
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023 825

Joint Optimization of Time-Slot Allocation and
Traffic Steering for Large-Scale Deterministic

Networks
Wenhao Wu, Xiaoning Zhang, Jiaming Pan, and Yihui Zhou

Abstract—Recently, time-sensitive services have expanded from
traditional industrial control systems to more scenarios. Some
time-sensitive applications, such as remote surgery, autonomous
driving, augmented reality (AR), etc., require deterministic end-
to-end delay and jitter in data transmission. deterministic net-
work (DetNet) is proposed as a promising technology for provid-
ing deterministic service in wide area networks (WAN). DetNet
guarantees deterministic end-to-end delay and jitter by specifying
a certain routing path and transmission time-slots for time-
sensitive flows. However, how to efficiently steer time-sensitive
flows while jointly allocating transmission time-slots is still an
open problem. Existing flow scheduling algorithms are limited in
the scenarios of local area networks (LAN), and do not consider
the impact of propagation delay in large-scale networks. To this
end, we study the joint optimization of time-slot allocation and
traffic steering, while considering the propagation delay of WAN
links. Our objective is to maximize the number of successfully
deployed time-sensitive flows under the constraints of required
end-to-end delay. Accordingly, we formulate the studied problem
as an integer linear programming (ILP) model. Since it is proved
to be an NP-hard problem, we design a heuristic algorithm named
genetic-based deterministic network traffic scheduling (GDNTS).
The solution with the largest number of deployed time-sensitive
flows can be obtained from the evolution of chromosomes in
GDNTS. Compared with the benchmark algorithms, extensive
simulation results show that GDNTS improves the deployed time
sensitive-flows number by 22.85% in average.

Index Terms—Deterministic networks, integer linear program-
ming, resource allocation, routing, wide area network.

I. INTRODUCTION

RECENTLY, researchers are exploring new network ap-
plications in the context of the 5th generation mobile

communication technology (5G) [1]. Some time-sensitive ap-
plications, such as augmented reality (AR) [2], virtual reality
(VR) [3], Internet of vehicles (IoV) [4], remote surgery [5],
etc., demand deterministic end-to-end delay and jitter. How-
ever, in the wide area network (WAN) scenarios, network delay
will significantly affect the performance of such applications.
As shown in Fig. 1, critical health-care applications like remote
surgery require quick request-response and feedback control
cycles with high availability and reliability. In remote surgery,

Manuscript received November 21, 2022; revised May 17, 2023; approved
for publication by Jamalipour, Abbas, Division 3 Editor, Feburary. 22, 2023.

The authors are with School of Information and Communication Engineer-
ing, University of Electronic Science and Technology of China, Chengdu,
China, email: {wu_wenhao555, pjm20211202, 13723877647}@163.com,
xnzhang@uestc.edu.cn.

W. Wu is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2023.000047

Internet of
vehicles

remote
surgery

AR/VR

Cloud
Gaming Wide Area Network

surgery
operator

remote
surgery

patient

data base

server

 high reliability

 low latency

 Deterministic end-to-end jitter

Fig. 1. Illustration of emerging applications in large-scale networks.

the control signal sent from the operator is transmitted to the
medical equipment through WAN [6]. Uncertain delay and
jitter cause a noticeable increase in surgical risk [7]. The jitter
larger than the interval time between two packets will cause
the system instability. Generally, the jitter of end-to-end delay
should be less than 1 ms [8]. Such long-distance time-sensitive
applications have brought new challenges to existing networks.

Unfortunately, the existing network forwarding strategy can
not guarantee deterministic end-to-end delay and jitter for
time-sensitive applications. Traditional Internet protocol (IP)
networks provide best-effort packet delivery service and lack
unified scheduling for the behavior of packets. The end-to-end
delay of packets has a long tail effect in IP networks, which
means the end-to-end delay of some packets significantly
exceeds the average delay due to network congestion or other
issues [9]. Therefore, how to provide deterministic end-to-end
delay for emerging time-sensitive applications in large-scale
networks is a brand new topic for research.

Extensive research has been conducted for deterministic
transmission in local area networks (LAN). To meet the
deterministic quality of service (QoS) requirements of time-
sensitive applications, IEEE 802.1 time-sensitive network-
ing (TSN) task group has sought to provide link layer support
for ultra-low latency (ULL) networking. A set of technical
standards to guarantee the deterministic delay in the physical
layer and link layer has been put forward [10]. In TSN
standards, IEEE 802.1 AS [11] proposed the timing and
synchronization mechanism. IEEE 802.1Qat [12], Qcc [13]
and Qca [14] proposed resource reservation and path control
mechanisms. IEEE 802.1 Qch [15] proposed a queueing model
named cyclic queuing and forwarding (CQF), which uses

1229-2370/23/$10.00 © 2023 KICS

826 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

two queues opened alternately to provide deterministic end-
to-end delay. TSN provides mechanisms for guaranteeing
deterministic end-to-end delay in the link layer that well suited
for small networks.

However, mechanisms in TSN have strict requirements on
propagation delay and clock synchronization. The effect of
the propagation delay of the links and the precision limitation
of the clock synchronization makes the mechanism suitable
for TSN difficult to effectively apply in WAN. In order to
overcome the limitations of LAN-based TSN standards, IETF
deterministic networking group took TSN mechanisms as the
underlying transmission solution and proposed determinis-
tic networking (DetNet) architecture to provide deterministic
transmission services for time-sensitive flows in layer-3 and
multi-protocol label switching (MPLS) based deterministic
transmission technology has been standardized [16], [17]. A
desirable outcome of the DetNet is the ability to establish a
multi-hop path over the IP or MPLS network for a particular
flow while meeting the deterministic requirement for delay and
jitter [18]. Techniques like resource allocation, service protec-
tion, and explicit routes have been used by DetNet to provide
deterministic QoS. The IETF DetNet group has proposed the
overall architecture [19], framework for data plane [20], and
YANG model for configuration and operational data [21].
Some underlying transmission mechanisms are not sensitive
to clock synchronization are also proposed to adapt to the
features of wide-area transmissions, such as three-buffer CQF
and CSQF [24]. Moreover, emerging network technologies
such as 5G and Software Defined Networks (SDN) are also
actively seeking integration with DetNet [22], [23]. Mohaje et
al. proposed a dynamic optimization model to optimizing
carrier allocation and power utilization with the highest level
of energy efficiency [40], [41]. Dong et al. [42] proposed a
novel adaptive backhaul topology with the ability to adapt
to different traffic patterns, which provides the possibility of
effective channel allocation to each backhaul link to meet
capacity and QoS demands.

The key point of providing deterministic end-to-end delay
in DetNet is to allocate certain forwarding paths and transmis-
sion time-slots for time-sensitive flows. However, underlying
transmission mechanisms like CSQF and CQF only specify
the layer-2 primitive while the problem of traffic routing
and scheduling remains undefined. Compared with the LAN
scenario, the difficulty of traffic scheduling and time-slot allo-
cation in the WAN will be increased due to the asynchronous
propagation delay and clock asynchronization. Fig. 2(a) shows
a network instance in LAN, in which the CQF is adopted as the
underlying transmission solution. The sending and receiving of
a packet can be completed in the same time-slot. The core idea
of the scheduling algorithm design in the LAN is to guarantee
a deterministic queuing delay and processing delay while the
propagation delay can be ignored. Fig. 2(b) shows a network
instance in WAN. The packet is received at time-slot 𝑡1+𝑛 after
being sent to the link at time-slot 𝑡1, where 𝑛 represents the
propagation delay between 𝑅𝑜𝑢𝑡𝑒𝑟1 and 𝑅𝑜𝑢𝑡𝑒𝑟2. This feature
makes it necessary to consider the link propagation delay in
the scheduling algorithm of WAN. Variations in propagation
delay and clock asynchronization problems also cause a clock

Router1 Router 2

Router2

Router1

t1

t1

Send packet in t1 Receive packet in t1

(a) Packet delivery in LAN

Router1 Router 2

Router2

Router1

t1

t1+n

propagation

delay = n time slots

synchronization and

delay fluctuation

Send packet in t1 Receive packet in t1+n

(b) Packet delivery in WAN

Fig. 2. Difference of packet delivery between WAN and LAN.

skew 𝑠 between two routers, which makes the actual receiving
time of the packet inconsistent with the expected calculation
result. The complex network environment makes algorithms
designed for TSN difficult to find the optimal solution.

To address the above challenges, this paper focuses on the
joint optimization of time-slot allocation and traffic steering
for large-scale deterministic networks. Our objective is to
maximize the number of deployed time-sensitive flows under
the constraints of delay and jitter required by time-sensitive
flows. We first propose the DetNet architecture based on
SDN and an advanced CQF mechanism is used to solve the
clock asynchronization problem in WAN. The centralized SDN
network architecture can jointly schedule time-sensitive flows
in the network and provide deterministic end-to-end delay
guarantee. The studied problem is formulated as an integer
linear programming (ILP) model and can be reduced from the
knapsack problem, which proves that the studied problem is
NP-hard. Due to the problem’s complexity, we design a heuris-
tic algorithm named genetic-based deterministic network traf-
fic scheduling (GDNTS). GDNTS decides whether to deploy
each time-sensitive flow in the network and allocates network
resources for successfully deployed time-sensitive flows. In the
GDNTS algorithm, the time-sensitive flow deployment result
is placed on a specific data structure named chromosome. By
using bioinspired operators on multiple chromosomes, such

WU et al.: JOINT OPTIMIZATION OF TIME-SLOT ALLOCATION AND ... 827

as mutation, crossover, and selection, numerous feasible de-
ployment results can be produced. The high-quality solutions
are retained to the end of the algorithm. Compared with the
benchmark algorithms, extensive simulation results show that
GDNTS improves the deployed time-sensitive flow number by
22.85% in average.

