal
policies to solve these problems. In this paper, the development
of our policy is done through several steps. First, we consider
a Lagrangian relaxation of our problem and show that it can
be decomposed into several one-dimensional problems. We
then prove that the optimal solution to each of these relaxed
problems is a threshold-based policy. We then compute the
stationary distribution of the states of the system under the
aforementioned threshold policy. This allows us to obtain a
closed form expression of the Whittle’s index values of the
relaxed problem and develop a Whittle index-based scheduling
policy for the original RBP.

In this section, we first formulate the relaxed problem and
prove that its optimal policy is a threshold-based one.

A. Relaxed Problem and Dual Problem

The Lagrangian relaxation consists of relaxing the constraint
on the available resources. Namely, we consider that the
constraint in (3), has to be satisfied on average and not in
every decision epoch, that is,

Tk

K N
3> sf"b(t)] < aN.
k=1

i=1

1
limsup =E “4)

T—o0 T

Note that, contrary to the strict constraint in (3), the relaxed
constraint allows the activation of more than « fraction of users
at each time slot. If we note W the Lagrangian multiplier for
the constrained problem, then the Lagrange function equals
to:

fW,¢)
T-1 K wN
_hmsup IE Z Z ard(q )+ WsP2 (1) | qq
T=o0 t=0 k=1 i=1
— WaN, (5)

where W can be seen as a subsidy for not transmitting.
Therefore, the dual problem for a given W is

min F(W, ¢). (©6)
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B. Problem Decomposition and Threshold-based Policy

In this section, we show that the relaxed problem can be
decomposed into N one-dimensional subproblems, for which
the optimal solution is a threshold-based policy. To do that,
we first get rid of the constants that do not depend on ¢ and
reformulate the problem as follows,

T—1 K veN
min lim Sup 7 IE ard(q +Wsk (¢ q
a7 e

(N
One can see that the solution of this problem can be deduced
from the well known Bellman equation (see Ross [25]). More
specifically:

K ’ykN

q)+0= mm{ZZCk ql, i +ZP7" 'la,s)V(q')},

k=1 i=1

®)
for all @ = (gf, - qh N, a1 al n), With gf €
{0,---, L} being the queue length of class-k user i, and s =
(s1,-+ 88 ns-o i, 88 ), with sf € {0,1} being the
action taken with respect to user ¢ in class k. In equation (8),
V' (-) represents the Value Function,  is the optimal average
cost and Cy(gF,sF) is the holding cost axd(gF) + Wsk.
The optimal decision for each state q can be obtained by
minimizing the right hand side of (8). We now show that the
problem can be decomposed into /N independent subproblems
by decomposing V'(-) into separate Value Functions for each
user 4 in class k, ie., VF(-). In other words, the optimal
decmon s to (8) is a vector composed of elements s , Where
each s¥ is nothing but the optimal decision that solves the
individual Bellman equations.

Vi (gf)+0F —mm{Ck(qw s¥) +ZPT a* gk sE)VEF(gh)}

qz

€))

Proposition 1. Let Vf() be the optimal value function that
solves (9), and let V(-) be the optimal value function that
solves (8) then:

K "/kN
=> > V) (10)
k=1 i=1
Proof. See appendix A. O

In this section, we show that the solution to each individual
problem (for each user 7) follows the structure of a threshold
policy. For ease of notation, we drop the indices k and i and
consider that V'(-) is the value function for a given user. We
first provide the definition of threshold policies.

Definition 1. A threshold policy is a policy ¢ € © for which
there exists n € {—1,0,---, L} such that when the queue of
user i is in state g < n, the prescribed action is s~ € {0,1},
and when q > n, the prescribed action is sT € {0,1} while
bearing in mind that s~ # s™.

Since we only have two possible actions, a policy is of the
form threshold policy if and only if it is monotone with q.
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The solution of the Bellman equation (9) V(-) can be
obtained by the well known value iteration algorithm, which
consists of updating V;(-) using the following equation:

Ve (q) = min{C(q.5) + ) Pr(dla,s)Va(g)} — 0. (A1)

q

We consider that the initial value function Vj is equal to 0
for any g, (i.e., for all ¢, Vo(q) = 0). After many iterations,
Vi(-) will converge to the unique fixed point of the (9)
called V(-) (see [13, Chapter 1.3.3]). However, the value
iteration algorithm is known to have high complexity and
can take a long time to converge. Therefore, we will give
some structural properties of the value function V;(-) for any
t and conclude that the optimal policy is a threshold-based one.

Remark 1. It is worth to emphasize that if the arrival packets
plus the current queue length overflow on the buffer capacity,
the user retain only the L packets and get rid of the surplus
of the packets. Subsequently, from the state q, we can reach
the queue length L, when the number of arrival packets A
can be either L — q or plus. Having said that, Pr(L|q,1) =
o) Pr(A=j) and Pr(Ljq,0) = Y2} Pr(A=j).

To establish our desired result, we proceed with these
following steps:

o We prove that V'(-) is increasing with q.

o We establish that V1(q) — V°(q) is decreasing with ¢
where V%(q) and V1(q) are the value functions when
the action prescribed at state ¢ is s = 0 and s = 1,
respectively.

« Finally, we show that the optimal solution is an increasing
threshold policy.

Regarding the first point, we show that V;(-) is increasing with
q for all ¢ by induction. Precisely, we establish that:

o Vo(:) increases with g.
o If V;(+) is increasing with ¢, V;;1(+) is also increasing
with q.

Given that V5 (-) = 0, then Vj(-) is increasing with g.
Considering  V4(-) is increasing with ¢, then
>y Pr(d']-,s)Vi(q) grows with ¢ (see Puterman [26]).
We have by construction, C(+, s) increases with ¢. Since 6 is
just a constant, V;11(+) will be as well an increasing function
with q.

As a consequence, we show that V;(-) is increasing with ¢
for all ¢. Leveraging the fact that V(-) is the limit of V()
when ¢ grows, then V(+) is also increasing with q.

As for the second point, one can see that the next state before
the arrival of the packets will be ¢ = 0 if the action prescribed
is the active action since all the packets in the buffer will
be transmitted. Consequently, the probability to transit to the
state ¢’ from a given state ¢ under the active action is the
probability to have A = ¢' if ¢ < L,or L< A< R-1
if ¢ = L (according to the remark 1). Hence Pr(q’|q,1)
doesn’t depend on g. Likewise for Zé/:o Pr(q'|¢, V().
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We have that:
Vi) —V°q)
=W +> Pr(q|g, )V(¢) = >_ Pr(d'lg,0)V ().

q

Bearing in mind that V() is increasing with ¢, then again ac-
cording to Puterman [26], >_ , Pr(q'|g,0)V (¢’) is increasing
with ¢. Leveraging the above result, 25,:0 Pr(q'|¢, YV (¢)
is constant with respect to ¢q. Consequently, V1(q) — V%(q)
decreases with q.

To prove the last point, we recall that the optimal action
s(q) at state ¢ according to (8), is the one that minimizes
V#(q). Explicitly, s(q) = argmin{V%(q), V1(q)}. Moreover,
exploiting the fact that V1(q) — V9(q) is decreasing with g,
then there exists qo € {—1,---, L} such that for all ¢ < qo,
Vig) > V%g) and for all ¢ > g0, V'(q) < V°(q).
Consequently, we deduce that for all ¢ < ¢g, the optimal
decision is to stay idle, and for all ¢ > g, the optimal decision
is to transmit. Thereby, we prove that the optimal solution of
(7) is of type threshold increasing policy.

IV. STATIONARY DISTRIBUTION

We have seen previously that the optimal solution of (7) is
a threshold-based policy. Let us define nj as the threshold for
users in class k, i.e., if the queue state of user ¢ in class k is
q¥ such that ¢¥ < ny then the user will not be scheduled, and
else, the user will be selected for transmission. The objective
of this section is to derive the stationary distribution of the
users’ states. This will be useful in the subsequent section in
the derivation of a closed form expression of the Whittle’s
index values. We assume here that at each queue 7 in class k,
packets arrive according to a discrete uniform distribution, that
is, P(A¥(t) = ) = py, forall 0 < z < Ri—1 and 0 otherwise,
where p = 1/Ry.
For ease of notation, we again drop the indices k and ¢ (e.g.,
we denote the threshold by n and the queue state by g). To that
extent, we denote by p,,(4,7) the transition probability from
queue state 7 to queue state j, by u(.) the stationary distribution
under the threshold policy n, and by R—1 the maximum arrival
rate (p = 1/R). Finding the stationary distribution requires
resolving the full balance equation:
n
u(i) = pnlj, Dulj). (12)
j=0
In most of works in literature, the authors consider that the
evolution of the metric under the passive action is determin-
istic [21], [23], [27], [28]. In other words, for each state i,
we know for sure the next state to which the bandit will
transit under the passive action (usually 7 + 1). Explicitly,
pn(j,j + 1) = 1if j < n. That explains why in these papers
above, the authors got a simple recurrence relation between the
elements of the stationary distribution under a given threshold
policy. For instance, in [27], leveraging only the evolution
of Aol (Age of information metric), the authors got directly
u(i + 1) in function of w(i) without requiring any further
manipulations. Whereas in this paper, obtaining a recurrence
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relation is not straightforward, since the expression of (%) is
a linear combination of {u(j)};c4, where the cardinal of the
set A; is at least L — n as we will see later.

u(.) verifies the following full balance equation:

