
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

760 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Overview of Various Methods for Decoding and
Constructing Critical Sets of Polar Codes

Ilya Timokhin and Fedor Ivanov

Abstract—Polar codes have gained significant attention in
recent years as they offer a promising solution for reliable com-
munication in the presence of channel noise. However, decoding
these codes remains a critical challenge, particularly for practical
implementations. Traditional decoding methods such as belief
propagation and successive cancellation suffer from complexity
and performance issues. To address these challenges, authors
have researched several low-complexity decoding techniques,
including bit-flipping decoding with critical set construction. Bit-
flipping decoding methods operate by flipping a limited number
of bits in the received codeword to bring the decoder output closer
to the transmitted message. The critical set construction is an es-
sential component of these methods, which identifies the set of bits
to be flipped. This paper compares various bit-flipping decoding
methods with different critical set constructions, including revised
critical set, subblocks-based critical set, key set and others. The
performance of these methods is evaluated in terms of bit error
rate, computational complexity, and an average number of opera-
tions. In summary, this paper provides a comprehensive overview
of bit-flipping decoding methods with critical set construction for
polar codes. The paper’s findings highlight the potential of these
methods to improve the performance and reliability of polar
codes, making them a viable option for practical implementation
in modern communication systems.

Index Terms—Bit-flipping, critical set, decoding, hardware
implementation, heuristics, polar codes, SC.

I. INTRODUCTION

POLAR codes, introduced by Arıkan [1], are known to be
capacity-achieving codes that can provide significant error

correction performance, but their decoding is a computation-
ally challenging task. Thus, authors are looking for new strate-
gies and approaches to construct a decoding basis that provides
optimal polar decoding, which requires the development of
efficient decoding algorithms, path metrics, data structures,
and critical sets [27]. Decoding performance can suffer for
finite block lengths when using successive cancellation (SC)
decoding, which is optimal for infinite lengths. To overcome
this issue, SC decoding can be extended by using a list of
candidate codewords, leading to the successive cancellation

Manuscript received January 9, 2023; revised August 30, 2023; approved
for publication by Tarable, Alberto, Division 2 Editor, September. 26, 2023.

I. Timokhin and F. Ivanov are with National Research University Higher
School of Economics Tikhonov Moscow Institute of Electronics and Mathe-
matics Ringgold standard institution, Department of Electronics Engineering,
Moskva 123458, Tallinskaya st., 34, Moscow, Russian Federation, email:
doublemind21@gmail.com, fivanov@hse.ru.

The study was implemented in the framework of the Basic Research
Program at the National Research University Higher School of Economics
(HSE) in 2023.

I. Timokhin is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2023.000049

with a list (SCL) algorithm [2]. A further improvement can
be achieved by using cyclic redundancy check (CRC) codes
to verify candidate codewords in the list. The CRC-aided
SCL (CA-SCL) algorithm [3] adds a CRC code to the end of
the list candidates and checks whether the resulting codeword
is valid. This additional step can improve error correction
performance, leading to a lower decoding complexity [7].
Moreover, some special types of nodes in the polar code tree
can be decoded without additional processing steps and with
lower complexity than SC decoding. These nodes are called
special and can be decoded using the generalized SCL (GSCL)
method [35], [36].

The basic decoding methods, including SC, SCL, and
GSCL, have high space complexity, which can be addressed
by using bit-flipping strategies [8], [9]. These methods use the
same code tree and decoding algorithms but with an iterative
approach and additional attempts to decode a sequence by
flipping some bits. This is motivated by the fact that SC-based
methods may fail to give the correct output due to a single
error during decoding. Bit-flipping strategies include shifted-
pruning [20], [21], dynamical [28], [29], generalized [10] and
other methods.

Different decoding strategies exhibit varying advantages,
such as high error correction performance and lower compu-
tational complexity. The study of critical sets architecture and
their applicability allows [19], [59] to significantly reduce the
spatial complexity of SCL [64] or SC [65], but for non-critical
growth of computational complexity it is necessary to reduce
the number of additional decoding attempts. This is achieved
by accurate selecting a critical set.

Currently, several investigations are underway on popular
methods of polar decoding. In [11], basic methods of polar
construction and their applicability to additive white Gaussian
noise (AWGN) channel are considered. This paper focuses
solely on code construction methods and doesn’t consider any
decoding method. Another paper [12] describes hardware met-
rics and implementation processes for SC and SCL decoders
across different areas, supplies, channels, and technologies of
hardware application. However, it only analyzes basic methods
of decoding, and the dependency between different values of
code length and signal-to-noise ratio (SNR) is not analyzed,
with only a constant code rate of 0.5 and code length of
1024 bits presented. On the other hand, there are a number of
studies comparing the implementation of the scheduling and
flipping methods for specific systems [23]–[25]. An overview
of decoding methods with varying parameters for various code
lengths has been presented in [13]. This paper also provides
hardware implementation features and power consumption

1229-2370/23/$10.00 © 2023 KICS

TIMOKHIN et al.: OVERVIEW OF VARIOUS METHODS FOR DECODING ... 761

analysis. However, it doesn’t compare flipping-based methods
with other approaches. A paper [14] comparing different polar
decoding methods with turbo codes and LDPC approaches
provides a strong rationale for the comparison methodology
and differences between such coding methods. The book [15]
presents various basic decoding methods, their analysis, scope,
and variations, including detailed characteristics of special
nodes for the generalized method.

Various optimizations and special designs are also pre-
sented [50], [51] in the works on code construction de-
sign and performance enhancement in decoded sequences.
Many optimizations related to building a fast decoding ap-
proach [53], [54] are also outside the scope of this study,
but the effectiveness of many of them has influenced [58],
[63] the development of flipping methods with critical sets
using optimization data. The possibility of redistribution and
efficient usage of resources in the decoding process also
remains outside the scope of this work, but is described in
detail in [60]. It is interesting to note that for polar codes,
such classical algorithms from the theory of information, such
as spherical decoding [61], [62], syndromic decoding [57],
Fano-like decoding [52], [56]. An optimization similar to bit
flipping is the rewind technology [26], which allows you
to recalculate the least reliable bits in reliability sequences.
This method allows to significantly save memory by storing
partial information about the code word, which has a positive
effect on the complexity characteristics of the decoder. The
efficiency of all described methods is also quite high, as they
are recommended in many communication systems.

II. COMMON NOTATION

Since this work contains information about various decoding
methods, critical set construction and algorithms, the reader
may get confused in the notation. For this purpose, the
following notation will be used hereinafter:

• A: The information set of polar code bits;
• Ac: The frozen set of polar code bits;
• N : Number of bits in polar codeword (length of the

encoder’s output);
• K: Number of bits in the message without frozen bits;
• vix: Common notation for a slice of the vector of length

i− x− 1 from x position to i position. If i = ∅ then it
describes the xth bit of the vector v.

• d: Initial message which consist of information and
frozen bits;

• u: The codeword after modulation.
• û: The output word of polar decoder which should be

compared with d;
• y: Input LLRs for decoder after encoding and modula-

tion;
• α

(x,i)
m : mth vertex of polar tree on the level x, where

i = {l, r}, l means the left child vertex in tree and r
means the right child vertex respectively. If i = ∅ then it
describes the vertex in current level only. If m = ∅ then
it describes the whole level, but not the specific vertex;

• L,R,U, f, g: Additional functions to evaluate output
LLRs in SC-decoding scheme;

• PMi
x: ith path metrics for list-based decoding variance

on xth iteration of calculation.
• U : Critical set for flipping-based decoding strategies;
• n′: Length of the special node in generalized methods;
• PMSPC, PMG-Node, PMG-Rep: path metric values for each

type of the special node;
• M : Vector of the alternative metrics instead of path’s or

belief tree’s metrics.
• σ: Approximation factor for oracle-based critical set;
• β: Threshold factor for key set;
• η: Normalization factor for normalized critical set;
• Pe: The frame error rate (FER) expectation function

based on erfc function which is a lower bound for critical
set’s metrics.

III. PRELIMINARIES: POLAR ENCODING

Polar codes utilize the channel polarization phenomenon
to achieve reliable communication over noisy channels. This
is achieved by applying the polar transformation procedure,
which strictly divides subchannels into two groups based on
the presence of noise, yielding either noisy or noise-free chan-
nels. It involves the systematic transformation of information
bits into codewords that can be reliably transmitted over a
noisy channel. This section provides a detailed overview of the
polar encoding process, from code construction to information
mapping.

The construction of polar codes begins with the identifi-
cation of reliable and unreliable channels through channel
polarization. Given a binary-input memoryless channel, the
Bhattacharyya parameter is used to quantify the reliability of
each channel. Channels with lower Bhattacharyya parameters
are deemed more reliable and are utilized for information
transmission.

A key insight lies in the fact that polarization of channels
can be achieved by recursively combining smaller instances of
the base channel. This process, known as channel combining,
results in a hierarchy of channels that exhibit varying degrees
of polarization. The channels with the highest reliability are
referred to as “frozen” channels, and the less reliable ones are
referred to as “unfrozen” channels. Each channel’s polarization
provides the ability to split the input bits into the information
set A and the frozen set Ac .

The encoding algorithm for polar codes capitalizes on the
polarization phenomenon to systematically map information
bits onto the frozen and unfrozen channels. The steps involved
in the encoding process are as follows:

1) Initialization: Given a set of information bits to be trans-
mitted, initialize the code block and determine the positions
of frozen and unfrozen channels based on their Bhattacharyya
parameters.

2) Channel splitting: Divide the code block into smaller
sub-blocks through recursive channel splitting. Each sub-block
consists of a pair of channels, where one channel inherits the
reliability of the original channel and the other channel inherits
the unreliability.

3) Channel flipping: For each sub-block, apply channel
flipping to transform the unreliable channel into its comple-

762 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

ment. This operation ensures that the more reliable channel is
used for information transmission.

4) Bit mapping: Map the information bits onto the frozen
channels while leaving the unfrozen channels unchanged. This
mapping is performed based on the desired encoding rate and
the specific polar code construction.

A (N,K)-code means that K information bits and N −K
frozen bits are chosen, where N = 2n and n ≥ 0. The
process of polar encoding can be represented as the following
equation:

u = dGN . (1)

In (1), the codeword u = (u0, · · ·, uN−1) is linearly
received after the G transformation of the message d =
(d0, · · ·, dN−1), where GN = F⊕n, n = logN , and the ⊕n
operation means the n-fold Kronecker product of F.