The main technical contributions of this paper are summa-
rized as follows.
• We apply the centralized network framework to DetNet, and

propose the workflow for time-sensitive flow scheduling.
• We propose an advanced CQF mechanism that can tolerate

delay variation and clock synchronization in WAN.
• We present the joint optimization problem in large-scale

deterministic network, while considering the impact of
propagation delay. We formulate the studied problem as an
ILP model.
• Since the formulated problem is NP-hard, we design a

heuristic algorithm named GDNTS based on genetic al-
gorithm for time-Slot allocation and traffic steering, and
our algorithm improves the deployed time-sensitive flows
number by 22.85% in average.
The rest of our paper is organized as follows. In Section II,

we briefly review the related literatures. In Section III, we
propose the architecture of deterministic network and for-
mulate the studied problem as an ILP model in Section IV.
Our heuristic algorithm is presented in Section V. We present
simulation results in Section VI and conclusions are given in
Section VII.

II. RELATED WORK

The scenarios considered in the deterministic networks are
becoming large and complicated. Realizing the co-existence
of multiple deterministic services is necessary. In the past few
years, routing and scheduling problems in deterministic net-
works have been largely covered. We divide these studies into
two parts. For the first part, scheduling mechanisms suitable
for LAN were proposed. The scheduling algorithm in TSN
should ensure that high-priority data packets not conflict with
each other. Steiner et al. [25], [30] studied the performance of
commercial SMT solver in static-scheduling problem. Craciu-
nas et al. [31] formulated necessary constraints for schedules
in TSN and focused on gate operations. Nayak et al. [26], [32]
proposed the architecture of TSSDN and considered the static
scheduling problems in TSN while formulating the studied
problem as an ILP model. Yan et al. [33] proposed an Injection
Time Planning (ITP) mechanism to allocate resources for time-
sensitive flows by managing the injection time-slot of time-
sensitive flows. Xue et al. [34] solved the scheduling problem
with network virtualization and proposed virtual queues to
deploy time-sensitive flows with a time offset parameter.
Pang et al. [35] proposed a flow schedule generation model
with the objective of minimizing the end-to-end delay of
time-sensitive flows. However, these schemes need a limited
maximum network diameter and are difficult to apply to large-
scale deterministic networks.

In the second part, large-scale deterministic network archi-
tecture and flow scheduling algorithms suitable for WANs

were proposed. With the expansion of network scale and
equipment quantity, large-scale deterministic networking has
to take time asynchronization and propagation delay of links
into account. Chen et al. [36] investigated the load balance
problem in large-scale deterministic networks. They used an
extension of the original segment routing (SR) policy for spec-
ified queuing and forwarding (CSQF) to meet the deterministic
QoS requirements. The studied problem is formulated as an
ILP model and load balancing was realized by assigning dif-
ferent SR labels to packets at the source node. Krolikowski et
al. [28] focused on the joint routing and scheduling problem
and proposed an approximate solution algorithm based on
column generation to maximize traffic acceptance. Huang et
al. [37] proposed the cycle tags planning (CTP) mechanism
and a scheduling algorithm named flow offset and cycle
shift (FO-CS) is designed to compute the time-slot allocation
of each time-sensitive flow.

Above works adopt scheduling methods that separate time-
slot allocation from routing calculation. Namely, when solving
the scheduling problem of time-sensitive flows, it is necessary
to predetermine alternative paths, and select a specified one
to allocate time-slots. Such methods are generally unable to
maximize the number of successful deployed time-sensitive
flows. The two difficulties in joint scheduling algorithms for
large-scale deterministic networks are (1) the propagation
delay and clock asynchronization in WAN cannot be ignored
and (2) the joint scheduling problem of routing and time-
slot has high complexity in large-scale networks. Our work
considers the effect of propagation delay and provides an
advanced CQF mechanism as a solution for clock asynchro-
nization. Meanwhile, we propose a flow scheduling algorithm
to jointly consider the interdependence of routing and time-
slot allocation. Thereby we can deploy more time-sensitive
flows to the network and achieve more efficient utilization of
network resources.

III. LARGE-SCALE DETERMINISTIC NETWORK
ARCHITECTURE

In this section, we first propose a software-defined deter-
ministic network (SDDN) architecture for WAN. Then we
give the workflow of this architecture. Afterward, we provide
a deterministic forwarding strategy to guarantee deterministic
end-to-end delay and jitter.

A. System Model

The SDDN architecture has the characteristics of central-
ized user configuration under the management of the SDDN
controller. It consists of forwarding layer, control layer and
application layer. Fig. 3(a) illustrates the SDDN architecture.

The forwarding layer consists of SDDN routers and is
responsible for forwarding time-sensitive packets. Compared
to the basic SDN architecture, the routers in SDDN take an
advanced cycling queue forward (CQF) queue with buffer-
ing mechanism as the underlying transmission solution. This
transmission mechanism can guarantee deterministic delay and

828 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Application

layer

Control layer

Forwarding

layer

SDN-DetNet controller

Network

monitor

Network

management

Time-slot

allocation

CQF-based layer-2

tansmition

 Clock module

 CQF mechanism

Traffic

routing

service request network abstraction

router

configuration

timing

information

Configuration

response

topology

discovery

User Devices

Real-time
applications

IP-based layer-3

tansmition
 DetNet flowtable

time-sensitive flow

generation

(a) SDDN Architecture

SDN controller

S0

S1

S2

Input

Port
Dequeue

CQF queue

DetNet router

11111111111

User devices
SSSS0000

d

Time synchronization

module

Dequeue

CQF queue Output port

Matching

Flow table 1
Matching field Action

Flow 1 Output S0

Flow 1

Flow Table 1

Deterministic

transmission service

(b) SDDN in WANs

Fig. 3. Illustration of SDDN Architecture.

jitter in the case of high propagation delay and clock asyn-
chronization. The forwarding layer can receive configuration
information from the control layer, and can also feed back
network topology change and propagation delay of links to
the upper layer.

The control layer is responsible for routing calculation,
time-slot allocation, network management, and network mon-
itoring. The controller can collect request information from
the application layer and feedback information from the for-
warding layer, and generate control information for packet
forwarding by executing the scheduling algorithm.

The application layer consists of time-sensitive applications.
Users can program and deploy new time-sensitive flows with-
out caring about the underlying operations. These applications
can submit the requirement to the controller through the
northbound interface. At the same time, the applications can
also abstract and encapsulate their own functions to provide a
northbound interface for users.

Fig. 3(b) illustrates a deterministic transmission across the
WAN requested by the user devices. There are three main
entities in SDDN: (1) The SDDN controller is a logically
centralized module and is responsible for path calculation
and time-slot allocation. The SDDN controller also needs to
configure the routers according to calculation results; (2) The
router in the data plane can forward packets according to the
forwarding rules in DetNet flow table and the packet is sent
to the designated port. The queuing behavior of the packet
is automatically controlled by the CQF queue. The queue
controlled by a high-precision clock with CQF mechanism
can guarantee deterministic end-to-end delay and jitter. (3)
User devices in the network are the source and destination of
time-sensitive flows, there are a large number of user devices
directly connected to SDDN routers in the network. And the
user devices can receive the information from the controller
to specify the sending time of its time-sensitive flows.

B. Deterministic Forwarding Strategy Based on Advanced
CQF

The difference between SDDN and ordinary SDN is that
advanced CQF mechanism is used to guarantee the deter-
ministic delay and jitter for data transmission. CQF defined

Router1 Router2

Router0

Router0

t2 t3t1 t4 t5

Arrive

early

Arrive

Late

standard clock

synchronization and

delay variation

Router3

Router1

Router2

Router3

Fig. 4. Packet receiving time deviation.

in 802.1Qch is a widely adopted solution in TSN. CQF
mechanism divides the continuous time into time-slots of
length d. The basic idea of CQF is that the packet received in
a time-slot must be sent to the link for transmission in the next
time-slot, which ensures that the queuing delay of the packet
is bounded [10]. This mechanism can be achieved by setting
two alternately opened queues in the output port of routers.
However, the defects of this mechanism are (1) TSN has
strict constraints on propagation delay, the propagation delay
between two nodes cannot exceed the duration of the time-slot,
and (2) CQF mechanism has extremely high requirements of
clock synchronization between nodes.

To make this mechanism suitable for WAN, we add two
buffer queues to the original CQF to cope with the problem
of clock asynchronization and propagation delay variation. The
result of the above problem is that the data packet arrives at
downstream router earlier than the scheduled time-slot or the
data packet arrives later than the scheduled time-slot. Fig.4
shows these two phenomena and their solutions. For the case
where the packet arrives early, we use a buffer queue to delay
this packet by one slot so that it can be forwarded at the correct
time-slot. For the case where the packet arrives late, we send
the packet in the next time-slot by frame preemption. This

WU et al.: JOINT OPTIMIZATION OF TIME-SLOT ALLOCATION AND ... 829

strategy will not cause traffic collisions in the next time-slot
because a portion of the bandwidth has been reserved for these
packets during the scheduling algorithm. Such advanced CQF
strategy can relax the requirements of clock synchronization,
but it is worth noting that this mechanism still requires
relatively loose clock synchronization, packets should not be
skewed for more than one time-slot.

We also take link propagation delay into account, assuming
a transmission path with ℎ hops, the propagation delay in each
hop is 𝑎𝑖 and the duration of a time-slot is 𝑡𝑠. For the ideal
case, each packet sent to link with delay 𝑎𝑖 in time-slot 𝑡 will
be received by the next node in time-slot 𝑡 + ⌈𝑎𝑖/𝑡𝑠⌉ + 1, and
this process will be repeated ℎ times. Meanwhile, we note that
if a packet can be sent to the link at the end of a time-slot
at the source node and received at the beginning of a time-
slot at the destination node, the delay of this packet can be
reduced by one time-slot. In this case, the minimum delay of
the packet is:

𝐷𝑀𝑖𝑛 = ℎ · 𝑡𝑠 +
ℎ∑︁
𝑖=1

𝑎𝑖 − 𝑡𝑠. (1)

Since the propagation delay is usually much larger than the
duration of the time-slot, we ignore the ceiling symbol in
calculating the time-slot consumption on the link. Noting
that this simplification does not affect the correctness of our
conclusion, because our advanced CQF strategy can tolerate
calculation error within one time-slot.