L n L
u(i) =y pu(ii)u(i) =D pa(i)u()+ Y pali d)uli)-
Jj=0 Jj=0 j=n+1
(13)
Definition 2. We define ; as:
[ p if0<i<R-1
= { 0 else. ' (14)

Proposition 2. The expressions of p,(j,1) are given by:
If0<i<Land j<n

N _Jpif0<i—-j<R-1
pn(]az)wz—]{ 0 else 5 (15)
f0<i<Landn<j<L
o _Jp if0<i<R-1
pn(]yl)—ﬂ'z—{ 0 6186 b (16)
ifi=Land j<n
pn(j, L) =(R—L+j)r—j=(R—L+j)p.  (17)
ifi=Landn<j<L
pn(j, L) = (R~ L), = (R~ L)p. (18)
Proof. See appendix B. O

Proposition 3. The expressions of the stationary distribution
is:
1)-1<n<L-1:

u(i)
p(1—p)n—t if0<i<n
=<p ifn+1<i<L-1.
(L= p)" ' —(L—n—1)p ifi=L
(19)
2)n=L:
|0 ifo<i<L-1
“(l){ 1 ifi=L (20
Proof. See appendix C. O

V. WHITTLE’S INDEX

In this section, we provide the derivation of the Whittle’s
indices, which are values that depend on the queue state of
the user. Although this derivation is made using the relaxed
problem, it allows us to develop a heuristic for the original
problem. It is worth mentioning that the Whittle’s index at a
given state, say n, represents the Lagrange multiplier for which
the optimal decision of the individual dual relaxed problem at
this state is indifferent (passive and active decision are both
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optimal). However, the Whittle’s index is well defined only if
the property of indexability is satisfied. This property requires
to establish that as the Lagrange multiplier (or equivalently the
subsidy for passivity W) increases, the collection of states in
which the optimal action is passive increases. In this section,
we work on a given class k, and we consider its maximum
arrival rate is R — 1 (a = 2/(R — 1)) with p = 1/R. All the
obtained results here can be applied for any class.

We start the derivation by first reformulating the dual of
the relaxed problem using the stationary distribution derived
in the previous section. Since the solution of the dual of the
relaxed problem (7) (given a constant W) is a threshold-based
policy, we can reformulate the problem as follows:

: n n
min Ela d(g") + Ws"]
L

= min {» au"(2)d(i) —

wS w"@) + WY @
nelo,L] qz:% Q }

i=0
with n and u™ being the threshold and the stationary distri-
bution under the threshold policy n with respect to the queue
length respectively.

The new formulation of the problem turns out to be useful to
derive the Whittle’s indices since, for any W, we can find the
minimizer of the expression in (21).

We first give the expression of the mean cost in (21) given
threshold policy n (for all possible values of n and L).
f-1<n<L-1:

L
Z au™(i)d(i) =a[(L + R+ Cq)(1 — p)" ™ +n - R+ 1
=0

(L—n—1)pcy 4 EZL=n= D))
(22)
If n=L:
L
> au"(i)d(i) = aL + aCy. (23)
=0

Second, we provide the expression of the passive decision’s
average time in (21) given a threshold n:

If -1<n<L-1:

> wr(@)=1-(1-p"th (24)
=0
If n=L: "
> ur(i) = 1. (25)
=0

A. Computation of the Whittle’s Index Values

We first formalize the indexability and the Whittle’s index
in the following definitions.

Definition 3. Considering (21) for a given W, we define
D(W) as the set of states in which the optimal action (with
respect to the optimal solution of (21)) is the passive one. In
other words, n € D(W) if and only if the optimal action at
state n is the passive one.
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Algorithm 1 Whittle index computation
1: Init. Let j be initialized to O

2. Find W, = ;ggz —o au (q)gn)ug(q;) au”" (g)d(q)

3: Define ng as the largest minimizer of the above expression

4: Let W (k) = W, for all k < ng

5: while n; # L do

6: j=7+1

7. Define M; the set {n : Y/ ju"(q) =
ZZLI . 1()}U{OZ i 1(})()ZL (9)d(q)

) L _oau"(q)d(q Oauﬂlqdq

B FndWy = i e o, ()

9: Define n; as the largest minimizer of the above
expression

10: Let W(k) =W, for all nj_1 < k <n,

11: Output The Whittle’s index of state k& which is given by
W (k)

D(W) is well defined as the optimal solution of (21) is a
stationary policy, more precisely, a threshold based policy.

Definition 4. A class is indexable if the set of states in which
the passive action is the optimal action increases with W,
that is, W' < W = D(W') C D(W). When the class is
indexable, the Whittle’s index in state n is defined as:

W(n) = min{Win € D(W)} (26)

In the literature, several works have been conducted to find
the Whittle’s index values. For example, an interesting iterative
algorithm has been provided in [13]. Even though the context
of our work here is different from the one considered in [13],
we will prove in the sequel that the proposed algorithm in [13]
can be adapted to our case up to some modifications (in
our case we have a maximum buffer state L). In addition,
further analysis will be provided here to derive a closed form
expression of the Whittle’s index values. We will first provide
this modified algorithm and then prove that it allows the
computation of the Whittle’s index values for our problem.

Proposition 4. Assuming that the optimal solution is a
threshold policy, and that ZZ:O u(q) is increasing, then

the class is indexable. Moreover, if Zé gau™(q)d(q) is
increasing with n and for all © and j such that 1 < j
Z:o“(_q) ZJ oW (q) = E _oau'(q)d(q) <
> g=0 W’ (q)d(q), then the Whittle’s index values are
computed by applying Algorithm 1.

Proof. For the proof, see appendix D. O

Remark 2. In order to simplify the notation in the sequel, we
denote ZqL:O au™(q)d(q) by an and 377 _;u"(q) by by.

In order to apply Algorithm 1 that allows to obtain the
Whittle’s index for each state in our case, we need to prove
that the conditions given in Proposition 4 are satisfied.

We start first by establishing the indexability.

Theorem 1. For each k, the class-k is indexable.
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Proof. According to Proposition 4, we just need to prove that
Z;,O u™(q) is increasing with n. It is clear that from (24),
Y=o u"(q) is increasing with n. Hence, the class is index-
able. O

We prove the two others conditions of Proposition 4 which
are the increase property of ZqL o QU "(q)d(q) W1th n, and that

for all 7 and j such that i < j, Zq 0 (q) =21 _g v (q) =

ZqL:o au'(q)d(q) < Z _oau’(q)d(q). The second property
for this case is meaningless since Z;:o ut(q) is strictly in-
creasing with 7. While for the first one, one should demonstrate
that a,, is increasing with n.

Proposition 5. a,, = Z(?:O au™

Proof. See appendix G. [

(q)d(q) is increasing with n.

As the indexability is satisfied and the two conditions of
Proposition 4 are verified, then we can apply Algorithm 1 to
get the Whittle’s index for each state. However, the complexity
of this algorithm is L2. In order to overcome this complexity
issue, we will provide further analysis and derive simple
expressions of the Whittle’s indices.

We first proceed by laying out the following definitions and
lemmas.

Definition 5. For any given increasing threshold policy n, we

define y™ as a function of the subsidy W, such that y"™ (W) =
L

> gmoau™(q)d(q) = W 30 u"(q) = an — Wb,

Lemma 1. The intersection point W = x; ; between y*(W)

and y’ (W) is equal to:

_ oo aui(q)d(q) — Zé o au’ (9)d(q)

T j ; ; ] 27
Zqzo u'(q) — _ou(q)
Proof. See Appendix H. O
Theorem 2. The Whittle’s index of state n € [0, L]:
W(n) =zpn-1
_alp(L—n) = p(L+ R+ Ca)(1 = p)" + 1+ pC4]
p(1—p)"

Proof. See appendix L. O

B. Whittle’s Index Policy for the Original Problem

We now consider the original optimization (3) and propose
a simple Whittle’s index policy. This policy consists of
simply allocating the channels to the M users with the
highest Whittle’s indices at time ¢, denoted by WIP, and
computed using the simple expressions in Theorem 2.

VI. FURTHER ANALYSIS OF THE OPTIMAL SOLUTION OF
THE RELAXED PROBLEM

In this section, we provide further analysis and give the
structure of the optimal solution for the relaxed problem,
which will be useful for the proof of optimality of the Whittle’s
index policy. As we have seen in Section III, for any given
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Fig. 2. y™(W) in function of W for different values of n (L =4, R—1 =7,
and Cy = 3): W (i) indicates the Whittle’s index at state <.

W, the optimal solution for the dual relaxed (7) is a threshold-
based policy for each user. By using the Whittle’s index
expressions derived in Theorem 2, we provide a derivation
of the optimal threshold for each class as a function of
the Lagrange parameter W. In this section, we denote by
WP the Whittle’s index at state i in class k. We denote by
I = (l1,ls,--+,lg) the vector which represents the set of
thresholds for each class k. We denote by u}, the stationary
distribution for class k under threshold policy n.

Proposition 6. For a given W, the optimal threshold vector
I=({1(W),la(W), - lxg(W)) for the dual problem satisfies:
For each k:

IL,(W) = arg max{WF|WF < W}, (28)

or

1L (W) = arg max{WF|WF < W}. (29)

We note that the solution can also be a linear combination
between the threshold policies arg max{WF|WF < W} and
3

arg mgx{Wik\Wf < Wt
Proof. See appendix J. O

Now, we give the structure of the optimal solution of the
constrained relaxed problem.