The polar encoding process begins with the initialization
of each bit to obtain the vector of encoded bits ûN−1

0 . This
procedure can be represented as a tree with λ = logN levels
and a Plotkin construction to construct each vertex on the
upper level from two child bits.

Polar decoding is used to enhance the error correction
performance of the received codeword vector uN−1

0 . The
optimization objective of such decoders is to maximize the
throughput while minimizing the decoding channel’s latency.

IV. CLASSICAL DECODING METHODS

In this section, we consider several strategies and concrete
algorithmic implementations of decoding methods for polar
codes. All of them provide different complexities, reliabilities,
and performances, but the main goal of each decoder is to
find the exact codeword after exposure to Gaussian noise and
distortion of the encoding message.

A. Successive Cancellation Decoder

The upcoming chapter discusses the intricacies of the SC
decoding technique, a foundational method for polar decoding.
SC decoding employs a pragmatic strategy to traverse the
coding tree in search of the message vector value. This pro-
cedure revolves around three critical operations: The L-step,
the R-step, and the encoding step.

In the context of SC decoding, we’ll introduce a set of
notations to elucidate the process more effectively:
f(a, b): An auxiliary function used in the L-step, defined

as f(a, b) = sign(a)sign(b)max(|a|, |b|).
g(a, b, c): Another auxiliary function used in the R-step,

defined as g(a, b, c) = b+ (1− 2c)a.
The L-step operation essentially involves moving from the

vertex α(t) at level λ = t to the left vertex α(t−1,l) at
the preceding level. This movement is encapsulated by the
function L, which utilizes the auxiliary function f(a, b).

The R-step procedure occurs subsequent to the L-step and
involves transitioning from the right vertex α(t,r) to the vertex
α(t+1) on the same level. This transition is guided by the
function R, employing the auxiliary function g(a, b, c).

Furthermore, we have the U -step, commonly referred to
as the encoding step: It is responsible for recalculating the

value of α(t+1) using the known values of α(t,l) and α(t,r),
which are obtained after performing the L-step and the R-step,
respectively.

By employing these operations—the L-step, the R-step, and
the U -step—SC decoding navigates the polar coding tree in
a systematic manner, allowing for the determination of the
message vector’s value. This approach forms the cornerstone
of polar decoding and serves as a foundational concept in
modern coding theory.

After the recursive execution of the L, R, and U steps, the
SC decoder obtains a vector α0. Each element (weight) of the
LLR output vector corresponds to the expected message bit
from ûN−1

0 by the following rule:

ûi =

{
0, i ∈ Ac or α0

i ≥ 0,

1, otherwise,
(2)

where Ac is the complement of the set A that contains the
indices of the information bits.

Consider a simple polar code with a block length of N = 8,
A = {0, 4, 6, 7} and a design parameter R = 1/2, meaning
half of the bits will be used for transmitting information. The
polar code construction uses a specific transformation matrix
to determine which bits are transformed into information bits
and which become frozen bits.

We start with the received noisy codeword and initialize the
input log-likelihood ratios (LLRs) vector y.

We begin at the top of the coding tree with α(0), which
is the root node. We have two child nodes: α(1,l) (left child)
and α(1,r) (right child). For each bit, we calculate the new
LLR values using the L-step: y(1,l)1,0 = f(y

(0)
1 , y

(0)
2), y(1,l)1,1 =

f(y
(0)
3 , y

(0)
4), y(1,l)1,2 = f(y

(0)
5 , y

(0)
6), y(1,l)1,3 = f(y

(0)
7 , y

(0)
8).

Now we perform the R-step, which uses the parent node
values and the already updated LLRs from the L-step. For
each bit, we calculate the new LLR values using the R-step:
y
(1,r)
1,0 = g(y

(0)
1 , y

(0)
2 , y

(1,l)
1,0), y

(1,r)
1,1 = g(y

(0)
3 , y

(0)
4 , y

(1,l)
1,1),

y
(1,r)
1,2 = g(y

(0)
5 , y

(0)
6 , y

(1,l)
1,2), y(1,r)1,3 = g(y

(0)
7 , y

(0)
8 , y

(1,l)
1,3).

Finally, we update the parent node α(1) using the updated
child node values from both L-step and R-step. We continue
this process iteratively, moving down the tree level by level.
At each level, we calculate LLRs for both left and right child
nodes, update the parent node using these values, and move to
the next level. This iterative process continues until we reach
the leaf nodes of the tree, which correspond to the original
information bits. Once we have LLR values for the leaf nodes,
we can make decisions about the transmitted bits. For example,
if the LLR is positive, we might decide that the transmitted
bit ûi is “1” and if the LLR is negative, we might decide that
the transmitted bit is “0”.

The SC decoding algorithm can achieve symmetric channel
capacity, but its main disadvantage is that it is unreliable,
and it does not allow for backtracking on previous steps in
the graph if the codeword contains errors. Many techniques
and methods have been proposed [39], [40] to improve the
reliability of SC decoding, such as hardware parallelization
and hyperthreading for the code tree, which have been shown
to give higher performance for the SC case.

TIMOKHIN et al.: OVERVIEW OF VARIOUS METHODS FOR DECODING ... 763

B. Successive Cancellation List Method

The SCL decoding method employs a similar traversal over
the coding tree as the SC method, but instead of outputting
the final decoded message, it creates a list of possible message
vector candidates, and the last step involves selecting the
correct candidate from this list.

To achieve this, an extra layer (sublayer λ = −1) is
added, and both 0 and 1 vertices are assigned for each non-
frozen bit. The likelihood vertex is chosen based on a special
path metric (PM) that is calculated recursively. Note that the
parameter L represents the cardinality of the list of possible
candidates.

The PM metric is defined as follows:

PMt
i =

{
PMt

i−1 + |α(t)(i)|, ûi ̸= 1−signα(t)(i)
2 ,

PMt
i−1, otherwise.

(3)

Here, t = 1, · · ·, L is an index of the related candidate’s
path, and the initial value for the path metric is PM t

−1 = 0.
The output of this method is not the correct codeword but
rather L most likely candidates. For instance, for L = 4,
it returns four candidates with the highest likelihood for the
codeword.

Let’s consider an example from previous subsection on the
SCL decoder with L = 4.

For each candidate path t = {1, 2, 3, 4}, compute the PM
values. Begin with PM t

−1 = 0 for all paths. For each bit i,
calculate PMt

i based on the (3) and obtain α(t)(i) value from
SC decoding U-step.

Starting from level 0 and moving down the tree, update
the PM values for each candidate path based on the recursive
formula. At the leaf level, for each candidate path, calculate the
final PM value. Select the candidate paths with the highest PM
values to create the list of potential message vector candidates.

There are various approaches for selecting the correct can-
didate from the list of possible candidates. Some methods
use distance metrics, while others employ machine learning
techniques (see [5]). However, one of the most well-known and
straightforward approaches is to use CRC values (see [6]). This
involves adding a special sequence at the end of the message,
and decoding results are verified using a cyclic detector that
checks the validity of the obtained algorithm answer.

The CA-SCL decoding scheme is a specific type of SCL
decoder that outputs the SCL candidate paths into a CRC
detector, and the check results are used to detect the correct
codeword.

C. Generalized Decoding Method

Define special nodes [34], [53] as the set of nodes in the tree
representation that can be decoded with much less complexity
than provided by the basic SC method. The main idea is to use
decoding not sequentially (bit by bit) but through the pattern
of special nodes presented below (see [22], [31] for different
patterns descriptions and analysis):

• “Frozen” node: Contains only frozen bits, and the code
consists of only one trivial codeword of zeros;

• “Information” node: Contains a vector of ones, and the
code consists of all possible vectors;

• REP-node (repetition): All bits (except the right-most) are
frozen, related codewords are ones or zeros vectors;

• SPC-node (single parity-check [32]): All bits (except the
left-most) are information, codewords have only even
Hamming weight [33];

• Generalized repetition node (G-Rep): Any node at level t
for which all its descendants are “frozen” nodes, except
the rightmost one at a certain stage p < t, which is a
generic node (G-Node);

• Generalized parity-check node (G-PC): Any node at level
t for which all its descendants are “information” nodes,
except the leftmost one at a certain stage p < t.

Rules are used to decode the special nodes in non-trivial
cases (only the “frozen” node is trivial).

The “information” node can be decoded as follows: If it
is placed in positions k = i, · · ·, i + n′ − 1 (n′ is the length
of the special node) in some codeword, then the most likely
codeword ûi+n′−1

i has the following structure according to the
input LLR vector y:

ûk =

{
0, yk > 0,

1, otherwise.
(4)

It is decoded by splitting it into two parts, and then
calculating and sorting the related PM metrics. If the critical
set U does not contain indices from i to i+n′−1, then the path
from L + 1 to 2L will be removed from the list. Otherwise,
the first L paths will be eliminated.

SPC-nodes decoding provides the same idea. Let’s assume
it is placed on the same k positions from i to i+ n′ − 1. The
procedure for initializing the codeword is as follows:

ûk =

{
0, if i ∈ A,

1, otherwise.
(5)

The proposed GSCL method allows for providing compu-
tations only for the SCL metrics at the top of the coding tree.
In such an iterative way, we can obtain new path metrics
for generalized nodes and provide fast polar decoding. The
process of special node decoding is described in detail in the
paper [31].

D. Flipping Decoding Methods

1) Basic flipping method: The successive cancellation flip
(SCF) method described in [8] is a generalization of the SC-
decoder with CRC validation to improve its error correction
performance. This method does not guarantee finding the
correct codeword and is parameterized by T attempts of SC-
decoder refining.

Assuming that CRC checking occurs after the termination
of SC decoding, if the CRC method fails (which means that
the validated sequence does not match the predetermined CRC
from the message), then the SC-Flip method tries to swap bits
according to critical set values (see the next section to learn
about different schemes of critical set construction). A detailed
description of the SCF decoder is presented in Algorithm 1.

764 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Algorithm 1 SCF algorithm
1: Set the parameter T for additional attempts;
2: Receive an output likelihood vector ûN−1

0 from the basic
SC-decoder;

3: if T > 1 and CRC checking for ûN−1
0 fails then

4: for j = 1, T do
5: Calculate (update) the critical set U ;
6: Invoke SC-decoding for received vector and flip

the value of ûUj ;
7: Receive a new possible codeword ûN−1

0 and re-
lated metrics;

8: if CRC checking validates ûN−1
0 then

9: Return ûN−1
0 as the correct codeword.