For the worst case, each packet will arrive later than the
scheduled time-slot in each hop of transmission due to clock
skew and propagation delay variation. This phenomenon has
been illustrated in Fig. 4. The packet sent to link with delay
𝑎𝑖 in time-slot 𝑡 will be received by the next node in time-slot
𝑡 + ⌈𝑎𝑖/𝑡𝑠⌉ + 2. This process will be repeated ℎ times, and if
the packet is sent to the link at the beginning of the time-slot
at the source node and received at the end of the time-slot at
the destination node, the delay of this packet will increase by
one time-slot. In this case, the maximum delay of the packet
is:

𝐷𝑀𝑎𝑥 = 2ℎ · 𝑡𝑠 +
ℎ∑︁
𝑖=1

𝑎𝑖 + 𝑡𝑠. (2)

Therefore, we can limit the end-to-end delay jitter within
(ℎ + 2) · 𝑡𝑠.

Our mechanism can be implemented by adding two ad-
ditional queues to the CQF. Fig. 5 shows the transmission
process of a time-sensitive flow in the SDDN. The packets in
the buffer queue and the CQF queue will be sent sequentially
in each time slot. When a packet arrives at router S0 in time-
slot 𝑖, the router first checks if the packet arrives at the correct
time-slot. If the packet arrives in the correct time-slot, the
packet will be forwarded to CQF queue Q0 (Q0 is open at
input port in time-slot 𝑖), and sent to the link in time-slot 𝑖+1.
If the packet arrives earlier than the scheduled time-slot, the
packet will be forwarded to buffer queue Qb1 and sent to the
link at time-slot 𝑖 + 2, so that the packet is back to the correct
time-slot. If the packet arrives later than the scheduled time-
slot, the packet will be forwarded to CQF queue Q0 and be
sent at time slot i+1, this packet is delayed by one time-slot.

S0 S2S1

Path

Time-slot

Propagation

delay

Queuing

delay

Output

Port

CQF queue

Q0

Q1

S0

Input Port

Output Port

i :Q0=open;Q1=close

 Qb1=open;Qb0=close

i+1:Q0=close;Q1=open

 Qb0=open;Qb1=close

i :Q0=close;Q1=open

 Qb0=open;Qb1=close

i+1:Q0=open;Q1=close

 Qb1=open;Qb0=close

Input

Port

Buffer queue

Qb0

Qb1

Normal packet

Delay packet

Early packet

Qb0 dequeue

Q0 dequeue

Qb1 dequeue

Q1 dequeue

Qb0 dequeue

Q0 dequeue

Qb1 dequeue

Q1 dequeue

i i+1 i+n+1 i+n+2

Fig. 5. Deterministic Forwarding Strategy Based on CQF.

When the packet arrives at router S1 in time-slot 𝑖+𝑛, it is sent
to S2 in time-slot 𝑖+𝑛+1. There is an additional propagation of
𝑛−1 time-slots between routers S0 and S1. The same process
as router S0 will be performed on router S1.

C. Network Measurement and Time-Sensitive Flow Setup

The workflow of SDDN requires cooperation between the
SDDN controller and the forwarding device. When the system
is started, the controller does not have the information of the
topology and propagation delay. To get this information, the
SDDN router will periodically send probe packets to measure
the propagation delay of links. After the link measurement
is completed, each router can obtain the adjacent information
and propagation delay information. When the SDDN controller
needs to perform time-sensitive flow scheduling, it will ac-
tively send a query packet to routers through the out-band
control channel. Routers reply to the controller with their
adjacency and propagation delay information. The controller
will restore the complete network topology based on the
information from each router.

When users have the need for deterministic transmission
service, the user devices interact with the SDDN controller
through an application programming interface (API). Fig. 6
shows the workflow of time-sensitive flow establishment and
transmission. The routers will periodically perform link status
detection, and upload the link status and topology information
to the SDDN controller (step 1). At the beginning of the
transmission, the user sends the deterministic transmission
service requirement to the gateway router. Information in the
requirement includes the source node, destination node, du-
ration, end-to-end delay constraint, and rate of time-sensitive
flow. The gateway router forwards the request information to
the controller (Step 2). The SDDN controller decides whether
to deploy each flow into the network by running the flow
scheduling algorithm, and records the status of each link in
the network. After the scheduling is completed, the SDDN
controller sends configuration information to each SDDN
router. The configuration information includes a forwarding
method corresponding to a flow ID and a forwarding time-slot
allocated to this time-sensitive flow (step 3). The routers record

830 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

User devices User devices

SDDN controller

DetNet router DetNet router

Gatway Router Router SDDN controllerUser devices

[2] Request

[3] Configuration

[6] Send data

[4] Configuration results

[5] Transmission time-slot

[1] measurement and report

[1]

[2]
[3]

[4]
[5]

[6]

Fig. 6. Workflow of SDDN.

the forwarding rules of each time-sensitive flow in the flow
table according to the configuration information. The router
that configured successfully returns confirmation information
to the SDDN controller (step 4). After that, the controller
sends a deployed result message to the user’s device (step 5).
The user device will send packets to the gateway router in a
specified time-slot, and the router in the network will forward
packets according to the pre-configured flow table (step 6).

D. Time-Slot Allocation and Flow Collision

The following part will show the time-slot allocation prob-
lem that needs to be solved in large-scale deterministic net-
work flow scheduling. Under the CQF mechanism, time in
DetNet is divided into time-slots with a duration of 𝑡𝑠. Multiple
continuous time-slots constitute a scheduling cycle 𝑐. Each
time-sensitive flow sends packets in a specified time-slot in
scheduling cycle. The goal of SDDN is to enable successfully
deployed time-sensitive flows to have deterministic end-to-
end delay and low packet loss rate. If the number of packets
received in a time-slot exceeds the queue capacity, some
packets will be dropped and greatly affect the performance of
large-scale deterministic networks. The number of data packets
that can be accommodated in each time-slot depends on the
rate of the outport and the duration of the time-slot. During
the network measurement process, the transmission rate of
output port 𝑏𝑤 will be reported to the controller. The time-
slot duration 𝑡𝑠 and the duration of a scheduling cycle 𝑐 are
determined in the controller and shared with the forwarding
devices during the router configuration process. When the rate
of packets arriving exceeds 𝑏𝑤, some packets will be dropped
due to the queue capacity.

To explain this issue more clearly, an example can be given
in Fig. 7 to illustrate the collision of three flows. There are
three edge nodes 𝑒0, 𝑒1, 𝑒2 and two SDDN routers 𝑟0, 𝑟1 in
the network. Time-sensitive flows 𝑓1, 𝑓2 and 𝑓3 need to be
deployed. The path assigned by SDDN controller to 𝑓1 is 𝑒0-
𝑟𝑡0-𝑟𝑡1, the path of 𝑓2 is 𝑒1-𝑟𝑡0-𝑟𝑡1, and the path of 𝑓3 is 𝑒2-𝑟𝑡0-
𝑟𝑡1. All of three flows send packets at the first time-slot of the
scheduling cycle, and the router in the network can accept only
one packet per time-slot. The packets that exceed the queue

r0 r1

e0

e1

1 2 ... n+2 n+3

e0

r0

r1

e1

collision occurred collision avoided

f2f1

n+41 2 ... n+2 n+33

f3e2

e0

...
Propagation delay

Fig. 7. Scenario with two time-sensitive flows in one edge node.

capacity will arrive 𝑟0 at time-slot 2, the packets of 𝑓2 and 𝑓3
are dropped. If we specify 𝑓2 send packets in the second slot
of a scheduling cycle, and 𝑓3 send packets in the third time-
slot, the collision can be avoided. The scheduling algorithm
in SDDN controller is necessary to consider the time-slots
allocation of flows while calculating routing. Previous works
solving such time-slot allocation problems separated from the
routing calculation, which leads to poor performance of the
scheduling result. We jointly consider the interdependence of
path routing and time-slot allocation in our algorithm.

IV. PROBLEM FORMULATION

In this section, we formulate the joint optimization problem
of time-Slot allocation and traffic steering as an ILP model.
All the notations used in our paper are listed in Table I. Our
objective is to maximize the number of successfully deployed
time-sensitive flows.

A. Defination of Network Topolgy, and Time-Slots

The inputs of the ILP model is the topology of the network
and the set of time-sensitive flows that need to be scheduled.
The DetNet network is modeled as 𝐺 (𝑉, 𝐿), where 𝑉 denotes
the set of nodes and 𝐿 denotes the set of links. The set of time-
sensitive flows is 𝐹, where time-sensitive flow 𝑓𝑖∈𝐹 . Each
time-sensitive flow needs to be transmitted from source node
𝑠𝑟𝑐𝑖 to destination node 𝑑𝑠𝑡𝑖 . 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 is the interval between
data sending, which is a fixed value. 𝑠𝑙𝑜𝑡𝑖 is the specified
transmission time-slot at the source node. 𝑑𝑒𝑙𝑎𝑦𝑖 denotes the
worst-case end-to-end delay requirements. In this paper, we
define the duration of time-slot and scheduling cycle according
to the 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 of each flow.

𝑡𝑠 = 𝐺𝐶𝐷 (𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙1, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙2, · · ·, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑛), (3)

𝑐 = 𝐿𝐶𝑀 (𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙1, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙2, · · ·, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑛), (4)

where 𝑡𝑠 represents the duration of a time slot, 𝑐 represents
the duration of a scheduling cycle, and the functions GCD and
LCM represent the operations of the least common multiple
and the greatest common divisor, respectively.

WU et al.: JOINT OPTIMIZATION OF TIME-SLOT ALLOCATION AND ... 831

TABLE I
NOTATIONS USED IN THE PAPER.