Proposition 7. The solution of the constrained relaxed prob-
lem is of type threshold policy I(W™*), with | being the
function vector defined in Proposition 6 and W* satisfies

K L k(W™ ,.
=D b1 Ve it (W1 “kk( )(Z)-

Proof. See appendix K. O

However, W* that satisfies the above constraint may not
exist since « is a real number that can take any value in
[0,1], and Zszl Vi Zf:lkﬂ(w) uﬁc’“(w)(i) is discrete, since
the vector [(W) can only take discrete values in [0, L]¥. To
deal with this issue, we use the fact that for some values of
W, the optimal solution of the dual problem can be a linear
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combination or more precisely a randomized policy between
two threshold policies for a given class as has been mentioned
in Proposition 6. To that extent, our task is to find among these
values of W, the one for which there exists a randomized
parameter 6 such that the constraint is satisfied with equality.
To that end, we introduce this following proposition.

Proposition 8. There exists a class m, state p, and a random-
ization parameter 0* such that the optimal solution of the dual
problem when the langrangian parameter W = W = W*
is characterized by:

o For k # m, the optimal threshold is (W) =
arg max{WFWF <w}

o For Iﬁ; = m, the optimal solution is randomized
policy between two threshold policies 1,,(W)") =
argmax{Wm|wm < Wit} and 1,(W)') — 1 =
aurgmla)c{Wi”ﬂWim < W;}, where the factor of ran-
domizzation 0* is the probability of adopting the policy
L (W) and 1—07, the probability of adopting the policy
I (W) = 1.

o The constraint (4) is satisfied with equality, i.e.,

L
(W), .
o= Z Z 'qukk (7’)
km =1 (W) +1
L
+ Z rYTYLurﬂ(i)
i=lm (W) +1
" L (W) =1 m
+ (1= 0 T @), G0)
where u, = 0*ulm(W") 1 (1 — g% )ulm (W)L,
Proof. See appendix L. U

The solution of the dual problem described in Proposition 8
satisfies the constraint (4) with equality, then according to
Proposition 7, this solution is indeed the optimal solution of
the constrained problem. In that regard, the optimal cost of
the relaxed problem CRPV | is expressed as following:

L
(W), . .
CHRPN — Z ZNW’kakU;:( i )(Z)d(@)
k#m 1=0
L
+ > Nymam g, (i)d(0). 31)
=0

VII. LocAL OPTIMALITY

In this section, we will show that the performance of
the Whittle’s index policy is asymptotically locally optimal.
The asymptotic optimality means that for a large number of
users N and a large number of channels M (o = M/N is a
constant value), the Whittle’s index policy is optimal. For that
we will compare the average cost obtained by the Whittle’s
index policy WIP with the one obtained for the relaxed
problem RP. Explicitly, denoting by C¥ (x) the average cost
obtained over the time duration 0 < ¢ < T under Whittle’s
index policy conditioned on the initial state x ,we show that
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CH(x) tends to CPN when N and T scale. The reason
behind comparing CPN and CN(x) is that CEPN is a
lower bound of all expected average cost obtained by any
policy that resolves the original problem (3). This means that
it is sufficient to prove that C¥ (x) converges to CEPN when
T and N scale in order to establish the asymptotic optimality
of Whittle’s index policy. For that, we will be in need of
the optimal cost expression of the relaxed problem CTFN
derived in Section VI.

First, we denote by Zf N the proportion of queues at state
i in class k over all the queues of the system. In other
words, it denotes the number of queues at state ¢ in class
k over the number of all users which is N. We have that
ZN = (zVN . 28N with 29N = (2PN Z9N) and
ZiL:o Zf’N = 4, for each class k.

The expression of CN(x) in function of Z" is

TR SR S a2 (00N | 28 (0) =],
where Z” (t) evolves under Whittle’s index policy. Denoting
by z* the optimal proportion of the the relaxed problem, we
say that the Whittle’s index policy is asymptotically locally
optimal if there exists 6 > 0 such that the initial proportion
vector ZV (0) is within Q;(z*) (i.e., (0) —z*|| < 9), then
CH (x) converges to CRPN when T and N scale.
In order to prove that, we use the fluid limit technique that
consists of analyzing the evolution of the expectation of
Z" (t) under the Whittle’s index policy. For that, we define
the vector z(t) as follows:

Z(t + 1) - Z(t)|z(t):z
—E [ZN(t—i- 1) - zN

)2V (1) = z} 3

If we denote by w the Whittle’s index for class h at state j
and by p¥(z) the probablhty that a user is selected randomly
among zf to transmit, one can easily show that [24]:

p¥(2) = min{zF, max(0, o — Z Zjh)}/zf

h k
wj >w;

(33)

We denote by qz % and qz ] ! the probabilities of transition from
state i to state j in a class-k if the queue is not scheduled and
if the queue is scheduled for transmission respectively.

Then, the probability of transition from state ¢ to state j in
class k is:

=ph(2)d + (1 —pf(2))a)) (34)

Accordingly, we have that for each ¢ and k:

=D (=)= () =Ygl (z(8)2F (1),

J#i ij
(35)

Let w* be the Lagrangian parameter that gives the
optimal solution of the relaxed problem. Then, according
to Proposition 8, there exists a given class m such that
w;" = w* for which the corresponding optimal solution of
the relaxed problem is of type threshold policy for class
k # m denoted by I, and a randomized policy between two
threshold policies [, and l,,, — 1 for class m.

We define j,+ as the set of states such that at any system

qzl'ij(z)

2t +1) -
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state z € 7.+, if we use the Whittle’s index policy, all
users with the Whittle’s index value higher than w* are
scheduled, while the users with Whittle’s index value
smaller than w* stay idle and the users with Whittle’s
index value w* are scheduled with a certain randomization.
Specifically, ju+ = {2 1 2k 2 < QN ksy,. 2 > ol

Providing that for all k£ and ¢:

L
> 5=

Jj=0

(36)

Therefore, the following equation always holds for z(t) € Jq«:
1) k # m:

2 (t —I— 1)
- L
Sk k1 ROy
Z jl_qlk7 (t)+ Z (jZ_qlk'l) (t)
j=l+1
+7kqlk, (37
Dk=m
m—1
M) = (6 - a)E ()
§=0
L
+ Z (q]’ - ql’”l’ ) m(t)
j=lm+1
h )
+ (1= a)g] 5 +aq; — ( Z (t)ar,
w' >wl""”
h?ﬁm J#ln
h 0 1
(> FW)a” Z Z Lwf, >up, 125 (D)0
h <™ h=1 35=0
h;”@“éz: hm A
Z Z ﬂ{wh <w7:7;] ( ))ql’77L7/L
h=1 j5=0
h7ém]¢lh
,0
- Z Th ]l{wl >w1m}q17ml + ]l{wh <u;m }lemrL) (38)
AZm
K )1 ,0
Let gi"* = Z}?;}l Vh(]l{wglh>w;y”}ql7:“i + ]l{wfhgme}qzz,i)
v i € [0,1], and C = (cl,-~-,cK) such that
k,0
c® = (qulk,ov . ,’YkQZ L) and cm=((1- Oz)qlm ota qlm
g{)”,~~~,(1—a)q +aql g7") for each k # m.
Then:
) k#m:
lp—1
k k,0 k() k,1 k(] L k
) = S -+ Y (k)b
Jj=0 J=lk+1
(39)
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2Yk=m
2t +1)
ln—1 .
=2 @ — a0+ 3 @ a5
=0 j=lm+1
v, 1 0
w3 A 3 S
s wp <up,
h#m,j#ln h#m,j£ln
L
,1
+( Z Z Lk s 125 ®)aq",
h=1 j=0
h#m jzl,
K L
h 0
(20 2 g, <up ) O (40)
h=1 j=0
h#m j=£1;,

Then, by replacing in the equation above for all & zlkk (t) with
Vi — Zf:o, I z;“ (t), we obtain the following linear relation
in 7, between Z(t + 1) and z(¢) where Z is the proportion
vector in which the elements zl’“k for different k£ are eliminated.

2(t+1) = QE(t) + C,

where C' is a constant matrix and the expression of matrix Q
is given in Table I. The vector solution of the relaxed problem,
denoted by z*, is the fixed point of the aforementioned linear
equation. By definition of 2*, 2* € j,,=. Thus, if 2(0) = 2" +e
and Z(t) € j,,+, we obtain for ¢:

2(t) — 2* = Q'e.

The analysis of the above linear system is therefore important
to prove the local optimality. We first provide the following
lemma.

Lemma 2. If for all eigenvalues )\ of Q, |\| < 1, then there
exists a neighborhood Q,(2*) C ju+ such that if 2(0) €
0, (2%), we have the following:

1) Forallt >0, ||2(t) — 27| < 0 (2(t) € Ju+)-

2) z(t) converges to Z*.

(41)

(42)

Proof. The proof follows from the convergence of the linear

system. O
Proposition 9. For all eigenvalue X of Q, |\ < 1.
Proof. See the proof in appendix M. O

The aforementioned result, combined with Lemma 2, proves
the convergence of the fluid limit system. Consequently, z(t)
converges to the fixed point of Equation (32), z*. However,
the above result is not enough to prove the local optimality, as
we have to show that the stochastic vector Z*¥ (t) converges
to z* in probability. For that, we introduce the discrete-time
version of Kurtz Theorem applied to our problem (see [29]):

Proposition 10. There exists a neighborhood Qs(z*) of z*
such that if ZV(0) = 2(0) = = € Qs(z*), then for any
> 0 and finite time horizon T, there exist positive constants
C1 and Cy such that

Py( sup ||ZN(t) — z(t)|| > p) < Creap(—NCy),  (43)
0<t<T
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where § < o, and P, denotes the probability conditioned on
the initial state Z™ (0) = z(0) = @. Furthermore, Cy and C
are independent of x and N.