10: end if
11: end for
12: end if
13: Return ûN−1

0 .

If T = 0, the algorithm has no attempts to recalculate
CRC, and it is equivalent to basic SC decoding. In essence,
the SCF approach introduces a strategy for iteratively refining
the results of SC decoding through controlled bit-flipping
and validation, thereby offering improved error correction
performance. This technique demonstrates its effectiveness
particularly in scenarios where noisy channels or other un-
certainties demand multiple iterations to discern the correct
codeword.

This algorithm has a significant improvement in perfor-
mance compared to the SC-decoder, but its complexity is poor
because it invokes the SC algorithm T times. There are some
improvements to the basic SCF strategy, which are described
below.

2) List flipping decoder: Due to the incompatibility be-
tween SC metrics and path metrics from the SCL decoder, it
is challenging to determine how to seamlessly integrate the
SCL algorithm into the SCF strategy. In [9], it is indicated
that the noise properties of the vector y are not taken into
account after the construction of the critical set (denoted as U
as before).

This algorithm also uses the parameter T , as in the SCF
approach, which represents the maximum number of bit flip
attempts. Typically, T ≈ |U|. Instead of iterative decoding
with a one-level bit-flipping procedure using the SC method,
it employs the SCL function with CRC bits to obtain the ûN

1

vector. It initializes the U set, and for each attempt i ∈ T , it
tries to flip the ϕth bit in the jth path from the set of paths.
Each time it can flip only one bit and try CRC validation via
the SCL method.

This method achieves slightly improved performance for
the SCF approach [46], and also illustrates an increase in the
reliability metric compared to the basic SCL approach. Next,
we will consider flexible and generalized approaches to the
SCLF concept to achieve the optimal decoding performance.

3) Dynamical flipping decoder: This method uses the
oracle critical set and a simple modification of the SCF
approach to make it valid for both SCF and SCLF decoding
methods.

The dynamic SCF algorithm differs from the approaches
considered earlier in the ability to use bit-flipping for several
bits at once. Thus, the critical set uses a level parameter
that determines the number of bits required for flipping (for
example, a 2-level critical set allows flipping the two least
“reliable” bits of the sequence in one iteration).

Also, DSCF uses a metric that affects the tree trajectory,
which allows you to quickly find the most bit positions that
do not need to be changed when flipping again. Thus, during
the first iterations, the most “reliable” bits are determined, for
which the bit-flipping procedure is either not needed at all,
or is needed only once, and at further iterations, the group of
those bits that the algorithm has marked as the least “reliable”
are refined. The dynamic feature of this decoder also lies in
the fact that each subsequent attempt strictly depends on the
previous results of decoding and bit-flipping.

Thus, the probability of finding a correct initial sequence
does not decrease with each new iteration of the algorithm.
For example, SCF cannot guarantee this accuracy due to the
static bit-flipping procedure and situations where new flipping
attempts can degrade the FER. Also, despite attempts to
store a group of bits in memory instead of a single bit, the
algorithm provides a theoretical complexity comparable to the
SCF approach, increasing the probability of no error due to
a heuristic method for constructing a critical set and a metric
for choosing a group of flipping bits from [28] (Algorithm 3).

It is also worth noting the practical recommendations an-
nounced by the developers of this algorithm. So, for example,
to reduce the complexity of the decoder, it is proposed to
update not by all values of the critical set, but by several
indices, where the metric value reaches the largest (or smallest,
depending on the code design) value. For DSCF, equivalent SC
decoding options are also defined, in which the values of the
output LLR will match.

For the SCLF decoder, there is also a dynamic modification
to recalculate indices, and its structure is similar to the DSCF
decoder. However, the critical set updating procedure can be
described as follows: We choose the smallest T − t − 1
values from the set Ũ = Ut+1, · · ·,UT−1 and update the
related indices of the bit-flipping set with such smallest values:
Ut+1, · · ·,UT−1 = Ũ1, · · ·, ŨT−t−1.

4) Generalized flipping decoder: The paper [10] presents a
novel approach that combines list-based decoding with bit-flip
decisions. This approach improves computational efficiency
and provides higher performance compared to the SCLF
decoder. Additionally, it generalizes some node classes and
decodes them efficiently. The resulting algorithm is called
generalized SCL with flipping (GSCLF). The critical set U
is constructed using a list-based approach.

The GSCLF method uses generalized principles for con-
structing special nodes. For example, the second most likely
codeword ûi+n′−1

0 from the “information” node flips the bit
ûr where r is the index that minimizes |yr| among the values
i, · · ·, N − 1.

It should be noted that the authors of the current algorithm
use the conventional Fast-SCL decoding approach [35]. Firstly,
yN−1
0 is divided into several special nodes. Then for each

special node (except in the “frozen” case), PM metrics are

TIMOKHIN et al.: OVERVIEW OF VARIOUS METHODS FOR DECODING ... 765

calculated. If any of the CRC codes are validated successfully,
the most likely codeword with the minimum index over all
suitable codewords is returned. Otherwise, the critical set U is
constructed according to (7).

5) Shifted-pruning flipping method: In SCL decoding,
the list only stores L paths with the highest PM values, but
the correct codeword path may be lost and eliminated from
SCL (SCLF) due to channel noise. This method [20] keeps
the lowest metrics in the critical set and modifies the removing
approach (authors call it the novel shifted pruning method)
in additional decoding attempts.

It modifies the range of selecting the paths: For SCL, SCLF,
and DSCLF decoding, it chooses the first L correct paths
according to their metrics, but the shifted-pruning method
works with paths from k + 1 to k + L for some k.

A shifted pruning scheme is proposed to significantly reduce
the probability of eliminating the correct path in additional
decoding attempts. The critical set heuristics is a basic variant
for this method, but it could be simply changed to another
complex set with different path metric calculations.

6) Other flipping decoding methods: This paper only
observes the most basic and comparable algorithms of bit-
flipping decoding, but there are many other approaches and
models of decoders with flipping ability. Let’s describe (ini-
tially) some interesting decoding methods with bit-flipping
ability in the following bullets.

• Partitioned SCF: In [41], the authors propose the parti-
tioned SC-Flip (PSCF) algorithm, which divides the code
sequence into different partitions based on additional
parameters and updates the critical set according to the
probability of failed decoding. PSCF corrects at least a
single wrong decision with a probabilistic approach and
maximizes the probability of successful decoding of a
single bit. However, this method does not provide good
performance metrics because it uses only the error per bit
entropy without the common probability of the codeword.

• Neural methods: Other approaches [38], [42] are strongly
based on neural networks and oracle algorithms, using
imitation learning and convolutional neural networks to
provide higher decoding performance. Such methods
require high competence in machine learning science
and have high complexity due to the code tree updating
procedure after each refinement of neural parameters. The
presence of a large number of computational operations
such as aggregation, stratification, and normalization
makes it difficult to test and analyze these approaches
compared to simpler and more straightforward decoding
methods.

• Layered flipping method: A method described in [18]
involves dividing the code tree into subblocks and adding
labels for each level. After each attempt, a new critical set
is generated with blocks (subtrees), and an optimal way
to correct as many errors as the current level allows is
determined. The authors note that this method is compa-
rable to the CA-SCL (L = 4) approach and achieves the
best performance compared to the basic SC algorithm.

• SNR-based decoder: This paper [45] is based on an
approximation of LLR thresholds and SNR dependency

for flipping methods. It uses a generalized approach for
special node decoding and heuristics calculations for bit-
flipping decoding decisions. In other words, the authors
found a correlation between SNR values (generally speak-
ing, code ratio) and the accuracy of the GSCF method.
This decoding approach uses a threshold to dynamically
regulate the current probability of error and to calculate
criteria for updating the critical set.

• ISFSCL: Memory reduction is an important feature for
polar decoding, and an improved segmented flipped SCL
(ISFSCL) decoder [44] has been presented. It uses the
segmented approach described in [43] and analyzes the
basic SC decoder (especially its binary tree construction
methods) according to the critical set. This method pro-
vides a uniform distribution of codeword blocks for addi-
tional memory optimization. However, its performance is
comparable only with SCL with a list capability of L = 2
but provides lower complexity due to optimizations with
code segments and tree splitting. Another segmented
approach [47] uses improvements for CRC-checking and
the oracle algorithm. It provides higher performance
compared to the ISFCSL algorithm (due to the novel
generalized scheme and CRC refining), but requires a
significant amount of memory.

• Belief propagation method: Another probability-based
algorithm is based on belief propagation decoding [16].
This algorithm is heuristics-like and strongly based on
some parametric improvements for the conventional be-
lief propagation decoder, which is similar to the basic
SC decoder. It provides a flexible multilevel update for
likelihood bits but uses several matrices to store error
probability ratios, which is a significant disadvantage
compared to an SCL approach.

• Key set SCLF: It’s interesting to note that there is a
scheme with no critical set usage [48]. The authors
presented the key set with some memory improvements
(including the bits which are easy to eliminate from the
list). Another memory addressing method is applicable
for several system architectures, but this approach cannot
provide lower complexity for the common case. The key
set is constructed from special node states and operates
with its indices with the suggestion that access to these
indices can be faster than construction and updates for
the critical set.

V. PRINCIPALS AND STRATEGIES OF CRITICAL SETS
CONSTRICTION

In general, flipping methods employ classical approaches,
such as SC, SCL and GSCL decoders, to calculate path metrics
and determine critical sets in order to improve their accuracy
and redefine LLR values. These decoders aim to enhance the
error correction performance of the basic SC method, which
suffers from the problem of insufficiently accurate search for
errors. The flipping methods try another suggestion (depending
on the bit from ûN−1

0) to address this problem.
This section is divided into two parts: Critical set construc-

tion and word decoding using different strategies.

766 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

A. Construction of Critical Sets

Flipping methods rely on the concept of the critical set,
which is a set of indices that need to be flipped. The critical
set U stores path metrics, which are used to recalculate bits
on the LLR.

As mentioned earlier, different bit-flipping strategies use
various methods to construct the critical set. However, it is
important to distinguish between the evaluation of the critical
set and the concrete bit-flipping decoder. In other words, we
can consider the problem of the applicability of several critical
sets for different decoders. Let us describe some methods for
designing a critical set and whether it is possible to construct
this set using the decoders described earlier.