Notation Description

𝐺 (𝑉, 𝐿) The network topology, where 𝑉 denotes the set of nodes
and 𝐿 denotes the set of links

𝑎𝑢𝑣 The propagation delay from node u to node v
𝑏𝑤𝑢𝑣 The bandwith of link (𝑢, 𝑣) ∈ 𝐿

𝐹 The set of time-sensitive flows which send package period-
ically

𝑛 The number of time-sensitive flows in 𝐹

𝑓𝑖 The time-sensitive flow 𝑖 in F, where 𝑖<𝑛

𝑐 The duration of a scheduling cycle
𝑡𝑠 The duration of a time-slot
𝑥𝑖𝑢𝑣 A binary variable, it takes 1 if 𝑓𝑖 forwarded on link (u, v),

0 otherwise, where 𝑓𝑖∈𝐹
𝑠𝑟𝑐𝑖 The source of time-sensitive flow 𝑓𝑖 , where 𝑓𝑖∈𝐹
𝑑𝑠𝑡𝑖 The destination of time-sensitive flow 𝑓𝑖 , where 𝑓𝑖∈𝐹
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 The transmission interval between two packets of time-

sensitive flow 𝑓𝑖 , where 𝑓𝑖∈𝐹
𝑟𝑖 The sending rate of time-sensitive flow 𝑓𝑖 , where 𝑓𝑖∈𝐹
𝑑𝑒𝑙𝑎𝑦𝑖 The maximum end-to-end delay requirement of time-

sensitive flow 𝑓𝑖 , where 𝑓𝑖∈𝐹
𝑠𝑙𝑜𝑡𝑖 The transmission slot of time-sensitive flow 𝑓𝑖 at the edge

node, where 𝑓𝑖∈𝐹
𝑝𝑎𝑡ℎ𝑖 The set of links that 𝑓𝑖 passed through, where 𝑓𝑖∈𝐹
ℎ𝑜𝑝𝑖 The number of hops from source node to destination node

in 𝑓𝑝𝑎𝑡ℎ , where 𝑓𝑖∈𝐹. it takes 0 if 𝑝𝑎𝑡ℎ𝑖 is not exist
ℎ𝑜𝑝𝑠𝑟𝑐𝑖 ,𝑢 The number of hops from source node to node 𝑢 in 𝑝𝑎𝑡ℎ𝑖

of 𝑓𝑖 , where 𝑓𝑖∈𝐹. it takes 0 if 𝑝𝑎𝑡ℎ𝑖 is not exist
𝑀𝑡

𝑖 𝑗𝑘
A binary variable, it takes 1 if 𝑓𝑖 occupies the slot 𝑡 in a
scheduling cycle of link (𝑗 , 𝑘) , 0 otherwise, where 𝑓𝑖∈𝐹

𝐵𝑖 A binary variable, it takes 1 if 𝑓𝑖 is successfully deployed
into network

B. Constraints and Objective

To deploy time-sensitive flows in the network, the controller
needs to allocate a reliable path and a specific transmission
time-slot for each time-sensitive flow. Scheduling schemes
that can be used by time-sensitive flows need to satisfy the
following constraints.

Flow conservation constraint: For all nodes in the network,
the flow conservation constraint needs to be satisfied. We
define a binary variable 𝑥𝑖𝑢𝑣 . It takes 1 if 𝑓𝑖 link (𝑢, 𝑣) in
the path of 𝑓𝑖 , 0 otherwise, where 𝑓𝑖 ∈ 𝐹. If 𝑢 and 𝑣 are
not the source node or destination node of flow 𝑓𝑖 , each flow
entering node u leaves in another link. So the amount of data
entering node 𝑢 the same as the data leaving node 𝑢. For an
adjacent node 𝑣 of 𝑢, 𝑥𝑖𝑢𝑣 indicates whether flow 𝑓𝑖 enters
node 𝑢 from link (𝑢, 𝑣), and 𝑥𝑖𝑣𝑢 indicates whether flow i is
sent out from link (𝑢, 𝑣). The following constraints should be
satisfied: ∑︁

𝑣∈𝑉 | (𝑢,𝑣) ∈𝐿
𝑥𝑖𝑢𝑣 −

∑︁
𝑣∈𝑉 | (𝑣,𝑢) ∈𝐿

𝑥𝑖𝑣𝑢 = 0. (5)

If the 𝑢 is the source node of 𝑓𝑖 , 𝑓𝑖 will be sent from node 𝑢
to other nodes, but will not enter node 𝑢 from other nodes.
The flows be sent out from node 𝑢 occupies one more links
than flows enter into node 𝑢. The following constraints should
be satisfied: ∑︁

𝑣∈𝑉 | (𝑢,𝑣) ∈𝐿
𝑥𝑖𝑢𝑣 −

∑︁
𝑣∈𝑉 | (𝑣,𝑢) ∈𝐿

𝑥𝑖𝑣𝑢 = 1. (6)

If the 𝑢 is the destination node of 𝑓𝑖 , The flows enter into
the node 𝑢 occupies one more links than flows be sent out
from node 𝑢. The following constraints should be satisfied:∑︁

𝑣∈𝑉 | (𝑣,𝑢) ∈𝐿
𝑥𝑖𝑣𝑢 −

∑︁
𝑣∈𝑉 | (𝑢,𝑣) ∈𝐿

𝑥𝑖𝑢𝑣 = 1. (7)

Loop-free constraint: In the scheduling of time-sensitive
flows, loops in path will not help the deployment of time-
sensitive flows, but will occupy more network resources. When
there is a loop in the path, time-sensitive flow will enter or
leave a particular node twice. To avoid loops in the path of
𝑓𝑖 , each link can only be passed once:∑︁

𝑣∈𝑉 | (𝑣,𝑢) ∈𝐿
𝑥𝑖𝑣𝑢 ≤ 1. (8)

Collision-free constraint: The scheduling of time-sensitive
flows should satisfy the collision-free constraints. We define
the binary variable 𝑀 𝑡

𝑖𝑢𝑣
. If the 𝑓𝑖 occupies the time-slot 𝑡 of

the link (𝑢, 𝑣) in a scheduling cycle, 𝑀 𝑡
𝑖𝑢𝑣

= 1, 0 otherwise.
A binary variable 𝐵𝑖 takes 1 if 𝑓𝑖 is successfully deployed
into the network, 0 otherwise. The collision-free constraint of
link (𝑢, 𝑣) is:

𝑛−1∑︁
𝑖=0

𝑀 𝑡
𝑖𝑢𝑣𝐵𝑖𝑟𝑖 ≤ 𝑏𝑤𝑢𝑣 , (9)

where 𝑟𝑖 represents the rate of time-sensitive flow 𝑓𝑖 , and 𝑏𝑤𝑢𝑣

represents the bandwidth of the link (𝑢,𝑣). The meaning of
this constraint is that the total rates of all time-sensitive flows
assigned to the time-slot cannot exceed the link bandwidth.
Note that before the time-sensitive flow 𝑓𝑖 is finished, 𝑀 𝑡

𝑖𝑢𝑣

and 𝑟𝑖 are maintained in the SDDN controller to record the
current status of the network. When a new time-sensitive flow
scheduling is performed, the impact of existing time-sensitive
flows will also be taken into account by considering the 𝑀 𝑡

𝑖𝑢𝑣

and 𝑟𝑖 of existing time-sensitive flows.
Due to the propagation delay in WAN, the packets sent

within one cycle may be received within the next cycle, and
the value of 𝑀 𝑡

𝑖𝑢𝑣
should meet the following rule:

∀ 𝑓𝑖 ∈ 𝐹, 𝑖 ∈ [0, 𝑛 − 1],∀𝑢 ∈ 𝐸,∀𝑣 ∈ 𝐸,∀𝑡 ∈
[
0,
𝑐

𝑡𝑠
− 1

]
𝑀 𝑡

𝑖𝑢𝑣 = 1
s.t.

(𝑢, 𝑣) ∈ 𝑝𝑎𝑡ℎ𝑖 , 𝛼 ∈
[
0,
𝑐

𝑡𝑠
− 1

]
𝑡1 =

(
𝑠𝑙𝑜𝑡𝑖 + 𝛼[

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖

𝑡𝑠
] + ℎ𝑜𝑝𝑠𝑟𝑐𝑖𝑢

)
mod

(𝑐
𝑡𝑠

)
𝑀

𝑡1
𝑖𝑢𝑣

= 1.

(10)

End-to-end delay constraint: The scheduling of time-
sensitive flows needs to meet the worst-case end-to-end delay
constraint. The end-to-end delay mainly includes the queuing
delay in the router and the propagation delay in the link.
The queuing delay is caused by CQF mechanism, and can be
calculated from the duration of time-slot and the number of
hops, where the hops of the flow 𝑓𝑖 is ℎ𝑜𝑝𝑖 . The propagation
delay of each link can be measured and stored in the SDDN
controller, where the propagation delay of the link (𝑢, 𝑣) is

832 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Backpack

Object 1 Object 2 Object n
weight1

value1

Capacity:W

weight2

value2

weightn

valuen

(a) Knapsack problem

Capacity: C

V1

V2

Vn

Flow f1

Flow f2

Flow fn

A B

(b) Joint optimization problem in large-scale deterministic networks

Fig. 8. Reduction from Knapsack to joint optimization problem in large-scale
deterministic networks.

𝑎𝑢𝑣 , and the end-to-end delay requirement 𝑑𝑒𝑙𝑎𝑦𝑖 are provided
by users. The worst-case end-to-end delay constraint is:

ℎ𝑜𝑝𝑖 ∗ 𝑡𝑠 +
∑︁

𝑢∈𝑉 |𝑣∈𝑉
𝑥𝑖𝑣𝑢𝑎𝑢𝑣 ≤ ⌊

𝑑𝑒𝑙𝑎𝑦𝑖

𝑡𝑠
⌋ . (11)

Object: Our objective is to maximize the number of suc-
cessfully deployed time-sensitive flows in the network. The
objective of the model is formulated as follows:

𝑚𝑎𝑥

𝑛−1∑︁
𝑖=0
𝑉𝑖𝐵𝑖 , (12)

where 𝑉𝑖 is used to measure the priority of 𝑓𝑖 . To simplify
the problem, our paper considers that all time-sensitive flow
priorities are the same, and the objective function is equivalent
to maximizing the number of successfully deployed time-
sensitive flows.

C. Complexity Analysis
The scheduling problem of time-sensitive flows is an NP-

hard optimization problem. Theorem 1 shows the NP-hardness
of joint optimization of traffic steering and time-slot allocating
problem.

Theorem 1. The joint optimization problem of time-slot
allocation and traffic routing for large-scale deterministic net-
works is NP-hard.