According to the above proposition, the system state Z** (t)
behaves very closely to the fluid approximation model z(t)
when the number of users N is large. Since we have shown
the convergence of z(¢) to within ,(z*), we are ready to
establish the local convergence of the system state Z” (t) to

*

z.

Lemma 3. If ZV(0) = x € Qs(2*), then for any p > 0,
there exists a time Ty such that for any T' > Ty, there exists
positive constants s1 and so with,

Py( supTHZN(t) —2%|| > p) < sjexp(—Ns2). (44)
i<

To<

Proof. See appendix N. O

Now we are ready to prove the asymptotic local optimality
of the proposed scheduling policy.

Proposition 11. If the initial state is in the set Qs(z*), then

Cf(w) _ CFPN

i S = S 8
Proof. See appendix O. O

VIII. GLOBAL ASYMPTOTIC OPTIMALITY

In this section, we prove that from any initial state x, the
long-run expected average cost obtained with the Whittle’s
index policy is optimal when NN is very large. In contrast to the
method used to prove the local optimality, we work here with
the steady state distribution of the stochastic process Z” (t).
To ensure that such a stationary distribution exists, we need
to show that there is at least one recurrent state. Since the
states evolve according to a finite state Markov chain, we just
need to prove that there exists a state reachable from any other
states.

Lemma 4. The state defined as for each class k, z*
(1,0,---,0) and denoted by z,', is reachable from any initial
state using the Whittle’s index policy.

Proof. See appendix P. O

This lemma is stronger than proving the existence of a
recurrent state. Indeed, this allows us to deduce that Z™ (t)
evolves in one recurrent aperiodic class, and that there exists
a stationary distribution for Z” (t) denoted by Z" (c0). We
still need to check if for a fixed IV, there exists at least one
recurrent state within Q.(z*), as otherwise Q.(z*) will be a
transient class. If such a state exists, surely Z” (t) will evolve
in one recurrent class that contains this recurrent state. To that
end, we demonstrate here that z* is reachable from any state
for a fixed N. Since z( is reachable from any state, we just
need to find a path from z( to z*.

20 can be seen as the system’s state where all queues are in the queue

state 0
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Lemma 5. By applying the Whittle’s index policy, the steady
state z* is reachable from the state z.

Proof. Considering our system model, the probability of tran-
sitioning from queue state 0 to any other state whether the
action is active or passive is strictly positive. Thereby, there
exists a trajectory from zg to z* which lasts only one time
slot. Consequently, z* is reachable from zj. O

From this lemma above, the state z* is reachable from any
state, which means that z* is a recurrent state. However, the
considered actions schedule a proportion of users (i.e., not an
integer value). This is not feasible and unrealistic for some
(small) values of N since the queues are not splittable. In
fact, for some values of NN, the state z* may not exist. On
the other hand, we can say that for enough large N , and for
any ¢ > 0, there exists at least one recurrent state within
the neighborhood €. (z*). This will ensure that there is a
path to enter a neighborhood §2.(z*) from any initial state.
However, it is important to ensure that the time to enter 2. (z*)
should not scale up with N. For that, we give the following
assumption which will be later justified via numerical studies
in Section IX.

Assumption 1. We assume that the expected time to enter a
neighborhood of z* from any initial state x does not depend
on the number of queues N. In other words, for all N the time
to enter a neighborhood Q.(z*) denoted by T'Y (¢) is bounded
by a constant Ty,.

Now we provide a useful lemma that allows us to demon-
strate the global asymptotic optimality.

Lemma 6. Under Assumption 1, and for any €, we have that:

lim P(Z" () € Q.(2%)) = 1. (46)
N —+4o00
Proof. See Lemma 6 in [21]. O]

Since we have found a stationary distribution of Z™ ()
under Whittle’s index policy, the expected average cost under
Whittle’s index policy for a fixed IV can be written as follows:

K L
% =S wE 2V )] di)N. @

k=1 1i=0

lim
T—o00

Theorem 3. Under assumption 1, and for any initial state, we
have that:

() _ CnP

Wil TN TN )
Proof. See appendix Q. [

IX. NUMERICAL RESULTS

In this section, we provide numerical results that confirm the
asymptotic optimality of the developed Whittle’s index policy.
To that extent, we consider the two following scenarios:

1) 2 classes with the following characteristics:
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Fig. 3. Hitting Time of Q. (2z*) in function of N: (a) Z™(0) = @ and (b)
ZN(0) =y.

o (¥ = 1/2
« L=10
e V1 =72 = 1/2

__10x%
AR
e (2= R, 1
« Cy=3

2) 3 classes with the following characteristics:

e Ry =11, Ry =50, and Rz =110
o (¥ = 1/2
« L=10
s N=72=73=1/3

_ _10x2
e A1 = (Rl—l)

_ _10%2
* T T

10%

e A3 = Ra—1
« Cy=3

We also consider two initial states z and y such that all the
queues are equal to 0 and L, respectively.

1) Verification of Assumption 1: We plot in Fig. 3, the
evolution of the time needed to enter a neighborhood €. (z*)
(i.e., hitting time of Q.(2z*)) with respect to N, given that e
is small enough.

One can see that for large values of IV, the hitting time can
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Fig. 4. Performance evaluation of Whittle’s index policy for 2 classes.

be considered as a constant and does not diverge for both initial
states « and y. This implies that the hitting time is bounded
for large values of N which consolidates Assumption 1.

2) Performance of the Whittle’s Index Policy: In this sec-
tion, we compare the long-run expected average cost per user
under the Whittle’s index policy, i.e., limp_,o C¥ (z)/N =
CWIPN /N with the one obtained by applying the Max-
Weight policy MW P, CMWPN /N The policy MW P
schedules, at each time ¢, the M weighted longest queues
(equivalently the M highest axd(q¥(t))). We also compare
for the first scenario, the performance of these two policies
with the optimal cost per user obtained by using the optimal
solution of the relaxed problem, i.e., CEPN /N, The results
are plotted in Figs. 4(a), 4(b), 5(a), and 5(b) where (a)
corresponds to the initial state & and (b) corresponds to the
initial state y (defined above).

One can see that for large IV, regardless of the initial state,
the cost incurred by adopting the Whittle’s index policy tends
to the optimal cost of the relaxed problem, which proves
that it asymptotically converges to the optimal solution of
the original problem. One can also remark that the optimal
cost of the relaxed problem per user is constant and does not
depend on N (see Section VI). Lastly, we remark that the
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Fig. 5. Performance evaluation of Whittle’s index policy for 3 classes.

solution given by MW P is suboptimal and lacks behind our
proposed scheduling scheme.

3) Fairness among users: In order to improve the fairness
among the users in the network, one can use the developed
Whittle’s index policy up to some modifications. To that
extent, we introduce in this section a new policy © which
works as follows: At each time slot ¢, we schedule the users
with the highest Wy (q¥(t))Dr(q¥(t)), where ¢¥(t) is the
queue state of user ¢ in class k, Wy is the Whittle’s index of
state ¢ (t) and Dy (qF (1)) = 32! _, ard(qF(w))/t. To evaluate
numerically the performance of this policy, we consider the
following two costs CT"Y and C3" incurred respectively by
users of class 1 and users of class 2 under policy 7, specifically

o limy o0 +E [Z PV and(gl (1) | =, w} and

N = limgue +E [Z P52 aad (g2 (1) | w,w}. We
plot these quantities over N when m=WIP and when 7 = ©
with respect to IV in Fig. 6 considering the following network
settings:

. R1:11 andR2:12

o (X = 1/2

e« L =10
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Fig. 6. Evaluation of C’f’N and C’;’N
Whittle’s index policy WIP.

in function of /N under policy © and

e =7=1/2

__10x2
e 1 = Ri-1)
__ _10%2
e U = 7}%2_1
« Cy=3

We conclude that the new policy gives a better performance
in terms of fairness, since it reduces the gap between the costs
of the two classes of users.

X. CONCLUSION

In this paper, we have studied the problem of users and
channels scheduling under dynamic traffic arrivals. At each
time slot, only M channels can be allocated to the users
knowing that a user can be allocated one channel at most. We
have formulated a Lagrangian relaxation of the optimization
problem and provided a characterization of the optimal solu-
tion of this relaxed problem. We have then developed a simple
Whittle’s index policy to allocate the channels to the users and
proved its asymptotic local and global optimality when the
numbers of users and channels are large enough. This result
is of interest as the developed Whittle’s index policy has a
low complexity and is near optimal for large number of users.
We have then provided numerical results that corroborate our
claims.