• Naive critical set: [8]: The naive set U consists of the
T smallest absolute (path’s or belief tree’s) metric values
(|U| = T). This critical set flips only one bit per attempt,
so we can call it a 1-level set.

• Revised critical set: [9]: The revised critical set (RCS)
is a novel critical set applicable for list-based decoders.
Naive critical set does not take into account the noise
design (e.g., the frozen bits) in the input LLRs values,
which would affect its accuracy. To overcome this issue,
revised critical set was developed.
We denote SC state as such a state if, in some path during
the decoding of bit ûi, a situation arises when one of the
child nodes is preserved after sorting the array among the
L candidates, and the second node is not preserved. CD
state (clone or deletion) denotes a state in which the path
is not in SC state.
If L (list length) is a power of 2, then B1 ∈ ûN−1

0

describes the first logL bits from the received codeword
which contains only information positions. Let U be a
naive critical set, and B2 denote the set of indices which
paths is in CD state.
The structure of the transformation from naive critical set
to revised critical set is described below:

U = U \ (B1 ∪ B2). (6)

We can prune and mark new nodes with this method,
but it has no flexibility or dynamic update. However, this
scheme provides us with the ability to flip the whole U
set or choose only one bit per attempt.

• List-based critical set: [10]: This method is simpler
than the revised critical set’s evaluation and doesn’t use
any special node manipulations. This method requires
much less memory, being a difference scheme for a naive
critical set, in which the least stable metrics are arranged
in such a way that their corresponding bits will be subject
to the flipping procedure. Let’s assume we have a set of
path metrics from the SCL method. The critical set should
be constructed as follows:

U = {i1, · · ·, iT : Mi1 ≤ · · · ≤ MiT },
Mi = −PM0

i + PML
i . (7)

• Subblock critical set: [18]: Unlocking a novel avenue
for elevating the error correction performance of polar
codes, the subblocks critical set technique intricately

engages with the subblock structure inherent in the full
binary polar tree. Rooted in a noteworthy proposition
from [19], this approach surges ahead by capitalizing on
the intriguing property that decoding an entire subblock
correctly hinges solely on the accurate decoding of its
first bit. This striking discovery fuels the approach’s foun-
dational principle: A high likelihood that the critical set
encompasses the initial error bit, strategically chosen as
the bit where bit-flipping maneuvers are most efficacious.
Central to this method is the construction of a polar code
tree composed of subblocks. Each subblock embodies a
distinctive property: if the initial bit of a subblock is
correctly decoded, the entire subblock can be confidently
decoded. This phenomenon heralds a high potential for
accurate error correction through strategically chosen bit-
flipping.
The process of constructing the critical set involves a
division of the polar codes into multiple subblocks, each
with a coding rate of R = 1. Within each subblock, the
approach identifies the first unfrozen bit and accumulates
these bits to form the set U . This selection strategy
aligns with the foundational proposition, as the initial
error bit is deemed pivotal for subsequent error correction
endeavors. The subblocks critical set technique doesn’t
halt at bit-level corrections. Instead, it orchestrates mul-
tilevel flipping across the entire subtree associated with
the chosen subblocks. This orchestrated manipulation of
the subtree aligns with the endeavor to achieve accurate
error correction for the chosen subblocks.

• Heuristics critical set: [20], [21]: This approach, out-
lined in [20] (Algorithm 1), serves as an intriguing
alternative due to its independence from tree or code
design considerations. This independence opens doors for
the method’s integration into a wide array of existing de-
coders, rendering it versatile and applicable across diverse
scenarios. The procedure revolves around generating the
critical set U through a well-defined algorithm, as detailed
in [20]. The method’s elegance lies in its simplicity,
allowing it to stand independently from the intricacies of
code construction or tree design. This simplicity paves
the way for seamless integration with existing decoders,
enabling their augmentation with improved error correc-
tion capabilities. Acknowledging the trade-off inherent in
this approach, it offers a means of addressing its potential
limitations. By modulating the parameter governing extra
retries and integrating a more robust decoder, one can
strategically enhance error correction outcomes. This
fine-tuning not only underscores the method’s adaptabil-
ity but also underscores its compatibility with different
coding scenarios.

• Normalized critical set: [30]: This method utilizes the
same approach as list-based set construction. However,
instead of selecting the T smallest path’s values, it selects
the T smallest Mi metrics from [29], with a normalization
factor η that mitigates the biased estimate caused by

TIMOKHIN et al.: OVERVIEW OF VARIOUS METHODS FOR DECODING ... 767

propagated errors:

Mi = ln

 ∑L−1
l=0 exp (−PMl

i)(∑L−1
l=0 exp (−PMl+L

i)
)η

 . (8)

Assuming we have a set of path metrics values received
from the SCL method, we sort it in ascending order
and construct a normalized critical set based on the flip
metrics as follows:

U = {∞, · · ·,∞,Mi+log2 L, · · ·,MT+log2 L}, (9)

This approach uses normalization instead of absolute
metrics, as in the simple list-based construction. However,
choosing the correct value for η is crucial in minimizing
the error probability. This method allows for dynamic ap-
proaches, and flipping metrics can be easily recalculated
for each step. Note that this normalization is a generalized
case of list-based critical set absolute metrics.

• Oracle-based critical set: [28]: This method is similar
to the heuristics-based construction strategy but employs
additional parameters to prevent errors and provide feed-
back for updating the critical set.
In cases where the initial SC decoding step encounters
failure, the chosen bit-flips of order 1 correspond to
positions i ∈ A with the lowest |yi| values. However,
it’s important to recognize that using the absolute value
of the LLR as a likelihood metric for bit-flip decisions
is not the most optimal approach. This is because such
a metric fails to incorporate the sequential nature of the
SC decoding process.
In fact, while a lower absolute value of the LLR does
indicate a higher likelihood of error in the corresponding
hard-decision bit, it does not provide any insight into
the probability of that error being the first one occurring
during the sequential decoding process. In simpler terms,
this metric does not differentiate the initial error from
subsequent errors. To address this limitation, the novel
oracle metric aimed at evaluating the likelihood of a bit-
flip with the purpose of rectifying the trajectory of the
SC decoding process.
By “correcting the trajectory” we refer to the scenario
where SC successfully decodes all bits ui. It’s crucial to
note that this doesn’t imply the overall success of the SC
decoding, as there is no guarantee that it will successfully
decode subsequent bits.
In essence, while the SC Flip decoder targets improving
error correction by altering bit values based on the
LLR, the conventional absolute LLR-based metric doesn’t
capture the sequential nature of the decoding process.
This metric, on the other hand, evaluates the likelihood of
a bit-flip with the aim of rectifying the trajectory of the
decoding, although it doesn’t guarantee overall success.
Let σ be the approximation factor. This method constructs
the set U iteratively for each propagated error using the
output LLR metrics set from the basic SC decoder in the

following way:

Ui =
∑

j∈Ui−1

PMj (10)

+
1

σ

∑
j∈A:j<Ui−1

ln(1 + exp (−σPMj)); (11)

• Key set: [48]: This method involves using generalized
decoding and is based on pre-removing some special
nodes from the set. Such an assumption is closely related
to memory optimization and access. Instead of a critical
set, a key set is used for nodes that can be quickly
retrieved from the code tree. In addition to SC state
and CD state, which are described in the revised critical
set, this approach also employs SC-DEL state nodes that
should be removed from the flipping set. The normalized
error probability is calculated similarly to that of the
critical set and is presented as follows:

Mi = log

∑L
l=1 exp(−PMi

l+L)∑2L
l=1 exp(−PMi

l)
. (12)

The FER expectation Pe(i) of bit ui is calculated as
follows:

Pe(i) =
1

2
erfc

(√
yi

2

)
, (13)

where erfc is the complementary error function. The key
set U can now be constructed by combining the ui indices
which is located in CD state and SC state. After that it
will remove the indices ui which is located in SC-DEL
state and left only indices which metrics are required the
following statement:

Mi > β logPe(i), i ∈ U , (14)

where β is a threshold factor that reduces the key set’s
length by limiting the number of SC nodes and fixing the
critical set’s size.

• Belief propagation critical set: [16]: A pioneering
technique in refining the SCF decoder’s efficacy is the
belief propagation critical Set, as expounded in the work
by [16]. This approach leverages specialized nodes and
their recalculations through classical belief propagation
decoding, culminating in a novel perspective on polar
code optimization. The foundation of this method is con-
structed within a factor graph representation of the polar
code, thereby lending it a structured and comprehensible
framework.
The factor graph is a graphical model that vividly illus-
trates the relationships between variables and constraints
in a coding scenario. In our context, it encompasses
variable nodes (representing bits) and check nodes (cor-
responding to constraints). This representation unveils
the underlying structure of the polar code, aiding in
the exploration of potential improvements. The belief
propagation process unfolds as follows: Iteratively, the
beliefs associated with variable and check nodes are up-
dated. These beliefs capture the probability distributions
of bit values and assess their correctness. Iteration by
iteration, the belief propagation process refines the beliefs

768 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

assigned to variable nodes. As iterations progress, a point
of decision arises. Once a predetermined number of iter-
ations is completed or a stopping criterion is satisfied, the
decoder crystallizes its conclusions regarding bit values.
These conclusions extend to the formation of indices that
comprise the critical set U .
The critical set construction methodology is an integral
aspect of this approach. After meticulously refining be-
liefs through the belief propagation iterations, the de-
coder faces the pivotal task of determining which bits
to potentially flip. To achieve this, it sorts the indices of
unfrozen bits in descending order of their significance.
The top T indices, where T is a parameter governing
refinement attempts, are then meticulously chosen to
constitute the ordered set. This set of indices encapsulates
the bits that hold the most promise for error correction,
thereby guiding the SCF decoder in its subsequent bit-
flipping endeavors. By integrating belief propagation set
construction into the SCF framework, this method taps
into the dynamics of variable and check nodes to enhance
the decoder’s accuracy, making it particularly suited for
error-prone scenarios where sophisticated error correction
is imperative.

• Segmented critical set: [47]: Segmentation is an efficient
decoding strategy for SC-based methods (e.g., using
subtrees or probabilistic characteristics for certain code
segments). We divide the codeword into s different parts.
Let Mi be the normalized critical set metrics from (8).
Then we recalculate the segmentation metric as follows:

Mi =
Mi∑⌊i/s⌋+N/s

j=⌊i/s⌋ Mj

, (15)

then it should be sorted in descending order. The critical
set consist of the T largest Mi values.