Proof. We can prove that the joint optimization problem in
large-scale deterministic networks is an NP-hard problem by
reducing the knapsack problem to our problem. The knapsack
problem has been proved as NP-hard in [39]. Given a set
of objects, each with a weight and a value, the knapsack
problem determines whether to put items in the knapsack to
get the maximum total value while the total weight below
the knapsack capacity. We give an instance of the knapsack
problem in Fig. 8(a). There are 𝑛 objects with different values
𝑣𝑎𝑙𝑢𝑒𝑖 and weight 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 . The capacity of the knapsack is
𝑊 , the set of objects is 𝑂, where the 𝑖th item is 𝑂𝑖 , with
value 𝑣𝑎𝑙𝑢𝑒𝑖 and weight 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 . The objective function of
the knapsack problem is:

𝑚𝑎𝑥

𝑛−1∑︁
𝑖=0

𝑥𝑖𝑣𝑎𝑙𝑢𝑒𝑖 , (13)

where 𝑥𝑖 is a binary variable, it takes 1 if the item 𝑂𝑖 is
selected in the knapsack, 0 otherwise.

The knapsack problem should satisfy the following con-
straint:

𝑛−1∑︁
𝑖=0

𝑥𝑖𝑤𝑒𝑖𝑔ℎ𝑡𝑖 < 𝑊. (14)

With the instance of the knapsack problem, an instance of
a simplified joint optimization problem of time-slot allocation
and traffic routing can be constructed in polynomial time as
follows: (1) Create a network topology 𝐺 (𝑉, 𝐿) with two
SDDN routers and one physical link and there are 𝐶 time
slots in a scheduling cycle of the link. All time-sensitive flows
are generated in the hosts, which connect to the routers. (2)
Each object that needs to be put into the knapsack can map to
a time-sensitive flow from A to B. The set of time-sensitive
flows is 𝐹, 𝑓𝑖 is the 𝑖th time-sensitive flow, and the end-to-end
delay requirements are infinite for 𝑓𝑖 . (3) Allocate the time-
sensitive flows in the network to get the weighted maximum
number of successfully deployed time-sensitive flows.

The constructed time-sensitive flow scheduling problem is
shown in Fig. 8(b), where the objective function is as follow:

𝑚𝑎𝑥

𝑛−1∑︁
𝑖=0
𝑉𝑖𝐵𝑖 . (15)

Considering that there is only one link in the network, our
problem should satisfy (10) and (11) . In a scheduling cycle
with W time-slots, the constraint of our problem is as follow:

𝐶−1∑︁
𝑡=0

𝑛−1∑︁
𝑖=0

𝑀 𝑡
𝑖𝑢𝑣𝐵𝑖 ≤ 𝐶. (16)

The mapping relationship between the variables of the
knapsack problem and our problem:

𝐵𝑖 ← 𝑥𝑖∑𝐶−1
𝑡=0 𝑀 𝑡

𝑖𝑢𝑣
← [𝑊

𝑤𝑒𝑖𝑔ℎ𝑡𝑖
]

𝐶 ← 𝑊

𝑉𝑖 ← 𝑣𝑎𝑙𝑢𝑒𝑖

. (17)

For a knapsack problem, we can reduce it to a simplified
joint scheduling problem of time-slot allocation and traffic

WU et al.: JOINT OPTIMIZATION OF TIME-SLOT ALLOCATION AND ... 833

Information

for flow 2

Information

for flow n

Flow status

(1 bit)

Flow slot

(32 bit)

Flow path

 (m * 32 bit)

Network slot occupancy

 (m * m * 2 *32 bit)

Information

for flow 1

Chromosome

Fig. 9. Chromosome architecture.

routing. Obviously, the studied problem in large-scale net-
works has higher complexity. So the problem can prove to be
an NP-hard problem. Furthermore, it is clear that our problem
belongs to NP. For a given time-sensitive flow scheduling
scheme, the validity can be checked in polynomial time by
formula (5–11).

V. ALGORITHM DESIGN

Since the studied problem is proved to be NP-hard, we
design a heuristic algorithm named GDNTS to solve the
ILP model. The GDNTS algorithm maximizes the number
of successfully deployed time-sensitive flows in the network
while guaranteeing the end-to-end delay requirements.

A. Overview of GDNTS

Genetic algorithm is a heuristic algorithm that simulates
natural genetic operations. Our GDNTS is based on the
idea of genetic algorithm and starts with a set of randomly
generated chromosomes. New generation of chromosomes is
continuously generated through evolution. In this process, a
better chromosome has more opportunities to retain their in-
formation to the next generation. After multiple evolutions, the
chromosome with the maximum value of the fitness function
is the output of the algorithm. Some key definitions in this
algorithm are as follows:
(i) Chromosome: Chromosome is a special data structure that

carries information. In GDNTS, the information carried
by the chromosome is the scheduling results of all flows.
The data structure of chromosome is shown in Fig. 9. The
information of chromosome includes binary variables 𝐵𝑖

of whether to deploy a flow (flow status), the transmitting
time-slot 𝑠𝑙𝑜𝑡𝑖 (flow slot), the path 𝑝𝑎𝑡ℎ𝑖 of 𝑓𝑖 (flow
path) and the time-slot occupancy in the entire network
(network slot occupancy).

(ii) Population: The set of chromosomes is called popula-
tion and each population contains 𝑝𝑜𝑝size chromosomes.
𝑝𝑜𝑝𝑐𝑢𝑟 represents the set of the current chromosomes
and 𝑝𝑜𝑝next represents the set of the next generation
chromosomes.

Algorithm 1 GDNTS algorithm
1: Input:𝐺 (𝑉, 𝐸), 𝐹;
2: Output: Deployed results of all flows;
3: Execute 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() to get the initial population;
4: 𝐾 ← 0;
5: while 𝐾<the maximal iteration number do
6: 𝑝𝑜𝑝next ← Select chromosomes with high fitness func-

tion values from 𝑝𝑜𝑝𝑐𝑢𝑟 ;
7: 𝑝𝑜𝑝next ← Select pairs from 𝑝𝑜𝑝next and cross their

information to generate new chromosome;
8: Select chromosome from 𝑝𝑜𝑝next, randomly mutate the

information;
9: Calculate the fitness value of 𝑝𝑜𝑝next;

10: 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑏𝑒𝑠𝑡 ← max(𝐹fit (𝑝𝑜𝑝next));
11: 𝑝𝑜𝑝𝑐𝑢𝑟 ← 𝑝𝑜𝑝next;
12: 𝑝𝑜𝑝next ← ∅;
13: if convergence evaluation parameters Δ small enough

then
14: break;
15: end if
16: 𝐾 ← 𝐾 + 1;
17: end while
18: return deployed results of all flows;

Algorithm 2 Initialize function
1: Input: Current population 𝑝𝑜𝑝𝑐𝑢𝑟 ;
2: Output: Current population 𝑝𝑜𝑝𝑐𝑢𝑟 with randomly gen-

erated deployed results of all flows ;
3: 𝑝𝑜𝑝𝑐𝑢𝑟 ← ∅ 𝑖 ← 0;
4: for Chromosome 𝑖 ∈ the population 𝑝𝑜𝑝𝑐𝑢𝑟 do
5: for 𝑓 𝑗 ∈ 𝐹 do
6: Initialize 𝑠𝑙𝑜𝑡 𝑗 ;
7: 𝑝𝑎𝑡ℎ 𝑗 ← random-routing(𝐺, 𝑓 𝑗);
8: if 𝑝𝑎𝑡ℎ 𝑗 meets constraints then
9: Deploy 𝑓 𝑗 into network;

10: Update information in 𝑖;
11: end if
12: end for
13: end for

(iii) Evolution: Evolution is the operation of generating the
next generation population 𝑝𝑜𝑝next based on the current
population 𝑝𝑜𝑝𝑐𝑢𝑟 . In evolution, the algorithm first se-
lects some chromosomes from 𝑝𝑜𝑝𝑐𝑢𝑟 with higher fitness
value and inherits them to 𝑝𝑜𝑝next. After that, a crossover
operation is performed to select pairs of chromosomes
and exchange part of their information to generate new
individuals. Finally, mutation operation randomly changes
the information in some chromosomes with a certain
probability 𝑃𝑚.

(iv) Fitness function: The fitness function is used to evaluate
the probability that the information of chromosomes is
selected in the genetic process. In GDNTS, the objective
function of ILP model is a non-negative maximum func-

834 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Algorithm 3 Random-Routing function
1: Input:𝐺 (𝑉, 𝐸), 𝑓𝑖;
2: Output: 𝑝𝑎𝑡ℎ𝑖;
3: 𝑓 𝑙𝑎𝑔 ← 𝑓 𝑎𝑙𝑠𝑒, visited.push(𝑠𝑟𝑐𝑖);
4: 𝑎𝑙𝑡𝑒𝑟 ← ∅;
5: for 𝑛𝑜𝑑𝑒 𝑖 ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 & link (𝑣𝑖𝑠𝑖𝑡𝑒𝑑.𝑏𝑎𝑐𝑘 (),𝑖) exists do
6: 𝑎𝑙𝑡𝑒𝑟.𝑝𝑢𝑠ℎ(𝑖);
7: end for
8: Randomly disrupt the order of elements in 𝑎𝑙𝑡𝑒𝑟;
9: for 𝑛𝑜𝑑𝑒 𝑗 ∈ 𝑎𝑙𝑡𝑒𝑟 do

10: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑.𝑝𝑢𝑠ℎ(𝑗);
11: if visited.top() = 𝑑𝑠𝑡𝑖 then
12: flag ← true;
13: end if
14: if flag = true then
15: break;
16: end if
17: random-routing(𝐺 (𝑉, 𝐸), 𝑓𝑖);
18: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑.𝑝𝑜𝑝(𝑗);
19: end for
20: return 𝑝𝑎𝑡ℎ𝑖;

tion, which can be directly used as the fitness function

𝐹fit (𝑐ℎ) =
𝑛+1∑︁
𝑖=0

𝐵𝑖 . (18)