APPENDIX A
PROOF OF PROPOSITION 1

We consider the Bellman equation (9). By summing the
RHS and the LHS of (9), for all £ and ¢ we obtain:

K N K N
DD V@) + 0= > min{Cilaf’ 57)
k=1 i=1 k=1 i=1 °i

+ > Pr(gFlaf, sHVF(a")}

Ik
q;

333

K YN
H{ZZ [Cr(qF, st) +ZPT a*lak, sHVFE (@)}
k=1 i=1

qi

(49)

where s = (s},---, s,lle, R AP s,IYiN) We also have
that:
PT(q/‘(LS) = Zpr(q/|qasa Qik)Pr(Qik|qa S)
q.k
=Y Pr(dla,s, ¢*)Pr(¢f|dh. sF),  (50)
a;*
for all q = (Q%v'"7q»1):1N7"'7Q{(7"'7Q5KN) and q/ =
(@' gty ™, a5 y). Since Pr(gf|q,s) only de-

pends on the decision taken with respect to user ¢ in class k,
we obtain:

K ’YkN
SN Prgtlal, sHVF(gY)
k=1 1=1 'k

4q;
K ’ykN

=333 Pr(d'la,s, 0 ) Pr(g; ek, shVE(a")

klzlq’k

K vxN

—ZPT qla.s)d > Ve

k=1 i=1

(51

From the previous equations we obtain:

K N K N
PIPMACIED DI
k=1 i=1 k=1 i=1
K "/kN
=min [} > Cul(al, sf)
k=1 i=1
K ’ykN

357N Pr(gFlab, 5V

k=1 i=1 qék

K N K vN

=min ZZC a5, S; +ZP7“ 'lq,s) ZZVzk(q;k)]

k=1 i=1 k=1 i=1
(52)

According to [25, Chapter 2, Theorem 2.1], it exists a unique
function V' and a constant 6 that resolve the (8) Subsequently,
since we have found a bounded function 31 1 Z"”“N VE(gF),
and a constant Zk &ZW’“N 6% that satlsfy also the (8), then
V(q) = k 1 y V¥ (gf) and 0 = Zk 1 ZWN 0F. This
is equivalent to ﬁnd for each user the decision that minimizes
the right hand side of each individual Bellman equation. This
concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

When ¢ < L:
D <n:
Since j < n, the optimal decision is to stay idle, that means
if A denotes the number of arrival packets, in the next time
slot the number of packets will be i = j+ A with A < R—1,
then A = i — j. Therefore, the probability to transit from state
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J to i is the probability that A = 7 — 7, which is exactly m;_j;.
2) 7 >mn
The optimal decision in this case is to transmit, then all j
packets will be transmitted. Taking into account the A arrival
packets, then the new state for the next time slot will be i = A.
This explains that the probability to transit from state j to @
is the probability that A is equal to ¢ which is equal to 7.
When ¢ = L:
1)j<n
The optimal decision is the passive action. Then A arriving
packets are added to the j packets present in the queue. At the
next time slot, the number of packets is j + A. According to
(1), since we cannot exceed the buffer length L, we reach the
state L if j+ A > L. Since A < R—1, then the probability of
this event or equivalently the probability to transit from state
jtostate Lis Pr(L—j<A<R-1)= Z]Ij;Ll_j Pr(A=
k)= (R—L+j)m_; = (R— L+ j)p.
2) 3 >n
The optimal decision is the active action. Subsequently, the
next state is 0. Thus to reach the state L, the arrival packet
number A must be in the set [L, R — 1]. Therefore, the
probability to transit from 0 to L is Pr(L< A< R-1) =
WL Pr(A=k)=(R—L)r, = (R— L)p.

APPENDIX C
PROOF OF PROPOSITION 3

We have that:

n L
w(@) =Y palu() + D paliduli).  (53)
7=0 j=n+1

We distinguish between two cases: n < L and n = L. We
analyze each case separately.
1) n<L:
We first give the expression of (i) when ¢ < L based
on Proposition 2:

n L
i) = Zﬂi—ju(j) + Z miu(j).- (54)
Jj=0 j=n+1

By definition of 7 given in Definition 2, we have that:

min(i,n) L
u@) =Y puli) + Y puli). 59
j=0 j=n+1

Now, in order to prove Proposition 3 for this case, we
will distinguish between three sub-cases:
an+1<i<L-1

b)0<i<n

c)i=1L

a) Proof of u(i) = pforn+1<i<L-—1:
We have min(i,n) = n, then:
n L
= pu(i) + Y pu(y) (56)
0

n+1
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Knowing that 0 u(j) 1, thus >0 pu(j) +
Yow 1 pul(j) = p. Hence, u(i) = p.
b) Proof of u(i) = p(1 — p)"~* for 0 < i < n:
We prove this result by induction, i.e., we start by
proving that the statement P (i) = {u(i) = p(1—p)" "'}
holds for ¢ = n, then we show that it holds for 7 — 1, if
P(i—1) is true.
e 1 =n:
We have that: u(n) = > pu(j) + Zﬁﬂ pu(j) =
p = p(1 — p)"~™. Thereby, P(n) is true.
o« P(i)= P(i—1):
We have that min(i — 1,n) =i — 1, then:

u(i —1) Z pu(y) + Z pu(y
0 n+1
u(i — 1) Z pu(j) + Z pu(j
0 n+1
u(i — 1) = u(i) — pu(i). (57

By induction assumption, we have that u(i) = p(1—
p)"*. To that extent, replacing the expression of
u(4) in (57), we obtain:

u(i — 1) = (1= pyu(i)
That concludes the proof.

As for i = L, u(L) is nothing but the subtraction of the
Zf;ol u(j) from 1. By doing so, we get:

=p(1—p)"~ .

W(L) = (1= p)™ = (L—n—1)p
2) n=L:
L
u(@) =Y pr(ji)u(s) (58)
j=0
Fori <L —1:
According to Proposition 2, we have:
L
= m_ju(j) (59)
§=0
By definition of 7, we get:
i
u(i) = pulj) (60)
0
We prove by induction that for 0 < i < L, u(i) =0
We have «(0) = pu(0) = 0.
We suppose that u(j) = 0 for all 0 < j <4, then:
i+1
u(i+1) Z pu(j
= Z ou(j) + pu(i+ 1)
=0 + pu(i+1)
u(i+1) =0. (61)
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Then, for all ¢ € [0, L — 1], u(i) = 0.
Since Z].L:O u(j) = 1, we have u(L) = 1 —

L-1_ %
Zj:o u(j)=1-0=1
This ends the proof.

APPENDIX D
PROOF OF PROPOSITION 4

As mentioned previously in Remark 2, we denote

ZQL:O au™(q)d(q) by a, and >°0_,u"(q) by by. Before
proving the proposition, we give two useful lemmas.

Lemma 7. Considering a;_1,aj,a;41 and bj_1,b;,bj41,
such that bj,1 < bj < bj+1.

Jf %=1« %4179 Thop-
4 bj=bj—1 = bjt+1-b;

aj; — aj—1 < Gjy1 — Aj—1

<179 (g

bj =bj—1 7 bjy1 —bj—1 T bj41—0b;
a;—a;—1 > aj+1—a; .
If by—bi1 2 brih, Then:
Qj — Qi1 o 41— Q-1 o Gj41 Gy 63)
bj =bj—1 ~ bjy1 —bj—1 T bj41—0b;
a;—aj—1 < aj41—a5-1 .
If b = bioh Then:
a; —aj—1 A4l — Aj—-1 Ajy1 — Aj
J J Jj+ J S J+ J . (64)

bj=bj1 7 bjy1—=bj1 T bjy1—0b;

Jf =1 > G 0o .

bj=bj—1 = bjt1—bj1
a; — Qi1 Aj4+1 — Aj—1 aj4+1 — a5
J J J J J J
b; —b = b b = b b’ (65)
J— Yi-1 Jj+1 — Y1 J+1 =Y
Q417051 ~ Q41705 .
If Db 1 = D410, Then:
a; — Ayj—-1 Aj+1 — Qj-1 Aj+1 — Q4
J J J J J J
b; —b = b b = b b’ (66)
J — Yi-1 j+1 = Yj-1 j+1 — U5
G170 -1 > L417% Thon-
bj+1=bj—1 = bj+1-b; )
aj — aj—1 > Gjy1 — Qj—1 > Qi1 — Qj 67
bj —bj_1 b, bj_1 — b b (67)
J Vi1 J+1 — Yi-1 j+1 — Y5
Proof. See appendix E. ]

Lemma 8. The largest minimizer at step j in Algorithm 1
satisfies nj = min{k : by = by, }

Proof. See appendix F. |

o Indexability:

We consider n; and no the optimal thresholds of the
problem (9) when the Lagrangian parameter W is equal
to Wy and Ws respectively, such that W7 < Ws. To
that extent, we show that n; is less that ny. In fact,
establishing the aforementioned result is sufficient to
show the indexability since by proving it, we can say that
the set of states for which the optimal decision is passive
action when W = W7, is included in the set of states
for which the optimal decision is passive action when
W = W, specifically [0,n1] C [0,n2]. Subsequently:
D(W1) € D(W2).
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In order to prove that, we just need to demonstrate that
bn, < by, since n; < ng is equivalent to b,, < by,,, due
to the increase of b,, with n.

As nq and no are the minimizers of (7) when W = W,
and W = Wy, respectively, then:

Gny — Wibn, < an, — Wiby,, (68)
Gpy — Wabp, > an, — Waby,. (69)

This implies:
Wa(bn, —bny) < apy — any < Wi(bn, — bpy).  (70)

Therefore: (Wo —W7)(by, —bn,) < 0. Since Wo —Wp >
0, thus b,, < by,,. Consequently, n; < ns.

Thereby, we conclude the indexability.

Whittle’s index expressions:

For the Whittle’s index expressions, we
should demonstrate that, for k& €  [nj_1,nj),
W; = min{W,k € D(W)}.

For that, we prove first that for W < W;, k ¢ D(W).
If £k > nj—1, W < Wj, and by 7é bn]—ﬂ

Ap—an

then W < W; < ﬁ Therefore,
ar — bW > Qn;_y — anlW. ’

If £ > mnj1, W < W and by = by,_,, given that
ag > an;_,, then ax — bW > ap,_, — by, W.