• SNR-based critical set: [49]: An innovative technique
aimed at bolstering the error correction capabilities of
polar codes hinges on an essential factor in commu-
nication channels: The SNR. This SNR-Based Critical
Set approach employs a meticulous methodology that
harnesses SNR information to construct a critical set
in a segmented manner. This strategic segmentation is
carried out with an overarching goal of recalculating
indices, underpinned by the objective of diminishing FER
values. Conversely, for lower SNR values, where the
noise effect is more pronounced, additional iterations are
engaged to fortify the error correction capabilities. An
integral aspect of the SNR-Based Critical Set approach
is the identification of segmentation points for the critical
set formation. These points delineate boundaries within
which the recalculations take place. The allocation of
these points, however, is not arbitrary; rather, it is in-
formed by a penalty mechanism intricately tied to the
SNR. This penalty serves as a guiding force, ensuring
that the recalculations are attuned to the SNR level. This
adaptive penalty takes into account the prevailing SNR
conditions to achieve a fine-tuned recalibration of the
critical set.

TABLE I
LINKAGE BETWEEN DIFFERENT CRITICAL SETS AND DECODERS.

CS Approach Base dec.
Naive set SCF SC
Revised GSCLF SCL

List-based SCLF, DSCLF SCL
Subblocks SCF, Shift.-prun. SC+SCL
Heuristics SCF, Shift.-prun. SC+SCL

Normalized SCLF, DSCLF, GSCLF SCL
Oracle-based SCF, DSCF SC

Key set GSCLF SCL
Belief set SCF, DSCF, Shift.-prun. SC

Segmented set SCF, DSCF SC
SNR-based set SCLF, GSCLF SCL

Neural SCLF, GSCLF SCL

It adapts to the channel’s specific characteristics, striving
to achieve the most accurate bit decisions while being
mindful of the computational resources and time con-
straints.

• Neural-based critical sets: This is an advanced tech-
nique that employs neural networks to identify optimal
critical sets for error correction in polar codes. Instead of
relying on traditional methods, this approach leverages
the capabilities of neural networks to learn and predict
which bits should be flipped to enhance error correction
performance. This method involves training a neural
network using labeled training data that pairs received
noisy codewords with the corresponding corrected code-
words. Once trained, the neural network can predict
critical sets for new received codewords, guiding the
error correction process more effectively. This technique
combines the power of neural networks with polar code
error correction, offering a data-driven and efficient way
to improve error correction outcomes. Such sets could
be obtained via machine learning methods and neural
networks LSTM refining [17]. This field is out of scope
for the current paper, but neural-based decoders show
high error-correction performance and are worthy of
mention.

B. Applicability of Critical Sets

Even though decoding methods with predefined critical sets
have been described previously, it can be useful for certain
decoders to change the method of critical set construction and
try to implement another bit-flipping engine.

In Table I, let us consider which decoding method applies
to the specific critical set and which basic decoding approach
(SC or SCL) can be used in this case.

As we can observe, some methods are only applicable with
SC decoder while others are only suitable for SCL decoder.
However, certain construction methods can be employed for
both SC decoder and list method as well.

The key set has a complex structure, making its evaluation
and design challenging, and hence it can be easily applicable
only to the generalized list-based decoder. On the other hand,
to provide fast first-step calculations, we assume that the
key set is based on the list-based critical set, which can be
effortlessly computed for SCLF and DSCLF methods. Thus,
the key set combines the construction of its initial set from

TIMOKHIN et al.: OVERVIEW OF VARIOUS METHODS FOR DECODING ... 769

TABLE II
THEORETICAL COMPLEXITY COMPARISON.

Method Average compl. Worst case compl. Memory
compl.

SC O(N logN) O(N logN) O(N)
SCL O(LN logN) O(LN logN) O(LN)
SCF O(φN logN) O(TN logN) O(N)
SCLF O(φLN logN) O(TLN logN) O(LN)
GSCLF O(φLN logN) O(TLN logN) O(LN)
DSCF O(φN logN) O(TN logN) O(N2)
DSCLF O(φLN logN) O(TLN logN) O(LNT)
Shifted-
pruning

O(φLN logN) O(TLN logN) O(TL)

another approach (basic and dynamic list methods) and applies
it to the generalized decoder. The belief propagation method
can be effortlessly incorporated into all types of list-based
decoders. However, the generalization of such an approach
entails some overheads for evaluations, and that’s why the
GSCLF decoder was excluded for such a critical set.

The SNR-based set is not a reliable solution for a dynamic
method because it uses a probabilistic regime to decrease
possible SNR values and fix them. Thus, there is no need
to modify it dynamically.

VI. COMPARATIVE ANALYSIS

We have defined three metrics to compare the different
decoding methods:

1) Error correction performance: This metric describes
the relationship between the simulated Frame Error
Ratio (FER) and the SNR (Eb/N0).

2) Normalized complexity: This metric compares the SC-
decoder (the baseline solution) to other decoding strate-
gies as the SNR increases.

3) Average elementary operations: This metric consists
of two classes of operations, C1 and C2, which describe
the number of multiplications, log-operations, and exp-
operations in C1, and the number of sums, XORs,
comparisons, and sign inversions in ±1 → ∓1 in C2.

First, we present the theoretical complexity values for each
decoder in Table II. Here, L represents the list of possible
candidates (for SCL, SCLF, and GSCLF), or the path’s length
constraint (for SCS). T represents the maximum number of
attempts to flip the bit for SCF and its modifications, φ ∈
[1, T] is an average number of flips with current SNR-value
and critical set construction method.

In this study, we used the basic critical sets for each decoder
type, as described in their original papers. We used the 5G
NR reliability sequences for polar construction of (N,K)-code
with a ratio of R = K/N and an operations counting module
for C++17.

For CRC checking in list-based methods (such as CA-SCL),
we used a polynomial with 16 additional bits: g(x) = x16 +
x15 + x2 + 1. We applied these CRC prefixes with the 5G
NR polar approach described above for SCL, SCLF, DSCLF,
and GSCLF schemes for codeword selection. We considered
code length N = 256 (and N = 64, 1024 for elementary
operations research) with R = 1/2. The chosen 5G NR code

Fig. 1. Performance of critical sets construction for SCF (T = 10) decoder.

scheme provides 25, 40, and 50 subcodes for the related code
ratios R (excluding subcodes of frozen nodes). Therefore, if
we apply bit-flipping methods with extra attempts T > 20,
it is possible to flip the majority of information bits in the
scheme (information general node).

Our simulation shows that for DSCF it’s better to use T/4
group of bits to flip, that’s why we choose 3-level critical set
for dynamic flipping algorithm.

We will denote the CA-SCL method as “SCL (L = x)”,
where x is the list size. We choose a classical moderate list
size (L = 8), and a large list with a high possibility of error
correction (L = 32). We also set L = 8 for other list-based
decoding strategies (GSCLF, DSCLF).

For the modulation of 5G NR polar codes, we used the
AWGN channel with the binary phase shift keying (BPSK)
function [4], as described in [11].

A. Performance Analysis of Critical Sets

In this subsection, we present a comprehensive set of tests
for comparative analysis. The experiments are divided into
three parts: Investigation of the performance and complexity
of different critical sets for each decoding method, analysis
of the performance and complexity of different decoders with
optimal critical set decision, and evaluation of the number of
elementary operations involved.

SCF: Fig. 1 depicts the performance of critical sets con-
struction for the SCF (T = 10) decoder. We selected the
following critical sets to explore the basic flipping strategy
based on the SC decoder: the naive approach and an improved
heuristic version of constructing such a set.

The SC decoder shows significant improvement compared
to other methods that use 10 bit-flipping attempts. However,
the heuristic method is poorly adapted to changing the number
T and is not flexible enough to choose the necessary indices
of the critical set.

770 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Fig. 2. Performance of critical sets construction for SCLF (L = 8, T = 10)
decoder.

The naive critical set performs more efficiently than the
heuristic for a short code length, and as the code speed
increases, it outperforms not only the heuristic but also more
complex methods, such as segmented. The belief propagation
approach performs well for all code lengths.

The use of the heuristic method does not yield good
performance results. The segmented method provides average
performance values at small FERs and low performance values
with increasing code length and Eb/N0. Thus, two similar
methods, subblocks and segmentation, yield completely dif-
ferent error correction results. Subblocks division, which is
based on a simpler idea of calculating subtrees with R = 1,
yields a more significant result for a simple decoder. We will
see later that the segmentation method itself is not unreliable,
but it is not recommended for use with an SCF decoder.

SCLF: In Fig. 2, we present the performance test results
for the SCLF decoder. For comparison, we chose the following
methods for constructing a critical set: A list filter based on the
normalization metric, its simplified version (list-based), and a
probabilistic method that selects indices based on theoretical
SNR values. The normalized method is a combination of a
list-based method and some metric values added to each index
of the list-based set. It is worth noting that we implemented
the SNR method without the improvements described in the
original article. Nevertheless, the idea of performance opti-
mization itself, based on possible SNR indicators according
to some probabilistic formula, seemed interesting, motivating
us to use the SNR-based critical set in this article. We also
chose SCL decoders (without flipping) as a baseline solution
for comparison with different list lengths (L = 8, 32).

Based on the results, we can conclude that the normalization
approach is superior for the SCLF method, as evidenced by its
consistently high performance. Notably, for an average code
length, the simplified list-based method can even compare
with the normalized method. Additionally, there exist specific

Fig. 3. Performance of critical sets construction for GSCLF (L = 8, T = 10)
decoder.

values for which the SCLF-8 outperforms SCL-32. As for the
SNR-based method, it demonstrates comparable performance
to the normalized method, indicating a high level of accuracy
for this probabilistic approach.

Overall, each of the analyzed algorithms is applicable to
the SCLF strategy, but the normalized and simplified list-
based methods are the easiest to implement, as they only
require the calculation of path metrics without additional
computations. In contrast, the SNR-based method utilizes
probabilistic calculations to determine the optimal critical set
indices and apply the SCLF decoder.

GSCLF: Fig. 3 depicts the basic SCL decoders for two list
sizes and several different critical sets. GSCLF is a modified
version of the SCL method that relies on the decoding of
special nodes. It takes the list-based critical set as a basis and
modifies it by introducing some generalized nodes that the
algorithm decodes.