B. GDNTS Mechanism

Algorithm 1 shows the framework of the proposed algo-
rithm. During the implementation of the algorithm, a pop-
ulation is randomly initialized with a predefined population
size, and the proposed coding strategy is used to encode the
randomly generated population (line 3). Then the algorithm
enters the loop process. Each iteration will generate a new
generation of population. The next generation of population
𝑝𝑜𝑝next is generated from the current population 𝑝𝑜𝑝𝑐𝑢𝑟 by
the selection algorithm in line 6. The 𝑝𝑜𝑝next then crossed
in line 7, mutated in line 8, and updated fitness values in
line 9. After that, the chromosome with the optimal solution
will be retained, and the next iteration starts. The algorithm
ends when the number of iterations reaches the upper limit or
convergence parameter Δ is small enough, where Δ is used
to evaluate the convergence of the algorithm. That is, when
the iteration of all chromosomes in the current population can
not bring improvement in the average fitness, the algorithm
terminates. Δ is shown as follow:

Δ =

����∑𝑐ℎ∈𝑝𝑜𝑝next (𝐹fit (𝑐ℎ)) −
∑

𝑐ℎ∈𝑝𝑜𝑝𝑐𝑢𝑟 (𝐹fit (𝑐ℎ))∑
𝑐ℎ∈𝑝𝑜𝑝next (𝐹fit (𝑐ℎ)) +

∑
𝑐ℎ∈𝑝𝑜𝑝𝑐𝑢𝑟 (𝐹fit (𝑐ℎ))

���� . (19)

At the beginning of the GDNTS, a set of initial solutions
needs to be generated randomly. We designed an algorithm to
generate a random solution for each flow. Algorithm 2 shows
the details of the population initialization. For each flow, the
random-routing algorithm is called to randomly generate a
path in line 7. The generated path is not guaranteed to meet the

constraints in the ILP model. If the path meets the constraints
of ILP, the output result will be recorded in the chromosome
in line 10.

The process of the random-routing algorithm is shown in
Algorithm 3. First, initialize the binary variable 𝑓 𝑙𝑎𝑔 as a sign
of whether a feasible path has been found. It takes true if a
path has been found, false otherwise. The array 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 stores
the visited nodes of a flow and the source node is added to the
array at the beginning. The algorithm traverses the unvisited
nodes among the neighboring nodes of the last element in
𝑣𝑖𝑠𝑖𝑡𝑒𝑑 in random order, and pushes the node need to visit in
𝑣𝑖𝑠𝑖𝑡𝑒𝑑 in line 10. If node 𝑗 is the destination node, set 𝑓 𝑙𝑎𝑔
as true in line 12 which means a path has been found. If the
path has not been found, calls the random-routing algorithm
recursively. At the end of the algorithm, a randomly generated
path is returned.

We take the selection mechanism that combines the best
individual retention strategy and the roulette wheel selection
to select the appropriate chromosome (line 6 in Algorithm 1).
The best individual retention strategy means directly copying
chromosome with the highest value of fitness function to
the next generation without participating in crossover and
mutation. The remaining individuals are selected using the
roulette wheel selection algorithm. The greater the fitness
value, the greater the probability of being selected.

The crossover operation is executed on line 7 in Algo-
rithm 1. The information of the same flow is randomly
selected from two chromosomes. A probability parameter 𝑃𝑐

decides whether to exchange information of this flow in the
two chromosomes. When an exchange event occurs, the two
chromosomes exchange information of the same time-sensitive
flow. If this flow is not deployed in either chromosome, the
crossover operation will not generate a new chromosome. If
the flow is successfully deployed in any chromosome, the
two chromosomes exchange all the information of this flow
and check whether the deployment of the flow meets the
constraints.

The mutation operation is executed on line 8 in Algorithm 1.
A chromosome is selected from the population randomly. The
probability 𝑃𝑚 determines whether the chromosome needs to
mutation. When the mutation occurs, we randomly select an
undeployed flow in the chromosome and call the Random-
Routing algorithm to generate a path for this flow.

C. Algorithm Complexity Analysis

For random-routing algorithm, this algorithm will be re-
cursed 𝑚 times in the worst case, where 𝑚 is the number
of nodes in the network topology. In each execution, the
algorithm should traverse all the neighbors of the current
node, and randomly disrupt the order of neighbors. In this
process, we shuffle node order by generating random numbers
corresponding to the number of neighbors and sorting them.
Therefore, the complexity of the Random-Routing algorithm
is

𝑂

(
|𝑚 |2 log |𝑚 |

)
. (20)

In population initialization, random-routing and path validity
checks are performed 𝑛 times, where 𝑛 is the number of time-

WU et al.: JOINT OPTIMIZATION OF TIME-SLOT ALLOCATION AND ... 835

sensitive flows that need to be deployed. For path validity
checks, the number of executions will not exceed 𝑚. The time
complexity of generating initial population is

𝑂 (|𝑛| (|𝑚 | + |𝑚 |2 log |𝑚 |)) = 𝑂
(
|𝑛| |𝑚 |2 log |𝑚 |

)
. (21)

When the GDNTS algorithm starts, selection, crossover, and
mutation operations will be performed in sequence. The se-
lection operation can be completed in constant time. The
complexity of the crossover operation is 𝑂 (|𝑚 |). The random
routing algorithm is called in the mutation, the complexity is
𝑂

(
|𝑚 |2 log |𝑚 |

)
. So that the time complexity of each iteration

is:
𝑂 (|𝑚 | + |𝑚 |2 log |𝑚 |) = 𝑂 (|𝑚 |2 log |𝑚 |). (22)

In the worst case, the evolution process will loop |𝐾 | times.
The total time complexity of the algorithm is:

𝑂

(
|𝑛| |𝑚 |2 log |𝑚 |

)
+𝑂 (|𝐾 | |𝑚 |2 log |𝑚 |) = 𝑂 (|𝑛| |𝑚 |2 log |𝑚 |).

(23)

VI. PERFORMANCE EVALUATION

In this section, the performance of GDNTS is stuied. We
first introduce the simulation setting. After that, the simulation
results are presented.

A. Methodology and Simulation Setting

Set up: Considering that the large-scale network topology is
complex and diverse, we used two typical network topologies
in our simulation, as shown in Fig. 10, including the NSFNET
topology (14 nodes, 21 links) and the USNET topology (24
nodes, 43 links). The propagation delay of all links is randomly
generated in [1 ms, 10 ms] and the bandwidth of each link is
1000 Mbps. All nodes in the network are SDDN routers with
advanced CQF queues, and each time-slot in the network can
only be occupied by one time-sensitive flow. In the parameter
settings of the algorithm, we set the population size to 80,
the crossover probability to 0.5, and the mutation probability
to 0.05. To eliminate statistical fluctuations, each group of
results is obtained from the averaging on 10 experiments with
randomly generated time-sensitive flow requests.

Time-sensitive flows generation: All time-sensitive flows
in the experiment are generated before the scheduling algo-
rithm executes. Each time-sensitive flow’s source node and
destination node are randomly designated. The delay require-
ments of users are uniformly distributed in [10 ms, 60 ms],
and the interval between two packets in a time-sensitive flow
is uniformly distributed in [100 us, 600 us].

Benchmark solutions: Load balancing routing and shortest
routing are common routing methods in existing wide area
networks. We compare the following benchmarks with the
proposed GDNTS.
• Shortest-routing fixed routing (SRFR): In the SRFR

algorithm, all feasible paths are determined through the
shortest path algorithm. Time-sensitive flows with longer
paths will not be deployed when time-slot conflicts occur.

1

0

2

3

5

4

6
7

9

10

11

13

12

8

(a) NSFNET topology

0

1

2

4

3

6

5

7

8

9

10

11

12

13

14

15

18

19

20

21

16
22

23
17

(b) USNET topology

Fig. 10. Simulation topology.

• Load-balance fixed routing (LBFR): In the LBFR algo-
rithm, Time-sensitive flows will be allocated to as more
links as possible. The idle links will be preferred for
path assignment. A conflicting time-sensitive flow will be
randomly deleted when a time-slot conflict occurs.
The most significant difference between the benchmark

algorithms and our GDNTS is that the routing calculation and
time-slot allocation are carried out separately. The benchmark
algorithms use different strategies to find paths for time-
sensitive flows in advance. After that, time-slot allocation is
performed under the fixed route. In fact, time-slot allocation
under fixed route is still an NP-hard problem [29]. We use
selection and crossover operations in genetic algorithms for
heuristic search.

Performance metrics: We use the following performance
metrics to evaluate the proposed algorithm: (1) Convergence
and time cost: The convergence rate and time cost of schedul-
ing algorithms; (2) Number of successfully deployed time-
sensitive flows: The total number of time-sensitive flows which
successfully deployed in the network; (3) Time-slot utilization
ratio: The ratio of the occupied time-slot to the total number
of time-slot in all links; (4) Throughput of SDDN: The total
throughput of all time-sensitive flows in the network; (5) Hops

836 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

0 50 1000 1500 2000 2500 3000 3500 4000 4500

The number of generations

22

24

26

28

30

32

34

36

38

40

42

A
ve

ra
ge

 s
uc

ce
ss

fu
lly

 d
ep

lo
ye

d
flo

w
s

0

0.01

0.02

0.03

0.04

0

0.01

0.02

0.03

C
on

ve
rg

en
ce

 p
ar

am
et

er

Average successfully deployed flows
Convergence parameter

(a) Convergence in NSFNET topology

0 50 1000 1500 2000 2500 3000 3500 4000 4500

The number of generations

50

60

70

80

90

100

110

A
ve

ra
g
e
 s

u
cc

e
ss

fu
lly

 d
e
p
lo

ye
d
 f
lo

w
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
o
n
ve

rg
e
n
ce

 p
a
ra

m
e
te

r
Average successfully deployed flows
Convergence parameter

(b) Convergence in USNET topology

Fig. 11. Convergence results.

40 80 120 160 200 240 280 320

Number of time-sensitive flows

0

1

2

3

4

5

6

7

8

T
im

e
co

st
 (

s)

NSFNET topology
USNET topology

Fig. 12. Time cost.

of successfully deployed time-sensitive flows: The hops of all
successfully deployed flows in the scheduling result.