Hence we have proved that, for W < W, and k > n;_1,
ax —bgW > an,_, —byp,_, W. That means for W < W,
the optimal threshold is n;_; or even less. Therefore,
for k €]n;_1,n;], the optimal action is the active one,
ie, k¢ D(W).

We still have to prove that &k € D(W;).

For that, we prove that the optimal threshold is at least
n; when W = Wj. In other words, for all £k < nj,
ag — bgW; > apn; — by, W;. We demonstrate this result
by induction in j:

-j=0
By definition, W, < % Vk > 0. Furthermore,
as b, is increasing with n, then b, < b,, for
0 < k < ng. However, according to Lemma 8§,
br is necessarily strictly less than b,,. Thus, by
using Lemma 7 (fourth case), we can deduce that

‘Z"O:Z: < Wjy. That means, as b_; = 0, we have
no
for k € [—1,ng), Z:z:Z:” < Wy, which implies that

ap — kaO Z Apgy — bno WO'

— We suppose at step j, ap — bW; > an; — by, W;
ie., Z::Z: < W; for £ < nj (this remains true
since b;]C < bnj according to Lemma 8).
We show that ap — bxW;11 > an,,, — b
for k < mjiq, e
When n; < k < njiq, then if by # b,

A —Qnp

L > Wjy1. Thus, by using Lemma 7

Wit

Tj+1

be—by, .
J
fourth e 4
(fourth case), we get Tt = j+1
(bnj < bk < bnj+1)‘ If bk = b”]”
Ap.\q —0k Ap.  — Ok An. 4 —0n
J+1 — g1 < itl = Wi

bnjp1 =0k bnjp1=bn; = bnjyy—bn;
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since ag > ay;.
When k£ < nj;, we have that Z"J :Zf < W
(induction assumption). By definition of n; in

An; 1 —Qn,;

Algorithm 1, we have W; < ;=——=_ Then
ni1—bnj_q
according to Lemma 7 (third casei, W; Jg Wi (
). Therefore 2% < Wit
case),

bnj—l < b"] < b".7‘+1 bn; —by,
and by using again Lemma 7 (first

iR RS Wji1. Therefore, for all k < njyq,
Wj.

brjyp1—bk
ap — kaj-i-l > af’njurl - bnj+1
As a consequence, we have proved by induction that at
any step j, for k < nj, ap — bpWj > an; — by, Wj.
Then when W = W}, the optimal threshold is at least n;.
This means that if & € [n;_q,n;], then k is surely less or
equal than the optimal threshold when W = W;, which
implies that the optimal decision at state k is passive
action, i.e., k € D(Wj).
Combining the two results for k € [n;_1,n;]:

- For W <W;, k ¢ D(W).

- ke D(WJ)
Then W; = min{W,k € D(W)}. This concludes the
proof.

APPENDIX E
PROOF OF LEMMA 7

We will just prove the first case. For the other cases, the
proof is similar.

: N ) 4105 aj—aj—1 41051
First case: by 1 = byii=b, by—b 1 = Byri—b <
aj4+1—a;5 .
bj+1—-b;° ) .

For the LHS inequality:
i1 = Gj-1 _ Qi1 =05 G5 i
bjit1—bj—1  bjp1—bj—1  bjp1 —bj
(aj —aj1)(bjt1=bj)  aj—a; 1
~ (b= bj1)(bjr1 = bj1) by — b
(71
The inequality above comes from the fact that b;_; < b; <
. aj;—aj;—1 aj41—0aj
bjt+1 and bj-fb;,l < bjﬂib;.
Then
Q41 — Q51 a; —aj—1 bj+1 - bj + bj - bj—l]
bjt1 —bj—1 T by —bj bj+1 —bj—1
— %l (72)
For the RHS inequality:
Gjy1 — Aj—1 o Qi1 — Qj G — Qi1
bjt1—bj—1 b1 —bj—1 b1 —bj
o Y1 (541 —a;)(b; —bj1)
T bjp1—bj—1 (bjgr — b)) (bjp1 — bj1)

(73)
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where the above inequality comes from the fact that b;_; <
bj < bj41 and ‘Z;:‘”*l < QA

Then e
Qi1 — aAj—1 Gjy1 — Gy bj+1 — bj + bj — bjfl]
bjy1 —bj—1 7 bjt1 —b; bj+1 —bj—1
@j+1 — 4y
=5 (74)
bj+1 = b;
APPENDIX F

PROOF OF LEMMA 8

We consider ¢ such that b; = b,,; and we prove that n; < i:
By construction of nj, bn;_, # by; and n;_; < n;. Hence,
by increase of bg, bnj > bn,j,l-
Therefore b; = by, > by;_,,

_ and 7 > n;_;. Consequently,
according to definition of n;:

anj - anj,l a; — anj,l

< (75)
bnj - bnj,l bz - bnj,l
anj B anj—l a; — anj—l (76)
bnj - bnj,l - bnj - bnj,l

This implies that an; < aj.

If © < ny, as b; = by, then a; < a,,; which contradicts with
an; < ;.

Therefore n; < 4. This concludes the proof.

APPENDIX G
PROOF OF PROPOSITION 5

When n € [0,L — 1], we have a, — an—1 =
apCq + alp[(L — n) — (Ca + L + R)(1 — p)"] + 1].
To that extent, we denote by g(n) the function:

apCq + alp[(L — n) — (Cqa + L + R)(1 — p)"] + 1]
and we show that g(.) is positive for n € [0, L]. To that end,
we give the second derivative of g(.):

g"(n) = a[=p(in(1 = p))*(Ca+ L+ R)(1 = p)"].

It is clear from the above equation that g”(.) is non positive.
Hence, ¢(.) is concave function with n. That is, for all
n € [0, L], g(n) > min{g(0), g(L)}. Thereby, our task will
be to demonstrate that g(0) and g(L) are both positive. In
fact, g(0) = 0 > 0. While for n L, it requires more
technical analysis to establish the desired result. To that end,
we decompose the function g(.) into two functions #(-) and
f(.) such that:

(77)

g(n) =t(n) + f(n),
where
t(n) = apCq — ap(1 — p)"Cy,
and
f(n) =alp[(L —n) — (L + R)(1 - p)"] +1].

We show that ¢(L) and f(L) are both positive.
We have t(L) = apCq(1 — (1 — p)L) > 0.
Computing f(L), we get:

f(L) = a[l = p(L + R)(1 — p)"].
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We have f(L) = f(0) = f(L) = ;25 f(n + 1) = f(n). To
that extent, we give the expression of v(n) = f(n+1)— f(n),
ie.

v(n) = alp[-1+ p(L+ R)(1 - p)"]], (78)

knowing that v(n) is lower bounded by a[p[—1+p(L+R)(1—
p)L]] for n € [0, L — 1], then:

L-1

F(L) = alpl=1+p(L+ R)(1—p)"]]
n=0
= a[Lp[~1+ p(L + R)(1 - p)"]]. (79)
Therefore:
F(L) =all = p(L+ R)(1 - p)*]
>a[—Lp[1 - p(L + R)(1 — p)"]]. (80)
From the above inequality, 1 — p(L + R)(1 — p)* should be

positive otherwise, we will have a non positive term higher
than a positive term. Consequently, f(L) is positive. As a
consequence, since g(L) is the sum of two positive terms, then
g(L) is also positive. Providing that g(n) > min{g(0),g(L)}
for n € [0, L], then g(n) > 0. Hence for n € [0, L — 1],

(81)

(¢7% Z Qp—1-
We still have to show that a;, — ar—1 > 0. In fact:
ar, —ar_1 =aCy[1 — (1 —p)*] +a[R — (L + R)(1 — p)¥]
=aCy[l — (1 - p)*]
+a[R(1 = p(L + R)(1 - p)*)]
>0 (82)

Thus, combining the two results (81) and (82), we end up with
the desired result.

APPENDIX H
PROOF OF LEMMA 1

AtW =z, 5, y' (W) =y (W), ie.

L 7
Z au’(q)d(q) — W Z u'(q)
q=0 q=0
L J
=Y au(q)dlq) - W (q)
q=0 q=0
L L
Z au'(q)d(q) — Z au'(q)d(q)
q=0 q=0
= WZul(q) —WZUJ(Q) (83)
Z au'(q)d(q) — Z au'(q)d(q)
q=0 q=0
=W u'(q) =Y u(g)] (84)
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Hence
W Do @de) - Tonoar @dla) o
22:0 u'(q) — 22:0 u(q)
APPENDIX I

PROOF OF THEOREM 2

In order to prove this theorem, we introduce the following
useful lemmas.

Lemma 9. z,,,,_1 is strictly increasing with n

Proof. We have for all n € [0, L — 1]

ap(L+ Cq—n)
(= p)

That concludes the proof. |

Tontln—Tnn-1 = W(n+1)—-W(n) = > 0.