The key set based on another version of the critical set is
applicable for this method. The construction takes place in two
stages: Selection and decoding on a critical set, followed by
the construction of a key set based on refinements for the pre-
viously considered critical variant. The list-based construction
was chosen as the base critical set for the key variant, and this
decoding can be considered comparable to the revised method.

The SNR-based algorithm’s performance is comparable to
the basic SCL-8 approach, which is not favorable for this
case at all code rates. The performance of the normalized
set and the key set are similar at almost all code speeds.
Since the list-based approach is a simplification in terms of the
normalized metric, and the key set uses exactly this method,
we can conclude that the key improvement did not increase
the decoder’s overall performance (list-based still fixes fewer
errors than normalized, like the original version). The SNR-
based critical set can reach the values of the revised critical
set.

TIMOKHIN et al.: OVERVIEW OF VARIOUS METHODS FOR DECODING ... 771

Fig. 4. Performance of critical sets construction for DSCF (T = 10)
decoder.

The key set method based on the critical one turned out
to be rather weak in terms of performance since it did not
introduce qualitative changes.

Thus, we can say that the most optimal and adapted
method for this algorithm is the revised method, which uses
all the features of generalized decoding, providing not only
good performance but also low theoretical complexity due
to fast decoding. Additionally, the normalized critical set is
a simplified approach with similar performance over a large
number of decoding attempts.

DSCF: In Fig. 4, an analysis of the performance of the
DSCF algorithm is presented with different critical sets, in-
cluding the oracle-based, belief propagation, and segmented
critical sets. Each of these sets has the ability to perform
multilevel recalculation of the critical set and refine its indices.

The belief propagation method is observed to perform
much lower than the other methods. As the value of EB/N0

increases, the performance becomes similar to the SC decoder,
which is a suboptimal result. Contrary to theoretical values,
belief propagation loses performance as the value of T in-
creases.

On the other hand, the oracle set and segmentation method
perform much higher. The oracle-based set performs an order
of magnitude higher for large values of Eb/N0, indicating
that the algorithm proposed in the original article is the most
efficient in terms of performance. It should also be noted that
the DSCF method, due to the use of dynamic permutations
and index refinements, provides higher performance than the
SCF method, as confirmed by the figures.

The oracle-based heuristic method provides the best appli-
cability for the DSCF method due to the iterative construction
method and the detailed analysis of the σ approximation factor
described in the original article. However, other critical sets
can also be dynamically tuned for multilevel flipping.

In summary, we can consider the DSCF method optimal

Fig. 5. Performance of critical sets construction for DSCLF
(L = 8, T = 10) decoder.

in terms of performance for decoding without a list (using
the basic SC algorithm). However, the trade-off between
performance and expended resources for a dynamic algorithm
is important to consider, and the impact of dynamic modifica-
tions on the decoding complexity requires further study.

DSCLF: In Fig. 5, we can observe the performance of
the DSCLF decoder for L = 8 and T = 10. This value of
L allows us to compare the decoder’s performance with the
basic SCL-8 algorithm and gain insight into how to tune the
algorithm to behave like SCL-32 with a dynamic approach and
list size of L = 8.

The shifted-pruning method employed in the DSCLF algo-
rithm is quite intriguing in terms of parameterization. It does
not require the exact number of attempts to iterate T , as this
information is calculated heuristically and tied to the critical
set’s power (i.e., the number of additional attempts).

Based on the foregoing, the authors conclude that the
subblocks approach is the optimal method for constructing
a critical set in terms of performance. By designing the
decoder to rapidly prune those subtrees that do not meet the
requirements of a complete binary tree, we can achieve an
efficient technique that is strictly dependent on subtrees.

B. Complexity Analysis of Critical Sets

For each of the decoding methods, various critical sets were
analyzed, and their normalized complexities were determined
based on the complexity of constructing the critical sets for the
basic SC and SCL-x decoders. It is noteworthy that complexity
normalization was performed to provide a fair comparison
between the different methods.

SCF: The normalized complexity values for the basic flip
method in SCF are illustrated in Fig. 6. It is evident that
the naive method, which employs a 1-level critical set, has
the lowest resource requirements since it does not entail any
additional resources for its implementation. On the other hand,

772 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Fig. 6. Complexity of critical sets construction for SCF (T = 10) decoder.

the oracle-based set has a high computational complexity,
although it is more efficient than the heuristics-based methods.
Despite the high complexity of the segmentation critical set,
its performance is not impressive.

The belief propagation and subblocks critical sets have
the highest complexity rates, and for small Eb/N0 values,
they can be several orders of magnitude more complex than
the naive method. However, subblocks demonstrate excel-
lent performance, which explains the observed complexity-
performance tradeoff. On the other hand, the belief method
is also promising but requires some parameter optimization.

It should be noted that SCF is a basic decoding algorithm
that utilizes flipping strategies. Thus, its basic critical set
has relatively low complexity, which is only three times
higher than the basic SC decoder. However, the application
of different critical set strategies may increase the complexity
of SCF, and in some cases, it may approach the complexity of
more sophisticated decoding methods (e.g., list-based meth-
ods). Nevertheless, the superior error correction performance
of the subblock method make it a flexible algorithm whose
complexity can be reduced by choosing optimal subtrees with
suitable code rates.

SCLF, GSCLF: In Figs. 7 and 8, it can be observed that
each critical set, when used with SCLF and GSCLF at low
signal levels, outperforms even the relatively complex SCL-
32 method. The SNR-based method exhibits the highest com-
plexity indicators. Furthermore, the critical set normalization
method was found to be in the lead when a large number
of attempts were made to study performance characteristics.
However, the list-based method was also comparable to it in
terms of performance. With regards to computational com-
plexity, it can be noted that the list-based algorithm reaches
the limit of the SCL-32 method with 10 additional attempts.
Therefore, despite the moderate number of decoding attempts
and the increased complexity required to perform all opera-

Fig. 7. Complexity of critical sets construction for SCLF (L = 8, T = 10)
decoder.

Fig. 8. Complexity of critical sets construction for GSCLF
(L = 8, T = 10) decoder.

tions, the list-based method provides the best value in terms
of computational complexity.

It is recommended to use a list-based critical set for this
decoding method, which is the least laborious and provides
fairly good performance. To improve the performance and
reliability of the decoder, it is recommended to use the
normalized method with an accurate adjustment of the factor
parameter η.

GSCF: Now, let us examine the DSCF decoder in Fig. 8.
The segmentation set exhibits high performance, particularly
for the dynamic method. This is attributed to the segmentation
of critical indices during recalculation, resulting in refined flips
that can enhance overall performance. It is noteworthy that the
segmented set also demonstrates the best complexity results

TIMOKHIN et al.: OVERVIEW OF VARIOUS METHODS FOR DECODING ... 773

Fig. 9. Complexity of critical sets construction for DSCF (T = 10) decoder.

for T = 10.
DSCLF: Let’s examine the performance of the DSCLF

decoder in Fig. 10. The list-based version of the set leads to an
improvement in complexity. However, in some cases, a simpler
method may perform efficiently and have lower complexity.
This is an interesting scenario, as it is only observed in this
decoder and for a specific message length where a simplified
version of constructing a critical set is more efficient than a
refinement strategy.

As seen in the figure, the DSCLF algorithm achieves a
complexity value equivalent to SCL-32 and even surpasses
it. This indicates a high degree of decoder efficiency in terms
of its complexity.

Although the performance of the list-based method for
T = 10 is slightly lower than the normalized method, the
complexity of both methods for constructing the critical set is
comparable for all parameters.

Therefore, we can conclude that the use of either method is
based on the same metric, but normalization offers a significant
increase in performance relative to the list-based set, except
for certain special cases where the opposite holds true. The
list-based method is preferred for constructing the critical set
in this work since it is a simpler option that can improve both
labor intensity and performance in certain circumstances.

C. Performance Analysis of Decoders

Let us analyze how different decoders perform in terms
of error rates and what is the optimal solution considering
memory and time complexity. The error correction perfor-
mance and normalized complexity for all described methods
are visualized in Fig. 11.

The basic SC-decoder exhibits the worst error correction
capability, and all other algorithms perform more efficiently
as the SNR increases. The SCL decoder shows a significant
improvement in correction ability compared to the SC decoder.

Fig. 10. Complexity of critical sets construction for DSCLF (L = 8, T = 10)
decoder.

For SCL-4 and SCL-8, we observe such improvement only
when compared to the basic SC-decoder. However, when
using the SCL-32 algorithm, a significant improvement in
performance is visible, as larger sheets work more correctly,
and CRC checks for L = 32 provide greater accuracy than
using L = 8.

The performance of GSCLF approaches that of SCF at
T = 10, which is an excellent result for this decoder but
requires more computing power. The generalized method is
quite accurate due to its ability to decode special nodes unam-
biguously before running the algorithm itself, as the theoretical
values of the decoded sequence for the information node or
SPC node have already been calculated. At T = 10, the
GSCLF method shows particularly high-quality performance,
providing FER of approximately 10−5, which is the best result
among all decoders. For a large number of attempts, SCLF is
also a good method, which can equal GSCLF, but only at small
values of Eb/N0.

Thus, the most stable decoding method is GSCLF, and
SCLF and DSCF methods also show good performance.
Therefore, it is recommended to use the generalized list
flipping method with a revised critical set oriented to handle
some type of special nodes for optimal performance.

D. Complexity Analysis of Decoders

In Fig. 12, we will compare various decoding methods in
terms of their complexity to determine the optimum solution.
To facilitate comparison, the constant values of the SC and
SCL-x decoders were normalized.

Among the considered decoders, the SCF method stands
out as the fastest and least labor-intensive. This method even
achieves lower complexity than SCL-8 while having higher
performance than the basic list method as the SNR increases.
With an increase in the number of additional attempts, this

774 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Fig. 11. Performance of different decoders with optimal critical sets.

method is faster than list methods, and with a large SNR, SCF
with 50 attempts is less complex than SCL-32. As seen in the
performance plots, SCF reaches SCL-32 FER values at lower
complexity than the list method. This is a general advantage
of flipping algorithms.

The shifted-pruning method has a low enough complexity
for a list method. For large SNRs, this method is comparable
to SCL-8, but its complexity increases significantly. This
approach turns out to be more inefficient than other methods
with a similar value for the number of additional attempts.