B. Numerical Results

Convergence and time cost: Figs. 11(a) and 11(b) show the
execution procedure of successfully deployed time-sensitive

40 80 120 160 200 240 280 320

Number of time-sensitive flows

10

20

30

40

50

60

70

80

S
uc

ce
ss

fu
lly

 d
ep

lo
ye

d
nu

m
be

r

GDNTS

SPFR

LBFR

(a) Number of successfully deployment flows in NSFNET topology

40 80 120 160 200 240 280 320

Number of time-sensitive flows

20

40

60

80

100

120

140

160

180

200

220

S
u

cc
e

ss
fu

l ly
 d

e
p

lo
ye

d
 n

u
m

b
e

r

GDNTS
SRFR
LBFR

(b) Number of successfully deployment flows in USNET topology

Fig. 13. Number of successfully deployment flows results.

flows in the network during the iteration of the GDNTS
algorithm. The results in the figures are the convergence of
the GDNTS when the number of time-sensitive flows is set
as 120 in the NSFNET topology and the USNET topology,
respectively. The results show that as the number of iterations
increases, the average successfully deployed flows of all chro-
mosomes in the current population increases and eventually
converges to a fixed value. Meanwhile, we show the change
of the convergence parameter Δ in (19). When the value of
Δ is small enough, the algorithm terminates. GDNTS in both
networks can end within 4500 iterations and get an acceptable
result.

In Fig. 12, we show the actual time cost of GDNTS under
different topologies and flow numbers using a server with Intel
core i7-10700 CPU and 16 GB of RAM. As far as we know,
such kind of scheduling tasks typically take seconds to several
minutes [33], which is affected by server performance. From
the test results, we can see that the time cost significantly
increases with the increase of the number of nodes, and
linearly increases with the increase of the number of streams,
which is consistent with our conclusion in (23).

Number of successfully deployed time-sensitive flows:
Fig. 13(a) and 13(b) show the number of successfully deployed

WU et al.: JOINT OPTIMIZATION OF TIME-SLOT ALLOCATION AND ... 837

40 80 120 160 200 240 280 320
Number of time-sensitive flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e-
sl

ot
 u

til
iz

at
io

n
ra

tio

GDNTS
SRFR
LBFR

(a) Time-slot utilization ratio in NSFNET topology

40 80 120 160 200 240 280 320
Number of time-sensitive flows

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
im

e
-s

lo
t
u
til

iz
a
tio

n
 r

at
io

GDNTS
SRFR
LBFR

(b) Time-slot utilization ratio in USNET topology

Fig. 14. Time-slot utilization ratio results.

time-sensitive flows of different algorithms in NSFNET and
USNET. From the results, we can see that the number of
successfully deployed flows for each algorithm increases with
the growth of time-sensitive flow requests. Compared with
SRFR and LBFR, the number of successful deployment flows
in GDNTS algorithm has an average increase of 20.52%
and 27.18% in NSFNET, an average increase of 11.24% and
32.46% in USNET. The performance gap grows when more
time-sensitive flows are required in the networks. The reason
is that GDNTS can continuously generate new scheduling re-
sults through mutation operations in the algorithm. Therefore,
GDNTS has a wider search domain than other algorithms. In
SRFR, the paths found by the algorithm are concentrated on
a few shorter paths, causing the collision of flows. In LBFR,
to achieve load balancing, numerous paths do not meet the
end-to-end delay constraint. The results illustrate the progress
in the number of successfully deployed flows of GDNTS.

Time-slot utilization ratio: Fig. 14(a) and 14(b) show the
average time-slot utilization ratio of all links in NSFNET and
USNET for different algorithms. We can see that the time-slot
utilization ratio increases with the growth of time-sensitive
flow requests. Compared with SRFR and LBFR, the proposed
GDNTS improves 27.88% and 17.45% time-slot utilization

40 80 120 160 200 240 280 320

Number of time-sensitive flows

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T
h

ro
u

g
h

p
u

t
o

f
tim

e
-s

e
n

si
tiv

e
 f

lo
w

s
(M

b
p

s)

GDNTS

SRFR

LBFR

(a) Throughput of algorithms in NSFNET topology

40 80 120 160 200 240 280 320

Number of time-sensitive flows

0

1

2

3

4

5

6

T
hr

ou
gh

pu
t o

f t
im

e-
se

ns
iti

ve
 fl

ow
s

(M
bp

s)

104

GDNTS
SRFR
LBFR

(b) Throughput of algorithms in USNET topology

Fig. 15. Throughput results.

ratio in average, respectively. This is because GDNTS elim-
inates the collision of different time-sensitive flows in time-
slots through multiple iterations, thereby deploying more time-
sensitive flows. The SRFR and LBFR calculate routes for time-
sensitive flows in advance, while ignoring the interdependence
between time-slots allocation and routing. Thus, GDNTS can
use the time-slot resources in the network more efficiently.

Throughput: Fig. 15(a) and 15(b) show the throughput of
all time-sensitive flows in NSFNET and USNET using differ-
ent algorithms. In Fig. 15(a), we can see that when the number
of time-sensitive flows is less than 200, the total throughput
increases with the increase of time-sensitive flow requests.
However, when the number of time-sensitive flows is greater
than 200, time-sensitive flow requests will no longer bring
an increase in throughput since most links in the NSFNET
are already saturated. In Fig. 13(b), throughput increases as
the number of time-sensitive flow requests increases. Unlike
NSNSFNET, the throughput of LBFR in USNET exceeds that
of SRFR, because as the number of network nodes increases,
load-balancing algorithms can utilize network resources more
effectively. To sum up, GDNTS can always achieves higher
total throughput in each case.

Hops of successfully deployed time-sensitive flows:

838 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

1 2 3 4 5 6 7 8

Number of time-sensitive flows

0

0.5

1

1.5

2

2.5

3

A
ve

ra
g
e
 h

o
p
s

o
f
tim

e
-s

e
n
si

tiv
e
 f
lo

w
s

(a) Hops of algorithms in NSFNET topology

40 80 120 160 200 240 280 320

Number of time-sensitive flows

0

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
g
e
 h

o
p
s

o
f
tim

e
-s

e
n
si

tiv
e
 f
lo

w
s

(b) Hops of algorithms in USNET topology

Fig. 16. Hops of successfully deployment flows.

Fig. 16(a) and 16(b) show the hops of all successfully de-
ployed flows in NSFNET and USNET for different algorithms.
Compared with SRFR and LBFR, the average hops in GDNTS
scheduling results are larger and the maximum performance
gap is 0.471 hops and 0.4149 hops, respectively. The reason
for this result is that GDNTS allocates longer paths for some
time-sensitive flows within the end-to-end delay constraint to
deploy more flows. SRFR and LBFR reject some of the time-
sensitive flows that cannot be deployed into the network, so
that the successfully deployed flows have a shorter average
number of hops. Since all the time-sensitive flows in GDNTS
still meet the end-to-end delay constraint, this performance
drop will not affect the practicality of GDNTS.

Meanwhile, we can point out that among the three algo-
rithms, the standard deviation of hops obtained by GDNTS is
larger than that of SRFR and LBSR. Since GDNTS algorithm
has no obvious preference for the hops during path scheduling,
the results of GDNTS may simultaneously include paths
with fewer hops and paths with more hops to maximize the
deployment of time-sensitive flows. In contrast, SRFR tends to
adopt the path with the smallest number of hops, while LBFR
generates hops with higher variance for load balancing.

VII. LIMITATIONS AND FUTURE WORKS

A. Limitations

Our solution is based on an ILP model, which may have
high computational complexity and scalability issues. As the
network size and traffic demand increase, our solution may
take longer time to solve the problem or require more compu-
tational resources. Our solution also requie the accuracy and
completeness of the input data, such as the network topology,
traffic demand, and service requirements. If the input data is
inaccurate or incomplete, our solution may not be able to find
the optimal or feasible solution.

B. Future Works

Collaborative optimization of control plane and data
plane: Current hardware implementations and control methods
to support deterministic networks remain an open challenge.
The implementation of queue scheduling in DetNet utilizes
technologies such as network calculus and software-defined
queues to schedule at the data layer. By calculating the
upper bound of the worst delay of each flow, a routing path
and scheduling method that meet the delay requirements are
selected for each flow to ensure Deterministic delivery at a
per-flow, per-packet level. Or use cycle-based cyclic queue
scheduling and other technologies to schedule at the control
layer, and use methods such as synchronous packet sending,
segment routing, and cyclic queuing forwarding to ensure
that the worst end-to-end delay is bounded and reduce delay
variation (jitter). Future research work needs to focus on how
to achieve collaborative scheduling between different layers to
improve network resource utilization and service quality.

Programmable DetNet: The main challenge of DetNet is
how to ensure the programmability of paths, that is, how
to achieve fast path switching, load balancing, and fault
recovery without affecting the application service quality. To
this end, multiple aspects need to be considered, such as path
selection algorithms, traffic engineering, congestion control,
fault detection, state synchronization, etc. The development
of programmable data planes has brought new opportunities
for DetNet, how to use programmable data planes to achieve
reliable queue scheduling still remains an open challenge.

VIII. CONCLUSION

In this paper, we study the joint optimization of time-
slot allocation and traffic steering for large-scale deterministic
networks. We first propose the SDDN architecture. With the
SDDN architecture, we analyze the problem of traffic steering
and time-slot allocation for time-sensitive flows. We formulate
the studied problem as an ILP model, and prove that the
problem is NP-hard by reducing the knapsack problem to
a simplified case of our problem. Accordingly, a heuristic
algorithm GDNTS based on genetic algorithm to maximize the
number of successfully deployed flows is proposed. Compared
with three existing benchmark algorithms, simulation results
show that the proposed GDNTS improves the number of
successfully deployed flows by 22.85% in average.

WU et al.: JOINT OPTIMIZATION OF TIME-SLOT ALLOCATION AND ... 839

IX. ACKONOWLEDGEMENT

This work was supported in part by the Natural Science
Foundation of Sichuan (No. 2022NSFSC0543), in part by the
National Natural Science Foundation of China (NSFC) (No.
62001087, 62171085, 61871097, 62272428, and U20A20156),
in part by Hefei Municipal Natural Science Foundation (No.
2022004), in part by Anhui Provincial Natural Science Foun-
dation (No. 2208085MF167), in part by the Open Research
Projects of Zhejiang Lab (No. 2021LC0AB04), and in part
by Natural Science Foundation of Jiangsu Province (No.
BK20221261).