Lemma 10. If for any k € [0, L —
A —ap — Qg —ap
bk- < bk+1 and bz—b:711 < b:ii—b:‘

Then for any k € [0, L — 1], we have for each k < s < L:

1], we have that: by_1 <

s — Qk—1 A — Qk—1

. (86)
bs —br—1 = bp —br_1
Proof. We fix certain k € [0, L — 1], we prove the result by
induction:
fors=k-+1
Q1 = Qk—1 _ Q1 — Qk—1 — Ak + ag
br+1 — br—1 br+1 — br—1
_ kg1 — Gk Ak — Qk—1
brt1 —br—1  bpy1 —br—1

(ar — ap—1)(bps1 — br)
(b = b—1) (b1 — br—1)
—ap—1) (b — bi—
4 (ar —ar—1)(b k1) : (87)
(bx — br—1)(brt1 — br—1)
where the strict inequality comes from the lemma’s assump-
tions. Therefore, we have that:

k41 — Q-1 _ Ak — Qk—1 | bpg1 — g by, — br—1
bry1 —br—1 b —br_1 |bry1 —br—1  bry1r —br_1
ap — ak—1
— 2k kTl (88)
by — br—1

By induction, we consider that the inequality (86) is true for
certain s strictly higher than k. The inequality below is then
verified for s + 1:

Ag4+1 — Q-1 _aerl — Q-1 — Qg + ag

bot1 — br—1 bet1 — br—1
o Usy1 — @ Gs — Qk—1
boy1 —br—1  bsy1 —bp1

o an = ap—1)(bss1 — bs)
(b, — br—1)(bs41 — br—1)
(ar — ap—1)(bs — brp—1)

_|_
(b = br—1)(bst+1 — br—1)
:ak — Ok—1 bs+1 - bs bs - bkfl
by, —br—1 |bst1 —br—1  bsp1 —br—1
ap — Ak—1
= . 89
by, — br—1 (89)
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So the inequality is also true for s + 1. This concludes the
proof of the lemma. |

Referring to Algorithm 1 that allows us to obtain the
Whittle’s indices, we denote by j the step j described in the
algorithm.

According to the same algorithm, to show that x;;_q is
the Whittle’s index at state j, we need to prove that for all

n€lj+1,L, =g > gt
Indeed, using Lemma 9, W( )< W(E+1) <--- < W(L).
Therefore, for all k € [j,L — 1], ?):_Z:ill ‘ZzE:Z:

Hence, according to Lemma 10, for all n € [j + 1,1],
an—aj,1 (Lj—aj71
bn—b;_1 bi—bj_1°
Thus, the minimizer of
consequence, the Whittle’s 1ncfex

Algorithm 1 is effectively W (5)

Pt at step j is j. As a
of state j according to
aj—aj—1

= Tjj-1-

APPENDIX J
PROOF OF PROPOSITION 6

In order to prove this proposition, we distinguish between
two types of classes:
1) Class k in which W is different from all W}.
2) Class k such that there exists a given state j that satisfies
Wf =W.
First type of classes: For the class k£ in which W
is different from all WF, we prove that the optimal

70

threshold verifies 11, (W) = [, = argmax{W}FWk <
wh argmax{WF)|Wk < W}. First we have
argmax{WF|w}F < w} argmax{W}|wF < w}

since W} is different from W for all state i. For state
i less than [j, given that I/Vi’c is increasing with ¢, then
Wk < Wl’z < W. Hence, due to the indexability of the
class, D(WkF) C D(W), which implies that the optimal
decision at state 7 is the passive action. For the state ¢ strictly
greater than [, by definition of I, WF must be strictly
greater than W since [j, is the integer that gives the highest
Whittle’s index less than W. Then, according to the definition
of Whittle’s index, W < min{W,i € D(WW)}, that means
W & {W,i € D(W)}. Therefore i ¢ D(W). Thus, the
optimal decision at state ¢ > [, is the active decision. Hence
I, = argmax{WF|WFE < W} = argmax{WF)|[W}F < W} is
effectively 1the optimal threshold lk(Wi

Now, we tackle the case when there exists 7, Wf =W:
We know that according to Theorem 2, Wf = :c;?’j;l
which is the point for which if W = x%_l,

L .
we have 37, apup(q)d(q) — qu 0 Uh(q) =

Zj:o akuifl(q)d(q) - qu 0“1% '(¢). That means,
according to (21), for W = azf’]fl, if 5 is a minimizer of
this equation (j is the optimal threshold), then j — 1 is also
a minimizer of this equation. Due to the indexability of the
class k, for all states less or equal than j, the optimal decision
is to stay passive. Besides, according to the definition of
Whittle’s index, for all states strictly higher than j, the

optimal decision is to be active. Then, j is indeed an optimal
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threshold, so as for j — 1.
Hence, the optimal threshold can be either j or j — 1.

In fact, since W}F < < Wk, < Wk =W,
then j = argmax{W}[W} < W}, and j —1 =
arg max{W}|Wk < W}.
This proves the proposition.

APPENDIX K

PROOF OF PROPOSITION 7

From optimization theory, it is known that the optimal
solution of the dual problem is less or equal than the primal
problem’s solution when the constraint is satisfied, i.e.:

maxmin (. 6)

T—1 K N

;ZZakdqz

=0 k=1 i=1

q9(0),¢
(90)

< mln lim sup E
PP T 500

As the optimal solution for a fixed W is a threshold-based
policy, we use the steady state form and the expression of the
LHS of the above inequality becomes:

maxmin (I, )

K YN L
=maxD_ 3l min, (3wl (0)d WZ“
k=1 i=1 q=0
+W(l—a)N}. )

with ¢ being the threshold policy that corresponds to
[(W) computed using Proposition 6 for a fixed W. For
W™ that satisfies the constraint with equality (i.e., aN =
Zk 17kNZZ Loy (W) U l’“(W )(i), which is in fact true
for all N, and then We can get rid of N), we have:

zk SN W W W g )+ W0 =N =
SI N = S e wk FVI @)+ w
QN = —NW + S5 mNW S, g w7 6) +

Wl —a)N = —NW 4+ aN + WN — aN = 0. Hence,
we get:

m(gnf(W*,¢)
K vN L
= 1w = 33 a ™ (g)d(g)]
k=1 i=1 ¢q=0
T—1 K YN
= hmsup ]E Z Zakd q; (1)) | q(0),1(W™)
T—oo t=0 k=1 i=1

92)

Therefore, we obtain a threshold vector [(TW*) that gives us a
solution for the constrained relaxed problem (primal problem)
that satisfies the constraint (4). Moreover, according to the
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inequality (90), we have that for all policy ¢ that satisfies the
constraint and belong to ®:

FWEL(W™))

iimoup L [zzz gt 1) q<o>7z<w*>]
0 k=1 i=1

T—o0
:mtgﬂf (W, ¢)
Smaxminf(VV7 ?)

T-1 K YN

DD > adlgf(®)

t=0 k=1 i=1

q()]

93)

We deduce that the solution of the relaxed problem is of
type threshold-based policy I(W*) with W* satisfies a =

! .
S S e w0,

<m1nhmsup IE
¢ Tooo

APPENDIX L
PROOF OF PROPOSITION 8

We define the following order relation in R¥ such that for
any two vectors 1! and 2, I'! <2 < for each element of
vector of index k, we have [j < [?. Recall that according
to Proposition 6, we can directly deduce that for W; < Wy
L(Wh) < U(Wa).

Without loss of generality, when W € RT, the cor-
responding set of threshold vectors lEW) is perfectly or-
dered. Then, S"r, 7k Zf:lk(w Hu;’“ W)(i) is strictly de-
creasing with [(W), and take discrete values from 1 to 0.
According to Proposition 6, we have for each class k and
state i, if W = WZ then there is two possible optimal
thresholds vectors I1(W) and 12(W) with [}(W) < I2(W).
Hence we can deduce that there ex1stsl a class m and state

p such that S0~ % (W41 uy 3 (f) > a and

12(W'")
Zk 1Yk Zz 12(W)+1 uy (1) <a.

According to Proposmon 6, when W = W, lm(W;,”) =
2, (W) and I, (W) = 12,(W)") — 1 = Ln(W;") — 1 can
be both the optimal thresholds for class m. As for the other
classes, [L (W) = Z(W)") = L(W,™).

If we force W* to be equal to W)™, the optimal threshold
vector can be either I'(W,™) or [*(W"), then we can intro-
duce some randomization between the two policies. In other
words, we use the threshold policy ! 1(Wm) with probability
0 and I?(W}") with probability 1 — 6. The new stationary
distribution for the class m is then a linear combination
of these two threshold policies [, (W}") and I,,,(W,") — 1:

m (W) I (W) —1
uk, = Quyy +(1=0um " .

Hence, in the class m, at state strictly less than [,,,(W}"),
the queues will not transmit, whereas in a state strictly greater
than [,,(W,"), they will transmit with probability one. If
the queues are in state [, (W,"), they will transmit with

a0y T ).

robabilit 7 =
p T (W4 (1—0yu - N (W)
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L (W) —

(1-0)um (lm(Wf’”))

uz G (W) . Since the probability to be in this

state I, (W’”) is uy, (I, (W))), the proportion of time that
the queues will be in active mode is:

- W)
Z Z 'qu]: P (4)
km =y, (W) +1
L L (W) —1
+ Z Yy (1) + (1 = O)ymum " (L (W),
il (W) 41

When ¢ = 0, the threshold policy is [, (W;") — 1 and the
total average time in active mode is higher than «. When
¢ = 1, the threshold policy is I,,,(W,") and the total average
time in active mode is less than a. (V™)

Given  that 3, ., 2. w7 @)+
S g ot () + (1= B 57 0 W)
is continuous with 0, then there exists 8* which verifies the
equality. Hence, for W* = W/, we get a threshold policy
for all classes except for class m where the optimal solution
is a linear combination of two threshold policies. Moreover
for a given randomized parameter 6*, the constraint (4) is
satisfied with equality:

=Yy

k#m i=l, (W) +1

(W)

YU ()

. Lo (W) —1
+ §j Yt () + (1= 0 Vi 7 (L (W),
=l (W) +1
APPENDIX M
PROOF OF PROPOSITION 9
We derive the eigenvalues of Q.
The matrix @ is of the form:

[ Q1 0 oo e e 0

0 Qg -+ v e 0

A A Qm Arg-1 Ak %94)

0 0 Q-1 0
00 0 Qx |

The characteristic polynomial of @ is the product of the
characteristic polynomial of each matrix Q:

/\) = H XQu ()‘)
k=1

Therefore, the set of Q’s eigenvalues denoted by Sp(Q) is
composed by the eigenvalues of the matrices Q. Specifically:
Sp(Q) = L]_CJSp(Q). To that extent, it is sufficient to find the
eigenvalues of each matrix Q; to deduce those of Q. To that
end, we distinguish between two cases:

95)
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0 1 -2 ly—1 IL+1 I+2 L—1 L

0 Pk 0 0 0 Pk Pk Pk

1 Pk Pk 0 0 Pk Pk Pk

Pk Pk

Qr = I — 2 . Pk 0 . . .