The SCLF method has a rather high computational com-
plexity since it lacks the optimizations inherent in dynamic
and generalized methods. Interestingly, SCLF is roughly com-
parable in computational complexity to SCL-16. Since the
performance of this method is not always optimal and often
loses to more flexible list methods, it can be concluded that
the method has a rather high overhead at an average level of
performance.

For the GSCLF algorithm, we can see that its complexity
is comparable to DSCF, while providing the highest level of
performance. It should also be noted that it requires fewer
resources due to the decoding of special generalized nodes, so
its complexity is lower than SCLF.

In summary, considering both performance and computa-
tional complexity, the GSCLF and DSCLF decoding methods
are optimal, providing lower complexity than both the SCLF
method and the basic SCL decoders. Table 3 describes the
average number of “cheap” operations from the C1 class,
“expensive” operations from the C2 class, and their total
amount for each decoder. Although all decoders exhibit similar
behavior, they differ in the types of operations used. The SC
method requires the minimum number of operations. The SCL
and SCF methods, on the other hand, require a relatively large
total number of operations, but they do not use expensive
operations such as exponentials and logarithms, resulting in
a smaller number of C2 operations.

Fig. 12. Complexity of different decoders with optimal critical sets.

TABLE III
AVERAGE NUMBER OF OPERATIONS FOR DIFFERENT CODE LENGTH

N = {64, 256, 1024} AND CODE RATIO R = 1/2 WITH FER = 10−2.5 .

Algorithm N C1 C2 Total ops.

SC
64 13.30 3.89 17.19
256 41.16 4.07 45.23

1024 85.55 11.81 97.36

SCL (L = 4)
64 52.17 7.96 60.13
256 173.17 14.09 187.26

1024 503.34 57.06 560.40

SCL (L = 8)
64 109.73 12.58 122.31
256 304.67 25.15 329.82

1024 661.11 90.51 751.62

SCL (L = 32)
64 445.10 39.75 484.85
256 812.54 97.55 910.09

1024 3513.42 415.52 3928.94

SCF (T = 10)
64 92.31 14.90 107.21
256 277.31 38.23 315.54

1024 852.30 62.55 914.85

SCLF (L = 8, T = 10)
64 115.20 11.43 126.63
256 322.56 48.13 370.69

1024 951.10 135.42 1086.52

GSCLF (L = 8, T = 10)
64 98.99 3.72 102.71
256 300.07 9.12 309.19

1024 840.16 30.14 870.30

DSCF (T = 20)
64 114.58 31.92 146.50
256 311.54 76.10 387.64

1024 800.15 155.88 956.03

DSCLF (L = 8, T = 20)
64 131.20 20.86 152.06
256 324.85 83.49 408.34

1024 1041.33 197.10 1238.43

Sh.-prun. (L = 8)
64 139.67 36.55 176.22
256 361.85 89.90 451.75

1024 1220.65 204.44 1425.09

VII. RECOMMENDATIONS AND OBSERVATIONS

After conducting a thorough investigation of different crit-
ical sets and decoding methods, we have formulated several
recommendations on the optimal usage of bit-flipping meth-
ods.

• The basic SC decoder is the most straightforward and
fastest solution, but it is also the most unreliable method
of decoding due to its lack of flipping or listing ability.
Despite this, the SC method is applicable to many types
of flipping methods and works well in combination
with prospective critical sets to provide a higher error
correction performance.

TIMOKHIN et al.: OVERVIEW OF VARIOUS METHODS FOR DECODING ... 775

• SCL decoder is strongly dependent on its L parameter.
With a trivial case (L = 1), this method is a fast,
unreliable SC decoder. However, using CRC-checking
frameworks and several candidates slightly increases its
performance. The most optimal length of the list in this
paper is L = 8, providing a good trade-off between
complexity and performance. The SC decoder provides
a lower bound for complexity and an upper bound for
performance, while the SCL-32 provides an upper bound
for complexity but the best performance.

• SCF method provides good complexity for all values of
code ratio and code length. As R increases, it achieves the
complexity of the SCL-8 decoder. We recommend using
it for small code length N . While extra attempts affect
the complexity and make it comparable with listing ap-
proaches, the correct choice of the critical set also makes
a difference. Instead of a naive approach to choosing
indices, we use subtrees that provide higher performance.
Segmentation design is similar to the subblocks idea but
has lower performance values.

• SCLF approach is the basic flipping solution for listing
methods. We considered two different methods of critical
set construction: Normalized with normalization factor
ν = 0.7 and a simplified version without the normaliza-
tion process. It is interesting to note that the list-based
critical set is comparable with normalized, and for a
moderate number of attempts, it provides approximately
the same performance as the complicated normalized
version.

• The dynamical SCF decoder shows excellent perfor-
mance. Also, flexible recalculation of the critical set
provides lower complexity values. For instance, we rec-
ommend using a segmented critical set, which can easily
be redefined by its design. The belief set has much
lower performance and complexity values, so we do
not recommend applying it for a dynamical approach,
especially for a large number of attempts.

• For the DSCLF method, we considered only list-based
and normalized critical sets as the most effective design,
but it can be applied to different complex strategies with
lower theoretical performance. This method is efficient
and simple compared to other listed flipping approaches,
but it is unreliable in the general case.

• GSCLF method is the best in terms of performance and
complexity. Despite the rather complicated implemen-
tation and the use of generic nodes, it provides fast
decoding with minimal memory and other resources.
Thus, the proposed experimental method did not show its
effectiveness in this study. To summarize, we can say that
the GSCLF method is more reliable than DSCLF/DSCF
approaches and based on special nodes’ fast decoding,
which provides higher performance with less complexity.

• We also used the subblocks critical set as the most
effective design for the shifted-pruning method. However,
we cannot say that this approach is the most effective and
reliable because its performance is generally lower than
that of other decoders. Additionally, this method provides
the worst complexity values.

VIII. CONCLUSION

Polar encoding has emerged as a promising direction in the
5G communication system [37]. Therefore, the development
of efficient and flexible decoding methods for polar codes is
a significant problem in information theory. In this paper, we
address this issue by considering various strategies and ap-
proaches for constructing decoding bases that provide optimal
polar decoding. We evaluate not only the basic versions of
each approach but also their improvements and novel ideas.

Our study focuses on the construction of critical sets,
modifications, and restrictions for decoding algorithms, as well
as the applicability of different critical sets to specific decoding
strategies. Although we have made progress in identifying
the best strategy for constructing critical sets in terms of
complexity and performance trade-off, this remains a priority
task that requires further investigation in future studies.

Furthermore, we need to explore the efficiency ratio for
different path metrics and data structures. Among all the con-
sidered decoders, the implementations of GSCLF and DSCLF
appear to be the most promising. We also need to investigate
how combining different critical sets and acceptable decoding
methods can achieve higher error correction performance. In
this paper, we evaluated only several approaches and combi-
nations of set evaluation and their applicability for different
decoding strategies.

We examined the main basic methods for decoding polar
codes, as well as flipping methods that optimize calculations
and provide higher accuracy by using additional attempts. Our
study shows that the generalization and dynamic approach are
effective in reducing memory overhead and the number of
elementary operations. We also considered various approaches
to the construction of critical sets, which enable us to make a
more correct choice of the bit or set of bits to be inverted.

Increasing the number of attempts T for flipping methods
or the number of elements in the list method can increase the
probability of finding the desired word and performing correct
decoding. However, optimizing the construction of critical
sets and finding the optimal decoder for a particular set are
crucial recommendations, as even with relatively low memory
costs or computational complexity, we can achieve the highest
performance.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. IEEE ISIT,
2011.

[3] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[4] R. Wade and M. Jadhav, “Study of polar codes using BPSK,” Int. J. Eng.
Research Technol., vol. 7, no. 7, 2018.

[5] S. A. Hashemi, N. Doan, T. Tonnellier, and W. J. Gross, “Deep-learning-
aided successive-cancellation decoding of polar codes,” in Proc. Asil.
Conf. on Sign., Sys., and Comp., 2019.

[6] W. W. Peterson and D. T Brown, “Cyclic codes for error detection,” Proc.
IRE, vol. 49, no. 1, pp. 228–235, 1961.

[7] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE
Commun. Lett., vol. 16, no. 10, pp. 1668–1671, 2012.

[8] O. Afisiadis, A. B.-Stimming, and A. Burg, “A low-complexity improved
successive cancellation decoder for polar codes,” in Proc. IEEE ACSSC,
2014.

776 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

[9] Y. Yongrun, P. Zhiwen, L. Nan, and Y. Xiaohu, “Successive cancellation
list bit-flip decoder for polar codes,” in Proc. IEEE WCSP, 2018.

[10] F. Ivanov, V. Miroshnik, and E. Krouk, “Improved generalized successive
cancellation list flip decoder of polar codes with fast decoding of special
nodes,” J. Comm. and Net., vol. 23, no. 6, 2021.

[11] H. Vangala, E. Viterbo, and Y. Hong, “A comparative study of polar code
constructions for the AWGN channel”, arXiv, abs/1501.02473, 2015.

[12] P. Giard et al., “Hardware decoders for polar codes: An overview,” in
Proc. IEEE ISCAS, 2016.

[13] F. Ercan, C. Condo, S. A. Hashemi, and W. J. Gross, “On error-
correction performance and implementation of polar code list decoders for
5G,” in Proc. Annual Allerton Conference on Communication, Control,
and Computing (Allerton), 2017.

[14] A. Balatsoukas-Stimming, P. Giard, and A. Burg, “Comparison of polar
decoders with existing low-density parity-check and turbo decoders,” in
Proc. IEEE WCNCW, 2017.

[15] P. Giard, “High-speed decoders for polar codes,” Ph.D.dissertation,
McGill University, Montreal, Canada, 2016.

[16] Y. Yuyu et al., “Noise-aided belief propagation list bit-flip decoder for
polar codes,” in Proc. IEEE WCSP, 2020.

[17] F. Kotov, F. Ivanov, and Z. Alexey, “Method of critical set construction
for successive cancellation list decoder of polar codes based on deep
learning of neural networks,” SSRN Elec. J., 2022

[18] Z. Zhang, K. Qin, L. Zhang, H. Zhang, and G. T. Chen, “Progressive
bit-flipping decoding of polar codes over layered critical sets,” in Proc.
IEEE GLOBECOM, 2017.