REFERENCES

[1] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless net-
works: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 18,
no. 3, pp. 1617–1655, 2016.

[2] H. Cho, S. Jung, and H. Jee, “Real-time interactive AR system for
broadcasting,” in Proc. IEEE VR, 2017.

[3] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-
latency and ultra-reliable virtual reality,” IEEE Netw., vol. 32, no. 2,
pp. 78–84, 2018.

[4] D. Kombate and Wanglina, “The Internet of vehicles based on 5G com-
munications,” in Proc. IEEE iThings, IEEE GreenCom,IEEE CPSCom,
and IEEE SmartData, 2016.

[5] L. Kovacs, T. Haidegger, and I. Rudas, “Surgery from a dis-
tance—application of intelligent control for telemedicine,” in Proc. IEEE
SAMI, 2013.

[6] H. Laaki, Y. Miche, and K. Tammi, “Prototyping a digital twin for
real time remote control over mobile networks: Application of remote
surgery,” IEEE Access, vol. 7, pp. 20325–20336, 2019.

[7] M. Perez et al,, “Impact of delay on telesurgical performance: Study
on the robotic simulator dV-Trainer,” Int. J. Comput. Assisted Radiology
Surgery, vol. 11, pp. 581–587, 2016.

[8] C. She et al., “A tutorial on ultrareliable and low-latency communications
in 6G: Integrating domain knowledge into deep learning,” Proc. IEEE,
vol. 109, no. 3, pp. 204–246, 2021.

[9] J. Kommineni and A. Malinowski, “Study of time delay distribution in
IP protocol family for IP-network based control applications,” in Proc.
IEEE IES, 2005.

[10] A. Nasrallah, V. Balasubramanian, A. Thyagaturu, M. Reisslein, and H.
Elbakoury, “Cyclic queuing and forwarding for large scale deterministic
networks: A survey,” in arXiv e-prints arXiv:1905.08478, 2019.

[11] “WG802.1. IEEE Standard for Local and Metropolitan Area Networks-
Timing and Synchronization for Time-Sensitive Applications in Bridged
Local Area Networks,” IEEE Std 802.1AS, 2011.

[12] “WG802.1. IEEE Standard for Local and Metropolitan Area Net-
works—Virtual Bridged Local Area Networks Amendment 14: Stream
Reservation Protocol(SRP),” IEEE Std 802.1Qat, 2010.

[13] “IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks – Amendment 31: Stream Reservation Protocol(SRP)
Enhancements and Performance Improvements,” IEEE Std 802.1Qcc-
2018, 2018.

[14] “IEEE Standard for Local and Metropolitan Area Networks - Bridges
and Bridged Networks - Amendment 24: Path Control and Reservation,”
IEEE Std 802.1Qca-2015, 2016.

[15] “IEEE Standard for Local and Metropolitan Area Networks: Cyclic
Queuing and Forwarding,” IEEE 802.1Qch-2017.

[16] J. Joung, J.-D. Ryoo, T.-S. Cheung, Y. Li, and P. Liu, “Asynchronous
Deterministic Networking Framework for Large-Scale Networks,” In-
ternet Engineering Task Force, 2022, draft-joung-detnet-asynch-detnet-
framework-00.

[17] B. Varga, J. Farkas, A. G. Malis, and S. Bryant. “Deterministic Network-
ing (DetNet) Data Plane: IP over IEEE 802.1 Time-Sensitive Networking
(TSN),” 2021, RFC 9023.

[18] N.Finn and P.Thubert, “Deterministic Networking Problem Statement,”
Internet Engineering Task Force,2019 Internet-Draft draft-ietf draft-ietf-
detnet-problem-statement.

[19] N.Finn, P.Thubert, B.Varga, and J.Farkas, “Deterministic Networking
Architecture,” Internet Engineering Task Force, 2019, Internet-Draft draft-
ietf detnet-architecture-13.

[20] B. Varga, J. Farkas, L. Berger, A. G. Malis, and S. Bryant, “Deterministic
Networking (DetNet) Data Plane Framework,” IETF RFC8938,2020; rfc-
editor.org/rfc/rfc8938.txt

[21] X. Geng, M. Chen, Y. Ryoo, D. Fedyk, R. Rahman, and Z. Li,
“Deterministic Networking (DetNet) YANG Model,” Internet Engineering
Task Force, 2021, draft-ietf-detnet-yang-12

[22] N. Shibata, S. Kaneko, K. Honda, and J. Terada, “Deterministic layer-2
ring network with autonomous dynamic gate shaping for multi-service
convergence in 5G and beyond,” in Proc. OFC, 2020.

[23] M. Hernández, R.Tombi, S. Kopp, D. Batista, C.Margie, and R. Silveira,
“An analytic-deterministic model for traffic prioritization in software
defined networks with network calculus,” in Proc. SBRC, 2015.

[24] Y. Li, S. Ren, G. Li, F. Yang, J.-D. Ryoo, and P. Liu, “IPv6 Options
for Cyclic Queuing and Forwarding Variants,” 2022, draft-yizhou-detnet-
ipv6-options-for-cqf-variant-00.

[25] W. Steiner, “An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks,” in Proc. IEEE RTSS,2010.

[26] N. Nayak, F. Durr, and K. Rothermel, “Time-sensitive software defined
network (TSSDN) for real-time applications,” in Proc. RTNS,2016.

[27] M. Ibrar et al., “IHSF: An intelligent solution for improved performance
of reliable and time-sensitive flows in hybrid SDN-based FC IoT sys-
tems,” IEEE Internet Things J., vol. 8, no. 5, pp. 3130–3142, 2020.

[28] Krolikowski et al., “Joint routing and scheduling for large-scale deter-
ministic IP networks,” Comput. commun., vol. 165, pp. 33–42, 2021

[29] A. Atallah, G. B. Hamad, and O. A. Mohamed, “Routing and scheduling
of time-triggered traffic in time-sensitive networks,” IEEE Trans. Ind.
Informat., vol. 16, no. 7, pp. 4525–4534, 2020.

[30] W. Steiner, S. S. Craciunas, and R. S. Oliver, “Traffic planning for time-
sensitive communication,” IEEE Commun. Standards Mag., vol. 2, no. 2,
pp. 42–47, 2018.

[31] S. Craciunas, R.Oliver, and W.Steiner. “Formal scheduling constraints
for time-sensitive networks.” arXiv e-prints arXiv:1712.02246, 2017.

[32] N. Nayak, F. Durr, and K. Rothermel, “Incremental flow scheduling and
routing in time-sensitive software-defined networks,” IEEE Trans. Ind.
Informat., vol. 14, no. 5, pp. 2066–2075, 2018.

[33] J. Yan et al., “Injection time planning: Making CQF practical in time
sensitive networking,” in Proc. IEEE INFOCOM, 2020.

[34] J. Xue, G. Shou, Y. Liu, Y. Hu, and Z. Guo, “Time-aware traffic
scheduling with virtual queues in time-sensitive networking,” in Proc,
IFIP/IEEE IM, 2021.

[35] Z. Pang et al., “Flow scheduling for conflict-free network updates in
time-sensitive software-defined networks,” IEEE Trans. Ind. Informat.,
vol. 17, no. 3, pp. 1668–1678, 2021.

[36] S. Chen, J. Leguay, S. Martin, and P. Medagliani, “Load balancing for
deterministic networks,” in Proc. IFIP Networking, 2020.

[37] Towards Network-Wide Scheduling for Cyclic Traffic in IP-based De-
terministic Networks

[38] M. Seaman. Paternoster policing and scheduling, Revision 2.1. [Online].
Available: http://www.ieee802.org/1/files/public/docs2019/crseaman-
paternoster-policing-scheduling-0519-v04.pdf

[39] M. Garey and D. Johnson, “Computers and intractability: A guide to
the theory of NP-Completeness,” in Proc. W. H. Freeman and Co, 1979.

[40] Mohajer et al., “Heterogeneous computational resource allocation for
NOMA: Toward green mobile edge-computing systems,” IEEE Trans.
Services Comput., vol. 16, no. 2, pp. 1225–1238, 2022.

[41] Mohajer et al., “Energy-aware hierarchical resource management and
backhaul traffic optimization in heterogeneous cellular networks,” IEEE
Syst. J. vol. 16, no. 4, pp. 5188–5199, 2022.

[42] Dong et al., “Energy-efficient hierarchical resource allocation in uplink-
downlink decoupled NOMA HetNets,” IEEE Trans. Netw. Service
Manag., vol. 20, no. 2, pp. 3380–3395 , 2023.

Wenhao Wu is currently pursuing the Bachelor
degree in Internet of Things engineering with the
School of Information and Communication Engi-
neering, University of Electronic Science and Tech-
nology of China, Chengdu, China. His research
interests include deterministic network, software de-
fined networks, and network function virtualization.

840 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25 NO. 6, DECEMBER 2023

Xiaoning Zhang received the B.S., M.S., and Ph.D.
degrees in Communication and Information Engi-
neering from the University of Electronic Science
and Technology of China, Chengdu, China, in 2002,
2005, and 2007, respectively. He is currently an
Professor with School of Information and Communi-
cation Engineering, University of Electronic Science
and Technology of China, Chengdu, China. His
research interests include network design, software
defined networks and network function virtualiza-
tion.

Jiaming Pan is currently pursuing the Master de-
gree in Information and Communication Engineer-
ing with the School of Information and Commu-
nication Engineering, University of Electronic Sci-
ence and Technology of China, Chengdu, China.
His research interests include deterministic network,
network optimization, software defined networks,
and network function virtualization.

Yihui Zhou is currently pursuing the Bachelor
degree in Internet of Things Engineering with the
School of Information and Communication Engi-
neering, University of Electronic Science and Tech-
nology of China, Chengdu, China. His research
interests include deterministic network, network op-
timization, software defined networks, and network
function virtualization.