Iy —1 Pk Pk Pk Pk Pk Pk

I +1 0 0 0 0 0 0

0 0 : : : 0 0 : :

L—1 0 0 0 0 0 0
L —lkpr (1 —1k)pk —2p —pr —lkpr —lkpr  —lkpk
O 1 l'm -2 lnL 1 l'm + 1 lnL + 2 L—-1 L
0 Pm 0 0 0 0 0 0
1 Pm Pm 0 0 0 0 0

: : 0 0
Qm = Ilm — 2 X Pm 0 :
Im —1 Pm Pm Pm 0 0 0
Ilm +1 0 0 0 0 0 0
: : 0 0 : : : 0 0
L—1 0 0 0 0 0 0
L —lmpm (1 —1lm)pm —2pm —pm 0 0 0
TABLE 1

THE EXPRESSIONS OF THE MATRICES Q) FOR k 7% m AND Q.

1) k # m: The characteristic polynomial of the matrix Q
is defined as follows:

Xqu = det(Qy — AI). (96)

where I € R(E+H1D)X(L+1) jg the identity matrix. In order to get
a closed-form of this determinant, we apply elementary row
and column operations. More specifically, let us denote by r;
and c; the row ¢ and column ¢ respectively of the determinant.
We also denote by a; ; the element in row 4 and column j of
the matrix (). For ¢ = 0 till [, — 1, we add to the row 7, the
sum of the rows r; for 0 <7 <[, — 1. In other words:

lpk—1

rp =1+ E T
i=0

After doing so, we execute the following operation in order
to have zeros for the elements ar, o to ar, j, —1:

o7

The matrix @.,, — Al is a lower triangular matrix. Therefore,
its determinant will be simply equal to:

X (V) = (=N (pm = A"

For k # m, Qi has only 0 as eigenvalue.

For k =m, xq,,(A) =0 A =0 or A = p,,,. Hence, Q,
has two eigenvalues: 0 and p,,, which are strictly less than 1.
Consequently, in both cases, whether k& # m or k = m, the
norms of all eigenvalues of )y, are strictly less than 1. Hence,
for A € Sp(Q) = |A\| < L.

(101)

APPENDIX N
PROOF OF LEMMA 3

We take 0 < € < p, z(t) converges to z*, i.e., there exists
Tp such that for all ¢ > Ty, ||z(t) — z*|| < e. Hence:

Py( sup ||ZN(t) - 2*|| = p)

ci=ci—cp i=0,--- 0 — 1. (98) Tost<T
_ _ . < Po(_sup [|Z7(t) = 2(t)]| + [12(8) — 27| = p)
As a result, x¢q, (A) will be the determinant of the matrix G, To<t<T
reported in Table II. Since G, is an upper triangular matrix, the < Po( sup |[ZN(t) —z(t)|| > p—€)
determinant will be simply the product of diagonal elements To<t<T
of matrix G. Hence, the determinant of G, will be equal to < P,( sup ||ZN(t) —z(t)|| > p—e). (102)
(=) times the (—\)L—l L, 0<t<T

As a consequence, the determinant is equal to:

Using Proposition 10, there exists s; and so such that:

xa,(A) = (=) 99)  Py( sup [|1ZN(t) —z(t)|| > p—e€) < syexp(—Nss). (103)
0<t<T
2) k = m: The characteristic polynomial of the matrix @, N
Therefore:

is defined as follows:

XQw = det(Qm — AI). (100)

P.( sup ||ZN(t) —2"|| > p) < s1exp(—Ns2).
To<t<T

(104)
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0 1 e—2 li—1 Lu+1 Ix+2 L-1 L
0 A =k —Pk —Pk Pk e PR P

1 0 =A —Pk Pk Pk e Pk PR

Pk Pk

Iy —2 - — Pk : . :

Gy = g —1 0 0 —A Pk Pk Pk
Iy +1 0 0 0 - 0 cee 0 0

0 o A0 : :

: 0 0 : 0 0
L—-1 0 s 0 0 0 . 0 —A 0
L 0 0 0 0 0 . 0 -
TABLE II
THE EXPRESSIONS OF THE MATRIX GG, FOR k # m.
APPENDIX O We denote Yy the event sup |[Z7(t) — z*|| > u, we

PROOF OF PROPOSITION 11

We recall that ZV (t) represents the proportion vector at
time ¢ under Whittle’s index policy.

Replacing CT*PN by its expression given in Section VI
and knowing that z/"* = veult (i) for k # m and 2" =
Yk, (1) = 0*ymulm (i) 4+ (1 — 0*)y,,ubm —1(i) (by definition
of z*), then the difference between C (z) and CTFN can
be expressed as:

CN (x) — CRPN —| 2R

We divide all by N

C%V(CB) B CRP,N

(106)

We have that the function f: z — Y1 S°F apzFd(i) is
lipchitz and continuous, then for an arbitrary small €, there
exists 1 such that if ||z — 2*[| < p, then |f(2) — f(z*)| <.

To<t<T
proceed to bound the second term:

T—1
<P(V)k S E [| SO @z (1))

t=Tp k=1 i=0

_ asz’*d(i)HYN@

K
. (T — Ty)(L ; Ca)(L+1) Z apve P (YN)
+ (1= Po(Yn))e.

k=1
(107)

where the above inequality comes from the fact that
|l ZEN (0)d(i) — arzFd(i)] < 2vypard(i). According to
Lemma 3, we have limy_, o P;(Yx) = 0, then:

t=0 k=1i=0
| [T K L
k,*
_TE ZZakzi d(z)N} ’
t=0 k=1 i=0
K
< = kZ_lam +e  (108)
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This inequality is true Ve > 0, then:

| [T K L
lim |—E apZPN (#)d(i)N | @
N—o0 .
t=0 k=1i=0
1 [Tk L
k,* .
—7 Z Zakzi d(i)N | |
t=0 k=1 i=0
K
To(L + Cy)(L+1)
< - Y aw.  (109)
k=1
Finally we have:
) ) C,JJY(QJ) CRP,N
LN s
APPENDIX P
PROOF OF LEMMA 4
We consider any initial state (21, 22, - -, 2%), and we con-

sider only the following possible event (that arises with strictly
positive probability): whatever the transmission decision taken,
there is no arrivals for all classes up to time 7' = 1/«
(Ap(t) =0fromt =0up till T =1/« for all 1 < k < K).
To that extent, we show that at time 7', we reach the state
z(. For that purpose, we divide the queues into i groups
denoted by G, - - -, G, such that G, contains a proportion «
of queues with the highest Whittle’s indices among all queues
of the system excluding those of the groups G1,Gs, -+, Gx—1
at time ¢ = 0. Based on this, at time slot ¢ = 0, the queues in
G'1 will be scheduled and will transit to state 0 as the number
of arrival packets is equal to 0. According to the expressions
given in Proposition 2, the Whittle’s index of state O is equal
to 0 whatever the value of the class. While according to the
same Proposition, the Whittle’s index of state n strictly higher
than 0, is strictly greater than O for any class k. Therefore,
regardless of the class, the Whittle’s index of state n strictly
higher than O is greater than that of 0. Bearing that in mind,
at time slot ¢ = 1, the queues in G5 at state different than O
have the highest Whittle’s indices among all system’s queues.
Therefore, these aforementioned queues will be scheduled, and
subsequently, all queues in G2 will be at state 0. In this way,
at time slot 1/, we get all the queues of the system in state
0. Consequently, at time 7' = 1/«, we attain the desired state
which is zg. That concludes the proof.

APPENDIX Q
PROOF OF THEOREM 3

AN N
K L K L
=SS uE [Zf’N(oo)} d(i) = 373 arld(i).
k=1 =0 k=1 =0

(111)

We have the function f : 2z — i 3% apzkd(i) is
lipchitz and continuous, then for an arbitrary small €, there
exists p such that if ||z — 2*|| < p, then |f(z) — f(2*)| <e.
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We denote Uy the event sup||Z™ (00) — z*|| > p, then :

K
<(L+Ca)(L+1) Y aryP(Un) + (1= P(Ux))e.
k=1
(112)

According to Lemma 6, we have limy_,o, P(Uy) = 0, then:

K L K L
N—voo DD wE {Z?’N(OO)} d(i)—ZZasz7*d(i)| <e.

lim
k=1 i=0 k=11i=0
(113)
This is true for any e. Finally we have:
) ) ij]y (:E) CRPN
N S B

That completes the proof.
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