[19] Z. Zhang, K. Qin, L. Zhang, and G. T. Chen, “Progressive bit-flipping
decoding of polar codes: A critical-set based tree search approach,” IEEE
Access, vol. 6, pp. 57738–57750, 2018.

[20] M. Rowshan and E. Viterbo, “Improved list decoding of polar codes by
shifted-pruning,” in Proc. IEEE ITW, 2019

[21] M. Rowshan and E. Viterbo, “Shifted pruning for path recovery in list
decoding of polar codes,” in Proc. IEEE CCWC, 2021.

[22] M. Hanif and M. Ardakani, “Fast successive-cancellation decoding of
polar codes: Identification and decoding of new nodes,” in IEEE Commun.
Lett., vol. 21, no. 11, pp. 2360–2363, 2017

[23] F. Ercan, T. Tonnellier, N. Doan, and W. J. Gross, “Practical dynamic
SC-Flip polar decoders: Algorithm and implementation,” IEEE Trans.
Signal Process., vol. 68, pp. 5441–5456, 2020.

[24] F. Ercan, T. Tonnellier, and W. J. Gross, “Energy-efficient hardware
architectures for fast polar decoders,” IEEE Trans. Circuits Syst. I: Reg.
Papers, vol. 67, no. 1, pp. 322–335, 2020.

[25] X. Qiao, H. Cui, J. Lin, and Z. Wang, “Reducing search complexity of
dynamic SC-Flip decoding for polar codes,” in Proc. ICCC, 2021.

[26] M. Rowshan and E. Viterbo, “Efficient partial rewind of successive
cancellation-based decoders for polar codes,” IEEE Trans. Commun., vol.
70, no. 11, pp. 7160–7168, 2022.

[27] F. Ercan, C. Condo, and W. J. Gross, “Improved bit-flipping algorithm
for successive cancellation decoding of polar codes,” IEEE Trans. Com-
mun., vol. 67, no. 1, pp. 61–72, 2019.

[28] L. Chandesris, V. Savin, and D. Declercq, “Dynamic-SCFlip decoding
of polar codes,” IEEE Trans. Commun., vol. 66, no. 6, pp. 2333–2345,
2018.

[29] Y. Shen, A. Balatsoukas-Stimming, X. You, and C. Zhang, “Dynamic
SCL decoder with path-flipping for 5G polar codes,” IEEE Wireless
Comm. Lett., vol. 11, no. 2, pp. 391–395, 2022.

[30] Y.-H. Pan, C.-H. Wang, and Y. -L. Ueng, “Generalized SCL-Flip
decoding of polar codes,” in Proc. GLOBECOM, 2020

[31] C. Condo, V. Bioglio, and I. Land, “Generalized fast decoding of polar
codes,” in Proc. IEEE GLOBECOM, 2018.

[32] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Inf.
Theory, vol. 8, no. 1, 1962.

[33] R. W. Hamming, “Error detecting and error correcting codes,” Bell Sys.
Tech. J., vol. 29, no. 2, pp. 147–160, 1950

[34] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar
decoders: Algorithm and implementation,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 946–957, 2014.

[35] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and flexible successive
cancellation list decoders for polar codes” IEEE Trans. Signal Process.,
vol. 65, no. 21, pp. 5756–5769, 2017.

[36] M. Hanif, M. H. Ardakani, and M. Ardakani, “Fast list decoding of polar
codes: Decoders for additional nodes” in Proc. IEEE WCNCW, 2018.

[37] V. Bioglio, “Design of polar codes in 5G new radio,” IEEE Commun.
Surveys Tuts, vol. 23, no. 1, pp. 29–40, 2020.

[38] C.-H. Chen, C.-F. Teng, and A.-Y. A. Wu, “Low-complexity LSTM
assisted bit-flipping algorithm for successive cancellation list polar de-
coder,” in Proc. IEEE ICASSP, 2020.

[39] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Trans. Signal
Process., vol. 61, no. 2, pp. 289–299, 2013.

[40] Y. Fan and C. Y. Tsui, “An efficient partial-sum network architecture for
semi-parallel polar codes decoder implementation,” IEEE Trans. Signal
Process., vol. 62, no. 12, pp. 3165–3179, 2014.

[41] F. Ercan, C. Condo, S. A. Hashemi, and W. J. Gross, “Partitioned
successive-cancellation flip decoding of polar codes,” in Proc. IEEE ICC,
2018.

[42] C.-F. Teng and A.-Y. A. Wu, “Convolutional neural network-aided tree-
based bit-flipping framework for polar decoder using imitation learning,”
IEEE Trans. Signal Process., vol. 69, pp. 300–313, 2020.

[43] Y. Peng, X. Liu, and J. Bao, “An improved segmented flipped successive
cancellation list decoder for polar codes,” in Proc. IEEE ICC, 2020.

[44] U. Lee, J. H. Roh, C. Hwangbo, and M. H. Sunwoo, “A uniformly
segmented SC-Flip decoder for polar codes with memory reduction
methods,” in Proc. IEEE ISCAS, 2021.

[45] F. Ercan and W. J. Gross, “Fast thresholded SC-Flip decoding of polar
codes” in Proc. IEEE GLOBECOM, 2020.

[46] Y. Wang, L. Chen, Q. Wang, Y. Zhang, and Z. Xing, “Algorithm and
architecture for path metric aided bit-flipping decoding of polar codes,”
in Proc. WCNC, 2019.

[47] S. Li, Y. Deng, X. Gao, H. Li, L. Guo, and Z. Dong, “General-
ized segmented bit-flipping scheme for successive cancellation decoding
of polar codes with cyclic redundancy check,” IEEE Access, vol. 7,
pp. 83424–83436, 2019.

[48] J. Bao, S. Lin, and X. Liu, “An improved successive cancellation list
flip decoder for polar codes based on key sets,” in Proc. IEEE ISMICT,
2021.

[49] X. Liu, S. Wu, Y. Wang, N. Zhang, J. Jiao, and Q. Zhang, “Exploiting
error-correction-CRC for polar SCL decoding: A deep learning-based
approach,” IEEE Trans Cog. Commun. Netw., vol. 6, no. 2, pp. 817–828,
2019.

[50] V. Miloslavskaya, B. Vucetic, Y. Li, G. Park, and O. -S. Park, “Re-
cursive design of precoded polar codes for SCL decoding,” IEEE Trans.
Commun., vol. 69, no. 12, pp. 7945–7959, Dec. 2021.

[51] V. Miloslavskaya and B. Vucetic, “Design of short polar codes for SCL
decoding,” IEEE Trans. Commun., vol. 68, no. 11, pp. 6657–6668, 2020.

[52] I. Timokhin and F. Ivanov, “On the improvements of successive cancella-
tion Creeper decoding for polar codes”, Digital Signal Process., vol. 137,
2023.

[53] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast simplified successive-
cancellation list decoding of polar codes,” in Proc. IEEE WCNCW, 2017.

[54] G. Trofimiuk, N. Iakuba, S. Rets, K. Ivanov, and P. Trifonov, “Fast block
sequential decoding of polar codes,” IEEE Trans. Veh. Technol., vol. 69,
no. 10, pp. 10988–10999, 2020.

[55] N. Doan, S.-A. Hashemi, and W.-J. Gross “Fast successive-cancellation
list flip decoding of polar codes” IEEE Access, vol.10, pp. 5568–5584,
2020.

[56] V. Miloslavskaya and P. Trifonov, “Sequential Decoding of Polar Codes,”
in IEEE Commun. Lett., vol. 18, no. 7, pp. 1127–1130, 2014.

[57] S.-A. Hashemi et al., “Successive syndrome-check decoding of polar
codes” in Proc. ACSSC, 2021.

[58] S.-A. Hashemi, C Condo, M.Mondelli, and W.-J. Gross, “Rate-flexible
fast polar decoders” IEEE Trans. Signal Process., vol 67, no 22, pp. 5689–
5701, 2019.

[59] C. Condo, V. Bioglio, and I. Land, “SC-Flip decoding of polar codes
with high order error correction based on error dependency,” in Proc.
IEEE ITW, 2019.

[60] G. Coppolino, C. Condo, G. Masera, and W. J. Gross, “Efficient
operation scheduling in successive-cancellation-based polar decoders,” in
Proc. SiPS, 2018.

[61] S. A. Hashemi, C. Condo, and W. J. Gross, “List sphere decoding of
polar codes,” Proc. ACSSC, 2015.

[62] H. Zhou, W. J. Gross, Z. Zhang, X. You, and C. Zhang, “Efficient
sphere polar decoding via synchronous determination,” IEEE Trans. Veh.
Technol., vol. 69, no. 6, pp. 6777–6781, 2020.

[63] C. Pillet, C. Condo, and V. Bioglio, “Fast-SCAN decoding of polar
codes” in Proc. IEEE ISTC, 2021.

[64] X. Hu, H. Hou, X. Jiang, S. Sun, G. LIANG, and S. Han, “An optimized
successive cancellation list decoder for polar codes combined with critical
set,” in Proc. IEEE IWCMC, 2022.

[65] D. Yang and K. Yang, “Error-Aware SCFlip decoding of polar codes”
IEEE Access, vol. 8, pp. 163758–163768, 2020.

TIMOKHIN et al.: OVERVIEW OF VARIOUS METHODS FOR DECODING ... 777

I. Timokhin at the moment is a postgraduate student
of the Higher School of Economics in the direction
of Information Security, and also provides researches
in the laboratory of Cyber-Physical Systems and
the Internet of Things. He also works at Huawei’s
Moscow Research Center, analyzing big data, com-
plex query execution efficiency, and computing re-
source optimization. Professional interests are ar-
tificial intelligence, hash function research, polar
coding, and graph theory.

F. Ivanov is currently an Associate Professor in the
Department of Electronic Engineering at National
Research University Higher School of Economics,
Moscow, Russia. He received his M.S. degree in
Mathematics in 2011 from Far Eastern Federal
University, Vladivostok, Russia and the and Ph.D.
degree in Computer Engineering and Theoretical
Informatics from Moscow Institute of Physics and
Technologies (Moscow, Russia) in 2014. He also
works as a Fellow Researcher at Institute for Infor-
mation Transmission Problems, Russian Academy

of Science from 2011. His research interest includes communication theory,
polar codes, LDPC codes, concatenated codes, convolutional codes, and non-
orthogonal multiple access.

